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Darmstädter Dissertationen



ii



iii

To my wife Ye and my parents.



iv



Acknowledgements

First of all, I would like to thank my supervisor Prof. Alex B. Gershman for his constant
support and guidance during my Ph.D. study. His encouragement, questions, comments, and
suggestions have greatly influenced the contents of this thesis. I have benefited tremendously
from his knowledge, vision, insights and rigor in scientific research.

I also thank Prof. Martin Haardt from Ilmenau University of Technology for his great interest
in my work, and for taking the time to be the second reviewer of my dissertation.

I thank my colleague Dr. Sergiy A. Vorobyov for fruitful cooperation which led to several
interesting results obtained during my Ph.D. studies. His sound mathematical background made
discussions with him always beneficial. Many thanks go to my colleague and friend Dr. Yisheng
Xue. His enthusiasm in research encouraged me greatly. I will miss the discussions and many
constructive suggestions from him. I thank Dr. Shahram Shahbazpanahi for cooperation and
advice.

I would express my gratitude to Prof. Andreas Czylwik, Dr. Thomas Kaiser, and secretary
Petra Hoetger from the University of Duisburg-Essen. I am indebted for much help from
them during my three years of graduate study and work at the Smart Antenna Research Team
(SmART) at the Department of Communication Systems. I always feel fortunate that I have
worked in such a group whose members gave me so much inspiration. I want to express my
gratitude to all of them.

Prof. Nicholas D. Sidiropoulos’s papers introduced me to the world of multi-way analysis.
His expertise in parallel factor analysis gave me great help.

Among all, I am grateful to my parents and my wife Ye. Their patience and tremendous
unconditional love have been the strongest support to me. Without them, this thesis would
never have come to existence.

Darmstadt, Germany Yue Rong
July 2005

v



vi



Zusammenfassung

In den letzten Jahren hat sich die Nachfrage in der drahtlosen Kommunikation nach zu-
verlässigen Multimedia- und Daten- Übertragungsverfahren mit hohen Transferraten extrem
vergrößt. Der Einsatz von Vielfachantennen- und Mehrträger- Kommunikation stellt theoretisch
attraktive und technisch praktische Lösungen zur Verfügung, um den Anforderungen gerecht
zu werden. Diese Arbeit hat das Ziel, Algorithmen für Vielfachantennen- und Mehrträger-
Kommunikation zu beschreiben und entwerfen.

Im ersten Teil der Dissertation werden für räumliche Signaturschätzung bandbreitenef-
fiziente blinde Algorithmen beschrieben, die auf zeitvarianter Nutzer-Sendeleistung und par-
alleler Faktor-Analysis (PARAFAC) basieren. Verglichen mit früheren Verfahren, erfordern die
Algorithmen keine Kenntnis des Ausbreitungskanals und/oder der Struktur des Sensor-Arrays.
Des weiteren sind die Algorithmen in allgemeineren Szenarien als bereits bekannte Methoden
einsetzbar.

Im zweiten Teil, basierend auf der robusten Anpassung der PARAFAC-Modelle, werden
blinde Mehrbenutzer-Detektionsalgorithmen für Direktsequenz-Codedivisions-Vielfachzugriff-
(DS-CDMA) Systeme eingesetzt. Verglichen mit früheren Verfahren weisen die Algorithmen
eine verbesserte Bandbreiteneffizienz und Robustheit gegenüber gepulstem Umgebungsrauschen
auf.

Der dritte Teil der Dissertation beschäftigt sich mit linearen Mehrbenutzerempfängern
für die gemeinsame Raum-Zeit-Dekodierung und Interferenzunterdrückung in multiple-input
multiple-output (MIMO) Systemen, die orthogonale Raum-Zeit-Blockcodes (OSTBCs) und
fehlerhafte channel state information (CSI) verwenden. Mit unterschiedlichen CSI-Fehlanpass-
ungs-Modellierungen werden robuste lineare Empfänger basierend auf worst-case Optimierung
oder stochastic programming beschrieben. Dadurch wird die Robustheit der Kommunikation-
ssysteme gegenüber CSI-Fehlanpassungen beträchtlich erhöht.

Der vierte Teil der Dissertation konzentriert sich auf die Verringerung der Kanal-Fading-
Effekte für orthogonale Frequenzaufteilungs-Vielfachzugriff- (OFDM) Systeme. Insbesondere
wird ein neuer linearer block precoder entwickelt, der auf dem Kriterium der Maximierung
der mean cutoff rate basiert. Verglichen mit vorherigen Precodertechniken bietet der Precoder
eine größere Effizienz und erfordert weniger Kenntnis über den Übertragungskanal am Sender.
Darüber hinaus werden adaptive Verfahren für OFDM-basierende Kommunikationssysteme un-
tersucht, bei denen der Sender nur ein Bit CSI pro Unterträger zur Verfügung hat, das er durch
eine Rückkopplung mit niedriger Datenrate erhalten hat. Optimale Parametereinstellungen
werden für diese adaptiven Algorithmen abgeleitet. Unvollkommenheiten der Rückkopplung
werden betrachtet und ihre Auswirkung auf die Leistung der adaptiven Techniken wird unter-
sucht.
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Abstract

In recent years, the demands for reliable high rate multimedia and data transmission in wireless
communications have increased tremendously. Multi-antenna and multi-carrier communications
provide both theoretically attractive and technically practical solutions to satisfy these require-
ments. This thesis aims at designing and studying advanced algorithms for multi-antenna and
multi-carrier communications.

In the first part of the thesis, we propose bandwidth-efficient blind spatial signature esti-
mation algorithms based on time-varying user power loading and parallel factor (PARAFAC)
analysis. Compared with the earlier approaches, our algorithms do not require any knowledge
of the propagation channel and/or sensor array manifold and are applicable to more general
class of scenarios.

In the second part of the thesis, blind multiuser separation-detection algorithms for direct-
sequence code-division multiple access (DS-CDMA) systems based on the robust fitting of
PARAFAC models are proposed. These algorithms provide an improved bandwidth efficiency
and robustness against impulsive ambient noise as compared with the earlier approaches.

The third part of the thesis is devoted to linear multiuser receivers for joint space-time
decoding and interference rejection in multiple-input multiple-output (MIMO) systems that
use orthogonal space-time block codes (OSTBCs) and erroneous channel state information
(CSI). Using different approaches to model the CSI mismatch, robust linear receivers based on
worst-case performance optimization and stochastic programming are proposed, respectively.
The proposed receivers greatly enhance the robustness of the communication systems against
CSI mismatches.

The fourth part of the thesis focuses on the issue of channel fading mitigation for the
orthogonal frequency division multiplexing (OFDM) communication systems. In particular,
a new linear block precoding technique based on the maximization of the mean cutoff rate
is developed. Compared with the earlier precoding techniques, our precoder provides better
performance and requires less channel knowledge at the transmitter. Also, adaptive approaches
for OFDM-based communication systems are studied in the case when the transmitter has only
one bit of CSI per subcarrier obtained through a low-rate feedback. Optimal parameters for
these adaptive algorithms are derived. Imperfections of the feedback channel are considered
and their impact on the performance of the adaptive techniques is investigated.
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Chapter 1

Introduction

This thesis aims at designing and studying advanced algorithms for multi-antenna and multi-
carrier communication systems. In this introductory chapter, we briefly present a necessary
background on multi-antenna and multi-carrier communication systems and overview the con-
tributions of this thesis.

1.1 Background on Multi-Antenna and Multi-Carrier

Communication Systems

Multi-antenna systems are used in a wide range of applications including communications,
radar, sonar, seismology, biomedicine, astronomy, medical imaging, and other fields. The
first application of multi-antenna techniques dates back to the second world-war (the Bartlett
beamformer) [1]-[3]. Recently, in wireless communication field, multi-antenna systems attract
significant interest both of academic researchers and practitioners, because multi-antenna com-
munications are able to provide a significant increase in system capacity and coverage without
additional consumption of the available radio spectrum [4]-[12], [24]-[27]. For example, multi-
ple antennas at base stations (BSs) have already been used in wireless communication systems
such as the global system for mobile communications (GSM) [13] since early 1990’s to improve
the signal reception at BSs [14]. The use of multiple antennas both at the transmitters and
receivers is considered as one of the approaches to improve the system throughput and spectral
efficiency for 3G and further generations of wireless communications [15].

Multi-antenna communication systems take advantage of spatial filtering and spatial diver-
sity. Spatial filtering is often called beamforming, which aims at enhancing the signal of in-
terest and suppressing interferences based on the differences in their spatial signatures (spatial
locations) [1]-[3]. Therefore, multi-antenna techniques allow different users to share the same
time-frequency resources [10]. Figure 1.1 illustrates the diagram of an M-antenna narrowband
receiver which performs spatial filtering of the incoming signal s(t). Here, [w1, · · · , wM ]T is the
weight vector of the spatial filter.
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Figure 1.1: Basic diagram of narrowband adaptive multi-sensor antenna.

Besides performing spatial filtering, multiple antennas also provide spatial diversity [5]-[10].
An inherent problem in wireless communications is channel fading, which arises due to construc-
tive or destructive effects of signals travelling through multiple paths from the transmitter to
the receiver. Diversity techniques are frequently applied in wireless communications to combat
fading [5]. The essence of diversity techniques is to collect signals which fade independently.
Different types of diversities such as time diversity and frequency diversity can be exploited to
combat channel fading [5]. With multi-antenna receiver and/or transmitter, the signals received
at each antenna experience independent fading. Therefore, spatial diversity can be applied to
mitigate fading.

Multi-antenna techniques can be combined with multicarrier techniques such as orthogo-
nal frequency-division multiplexing (OFDM) for high data rate transmission. OFDM converts
a frequency-selective fading channel into parallel flat fading sub-channels through the inverse
fast Fourier transform (IFFT) at the transmitter and the fast Fourier transform (FFT) at the
receiver [18]-[20]. Thus, the equalizer design at the receiver is greatly simplified. Such an advan-
tage brought by OFDM techniques is particularly important for multi-antenna communication
systems, due to the fact that the number of equalizers increases proportionally to the number
of receive antennas.

Another advantage of OFDM is that the subcarriers have the minimum frequency separation
required to maintain orthogonality of their corresponding time domain waveforms, yet the
signal spectra corresponding to different subcarriers overlap in frequency [18]. Therefore, the
available bandwidth is used very efficiently. Due to the merits mentioned above, OFDM has
been adopted in many standards, for example, IEEE802.11a LAN, IEEE802.16a (WiMAX),
and ETSI HIPERLAN/2 [21]-[23].
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1.2 Thesis Overview and Contributions

In this thesis, advanced algorithms for multi-antenna and multi-carrier communications are pre-
sented and studied. In Chapter 2, we address the blind spatial signature estimation problem and
develop bandwidth-efficient algorithms based on time-varying user power loading and parallel
factor (PARAFAC) analysis. Chapter 3 studies blind direct-sequence code-division multiple
access (DS-CDMA) multiuser separation-detection in impulsive ambient noise and proposes
algorithms based on the robust fitting of PARAFAC models. Robust linear receiver design
problem for multiple-access space-time block coded multiple-input multiple-output (MIMO)
system is investigated in Chapter 4. Using different approaches to model the channel state in-
formation (CSI) mismatch, we develop robust linear receivers based on worst-case performance
optimization and stochastic programming, respectively. In Chapter 5, we propose a cutoff
rate based linear block precoding technique for OFDM communication systems. The proposed
technique only requires the knowledge of the average relative channel multipath powers and de-
lays. Chapter 6 studies the performance of adaptive OFDM systems with one-bit-per-subcarrier
channel state feedback. Chapter 7 summarizes the thesis and gives the outlook to some future
work.

Chapter 2: Blind Spatial Signature Estimation

In multiple-access communication systems, signals from different users can be separated at the
receive antenna array based on the knowledge of their spatial signatures [28]-[31]. However, user
spatial signatures are typically unknown at the receiver and, therefore, have to be estimated. We
develop a new approach to blind spatial signature estimation using PARAFAC analysis [43]-[46].
Compared with the existing methods for blind spatial signature estimation, for example [28],
[31]-[34], our approach is bandwidth-efficient and does not require any restrictive assumptions
on the array geometry and the propagation environment.

Chapter 2 is based on the journal publication:

• Y. Rong, S. A. Vorobyov, A. B. Gershman, and N. D. Sidiropoulos, “Blind spatial signa-
ture estimation via time-varying user power loading and parallel factor analysis,” IEEE
Trans. Signal Processing, vol. 53, pp. 1697-1710, May 2005.

and two conference publications:

• Y. Rong, S. A. Vorobyov, A. B. Gershman, and N. D. Sidiropoulos, “Blind spatial sig-
nature estimation using time-varying user power loading and parallel factor analysis,” in
Proc. 58th IEEE Vehicular Technology Conference (VTC), Orlando, USA, Oct. 4-9, 2003,
vol. 1, pp. 79-83.

• Y. Rong, S. A. Vorobyov, A. B. Gershman, and N. D. Sidiropoulos, “Deterministic
Cramér-Rao bound for symmetric PARAFAC model with application to blind spatial
signature estimation,” in Proc. 3rd IEEE Int. Symposium on Signal Processing and
Information Technology (ISSPIT), Darmstadt, Germany, Dec. 14-17, 2003, pp. 411-414.

Chapter 3: Blind Multiuser Detection in Impulsive Noise

In many multiuser detection techniques, the channel noise is assumed to be Gaussian [16]. How-
ever, the Gaussian noise assumption has often been proven inadequate due to the significant
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impulsive nature of the channel noise [88], [89]. This implies that a robust multiuser detection
algorithm should take into account the impulsive feature of the channel noise. In this chapter,
we propose a new blind DS-CDMA multiuser separation-detection technique which makes use
of the receive antenna array. We link this multiuser detection problem to the PARAFAC model.
Iterative algorithms for robust PARAFAC model fitting under impulsive noise are proposed.
Compared with conventional DS-CDMA multiuser detection algorithms [44], our approaches
achieve significant performance improvement in impulsive noise with only a moderate perfor-
mance degradation under Gaussian noise.

The material in Chapter 3 is based on the journal publication:

• S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman, “Robust iterative
fitting of multilinear models,” IEEE Trans. Signal Processing, vol. 53, pp. 2678-2689,
Aug. 2005.

and two conference publications:

• S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman, “Robust iterative
fitting of multilinear models based on linear programming,” in Proc. IEEE Int. Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Quebec, Canada,
May 17-21, 2004, vol. 2, pp. 113-116.

• S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman, “Robust fitting
of multilinear models with application to blind multiuser receivers: Iterative weighted
median filtering approach,” in Proc. 5th IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), Lisbon, Portugal, July 11-14, 2004, pp. 478-482.

Chapter 4: Robust Linear Receivers for MIMO Systems

If both the transmitter and the receiver have multiple antennas, then a MIMO system arises
naturally. In this case, space-time block codes (STBCs) can be used as a powerful approach to
exploit spatial diversity and combat fading [5]-[10], [95]-[97]. Recently, several linear receivers
have been proposed for joint space-time decoding and interference rejection [99]-[103]. These
receiver schemes provide good trade-offs between the complexity and performance. However, a
common shortcoming of these linear receivers is that they use the assumption that the exact CSI
is available at the receiver side. However, in practice the exact CSI is difficult to obtain, that is,
there is always a mismatch between the exact and presumed CSI. In this chapter, new robust
linear receivers are proposed for joint space-time decoding and interference rejection in the case
of erroneous CSI. Using different approaches to model the CSI mismatch, we design robust
linear receivers based on worst-case performance optimization and stochastic programming,
respectively. The proposed receivers are shown to provide a substantially improved robustness
against CSI errors as compared with the existing linear multiple-access MIMO receivers.

Chapter 4 is based on the journal publication:

• Y. Rong, S. Shahbazpanahi, and A. B. Gershman, “Robust linear receivers for space-time
block coded multiaccess MIMO systems with imperfect channel state information,” IEEE
Trans. Signal Processing, vol. 53, pp. 3081-3090, Aug. 2005.
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and four conference publications:

• Y. Rong, S. Shahbazpanahi, and A. B. Gershman, “Robust linear receivers for space-time
block coded multiple-access MIMO wireless systems,” in Proc. IEEE Int. Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Quebec, Canada, May 17-
21, 2004, vol. 2, pp. 9-12.

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “A robust linear receiver for multi-access
space-time block coded MIMO systems based on probability constrained optimization,”
in Proc. 59th IEEE Vehicular Technology Conference (VTC), Milan, Italy, May 17-19,
2004, vol. 1, pp. 118-122.

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “A robust linear receiver for uplink
multi-user MIMO systems based on probability-constrained optimization and second-
order cone programming,” in Proc. 3rd IEEE Signal Array and Multichannel Signal
Processing Workshop (SAM), Barcelona, Spain, July 18-21, 2004, pp. 153-157.

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Robust linear receiver design for multi-
access space-time block coded MIMO systems using stochastic optimization,” in Proc.
13th IEEE Workshop on Statistical Signal Processing (SSP), Bordeaux, France, July 17-
20, 2005.

Chapter 5: Linear Block Precoding for OFDM Systems

OFDM is a promising communication scheme which facilitates the equalizer design at the re-
ceiver. However, a well known disadvantage of this scheme is that, at each subcarrier, the
channel may be subject to a deep fading. To mitigate the channel fading, we propose a new
linear precoding technique based on the mean cutoff rate maximization criterion. Compared
with other precoding techniques, for example [126]-[129], which need the full CSI at the trans-
mitter, the proposed technique only requires the knowledge of the average relative channel
multipath powers and delays. The combination of the proposed precoding scheme with error-
correcting coding techniques is studied. Simulation results show an improved performance of
our precoding approach.

The material in Chapter 5 is based on the journal publication:

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Linear block precoding for OFDM
systems based on maximization of mean cutoff rate,” IEEE Trans. Signal Processing,
vol. 53, pp. 4691-4696, Dec. 2005.

and two conference publications:

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Linear OFDM precoder design for
multiuser wireless communications using cutoff rate optimization,” in Proc. 12th European
Signal Processing Conference (EUSIPCO), Vienna, Austria, Sep. 6-10, 2004, pp. 2071-
2074.

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Combining error-correction coding and
cutoff rate maximization based precoding”, in Proc. Int. ITG/IEEE Workshop on Smart
Antennas (WSA), Duisburg, Germany, April 4-5, 2005.
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Chapter 6: Adaptive OFDM with Channel State Feedback

Adaptive techniques can be applied to mitigate channel fading in OFDM communication sys-
tems if CSI is available at the transmitter. We study the performance of an OFDM-based
communication system whose transmitter has only one bit of CSI per subcarrier obtained
through a low-rate feedback. Three adaptive approaches are considered to exploit such a CSI
feedback: adaptive subcarrier selection (ASCS), adaptive power allocation (APA), and adaptive
modulation selection (AMS). It is shown that one bit CSI feedback can greatly enhance the
system performance. Imperfections of the feedback channel are considered and their impact
on the performance of the APA and AMS techniques is studied. We show that exploiting the
knowledge that the feedback channel is imperfect, the performance of these adaptive techniques
can be substantially improved.

Chapter 6 is based on the journal submission:

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Adaptive OFDM techniques with one-
bit-per-subcarrier channel state feedback,” IEEE Trans. Communications, accepted.

and two conference publications:

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “The impact of imperfect one bit per
subcarrier channel state information feedback on adaptive OFDM wireless communication
systems,” in Proc. 60th IEEE Vehicular Technology Conference (VTC), Los Angeles, CA,
USA, Sep. 26-29, 2004, vol. 1, pp. 626-630.

• Y. Rong, S. A. Vorobyov, and A. B. Gershman, “On average one bit per subcarrier chan-
nel state information feedback in OFDM wireless communication systems” in Proc. IEEE
Global Telecommunication Conference (GLOBECOM), Dallas, Texas, USA, Nov. 29-
Dec. 3, 2004, vol. 6, pp. 4011-4015.

1.3 Notations

We use the following common notations. Lower case letters are used to denote scalars. Bold
face lower case letters denote vectors. Bold face upper case letters denote matrices. For ma-
trices, (·)T , (·)∗, (·)H , (·)−1, and (·)† denote transpose, conjugate, Hermitian transpose, inverse,
and pseudo inverse operations, respectively. rank{·} and tr{·} denote the rank and trace, re-
spectively. For a matrix A, kA stands for the Kruskal rank. (·) denotes a three-dimensional
array, E{·} represents the statistical expectation, ‖ · ‖ denotes the Euclidean norm of a vector
or the Frobenius norm of a matrix, ‖ · ‖1 denotes the ℓ1 norm of a real-valued vector, and Dp{·}
is the operator which makes a diagonal matrix by selecting the pth row of a matrix and putting
it on the main diagonal while putting zeros elsewhere. For complex numbers and matrices,
Re{·} and Im{·} denote the real and imaginary parts, respectively. ⊗,⊙, and ◦ represent the
Kronecker, Khatri-Rao, and Schur-Hadamard matrix products, respectively, Pr{·} denotes the
probability operator, and CN (·, ·) stands for complex Gaussian distribution. An N -dimensional
identity matrix is denoted as IN , 0M×N is denoted as an M × N matrix with all zero entries,
and � stands for the point-wise ordering.



Chapter 2

Blind Spatial Signature Estimation

In this chapter, the problem of blind spatial signature estimation is addressed. After a review of
the traditional (non-blind) and blind approaches to spatial signature estimation in Section 2.1,
the data model is introduced in Section 2.2. In order to make the model identifiable, a time-
varying user power loading method in the uplink mode is proposed in Section 2.3 that enables
to use the PARAFAC analysis to blindly estimate the spatial signature. Then identifiability
issues are studied in detail in Section 2.4. Two PARAFAC spatial signature estimators are
presented in Section 2.5. The first technique is based on the trilinear alternating least squares
(TALS) regression procedure, while the second one makes use of the joint approximate diagonal-
ization algorithm. These techniques do not require any knowledge of the propagation channel
and/or sensor array manifold and are applicable to a more general class of scenarios than earlier
approaches to blind spatial signature estimation. In Section 2.6 we derive the modified Cramér-
Rao bound (CRB) which serves as a benchmark of the problem at hand. Simulation results
are presented in Section 2.7. Section 2.8 briefly summarizes the chapter. Detailed derivations
of the modified CRB are listed in Section 2.A.

2.1 Existing Spatial Signature Estimation Techniques

In a multiple-access communication system, signals from different users can be separated at the
receive antenna array based on the knowledge of their spatial signatures [28]-[31]. In particular,
known spatial signatures can be used for beamforming to separate each user-of-interest from the
other (interfering) users. However, user spatial signatures are usually unknown at the receiver
and, therefore, have to be estimated.

Traditional (non-blind) approaches to spatial signature estimation make use of training se-
quences which are periodically transmitted by each user and are known at the receiver [29].
However, the use of training sequences reduces the information transmission rate, and strict
coordination of the training epochs of several users in a multiuser setting requires tight synchro-
nization. As a result, blind spatial signature estimation techniques have attracted a significant
attention in the literature [31]-[39].

7
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There are several blind approaches to spatial signature estimation. The most common one
is based on the parametric modelling of spatial signatures using direction-of-arrival (DOA)
parameters [28], [31], [32]. For example, in [28] the coherently distributed source model is
used to parameterize the spatial signature. Unfortunately, the source angular spread should be
small for the first-order Taylor series expansion used in [28] to be valid. This is a limitation for
mobile communications applications in urban environments with low base station antenna mast
heights, where angular spreads up to 25◦ are typically encountered [40], [41]. Furthermore, the
approach of [28] requires precise array calibration.

Two other DOA-based blind spatial signature estimation methods are developed in [31]
and [32]. In these papers, the source spatial signature is modelled as a plane wave distorted by
unknown direction-independent gains and phases. The latter assumption can be quite restrictive
in wireless communications where spatial signatures may have an arbitrary form and, therefore,
such gains and phases should be modelled as DOA-dependent quantities. As a result, the
techniques of [31] and [32] are applicable to a particular class of scenarios only.

Another popular approach to blind spatial signature estimation makes use of the cyclosta-
tionary nature of communication signals [33], [34]. This approach does not make use of any
DOA-based model of spatial signatures but it is applicable only to users which all have different
cyclic frequencies. The latter condition implies that the users must have different carrier fre-
quencies (which is not the case for space-division multiple access – SDMA) and/or baud rates
[34]. This can limit practical applications of the methods of [33] and [34].

Another well-known approach to this problem employs higher-order statistics (cumulants) to
estimate spatial signatures in a blind way [35]-[39]. Cumulant-based methods are only applicable
to non-Gaussian signals. Moreover, all such algorithms are restricted by the requirement of
a large number of snapshots. This requirement is caused by a slow convergence of sample
estimates of higher-order cumulants.

The aforementioned restrictions of cumulant-based methods have been a strong motiva-
tion for further attempts to develop blind spatial signature estimators which are based on
second-order statistics only and which do not require any DOA-related or cyclostationarity
assumptions. In [38], such a method was proposed using joint approximate diagonalization of
a set of spatial auto- and cross-covariance matrices. This method requires an existence of a
long-time coherence of the source signals to obtain enough cross-covariance matrices at multiple
lags for the joint diagonalization process and to guarantee identifiability. In practical wireless
communication systems, the signal time coherence is severely limited, i.e., the correlation time
of the received signals typically does not largely exceed the sampling interval. For example,
communication signals sampled at the symbol rate are uncorrelated1 and, hence, higher-lag
correlations are all zero. In such cases, multiple covariance matrices are unavailable and the
method of [38] is not applicable. Furthermore, [38] offers limited identifiability – for example,
it requires that the matrix of spatial signatures be full column rank and, therefore, the number
of sources should be less or equal to the number of antennas.

In this chapter, we develop a new bandwidth-efficient approach to blind spatial signature
estimation using PARAFAC analysis [43]-[46]. Our approach does not require any restrictive
assumptions on the array geometry and the propagation environment. Time-varying user power

1Channel-coded signals, which include redundancy for error correction, are in fact interleaved before trans-
mission, with the goal of making the transmitted signal approximately uncorrelated.
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loading is exploited to obtain multiple spatial zero-lag covariance matrices required for the
PARAFAC model.

Blind PARAFAC multi-sensor reception and steering vector estimation have been considered
earlier in [44] and [46]. However, the approach of [44] is applicable to DS-CDMA systems
only, as spreading sequence is explicitly used as the third dimension of the data array; while
[46] requires multiple shifted but otherwise identical subarrays, and a DOA parameterization.
Below, we show that the proposed user power loading enables us to give up the CDMA and
multiple-invariance/DOA parameterization assumptions, and extend the blind approach to any
type of SDMA system employing multiple antennas at the receiver.

Blind source separation of non-stationary sources using multiple covariance matrices has
also been considered in [47] but, again, under limited identifiability conditions stemming from
the usual ESPRIT-like solution. Our identifiability results are considerably more general as
they do not rely on this limited viewpoint.

2.2 Data Model

Let an array of M sensors receive the narrowband signals from P users. We assume that
the observation interval is shorter than the coherence time of the channel (i.e., the scenario
is time-invariant) and the time dispersion introduced by the multipath propagation is small
in comparison with the reciprocal of the bandwidth of the emitted signals [28]. Under such
assumptions, the M × 1 snapshot vector of antenna array outputs can be written as [28]

y(n) = As(n) + v(n) (2.1)

whereA=[a1, . . . ,aP ] ∈ CM×P is the matrix of the user spatial signatures, ap=[a1,p, . . . , aM,p]
T

∈ CM×1 is the spatial signature of the pth user, s(n) = [s1(n), . . . , sP (n)]T ∈ CP×1 is the vector
of the equivalent baseband user waveforms, v(n) = [v1(n), . . . , vM(n)]T ∈ CM×1 is the vector
of additive spatially and temporally white Gaussian noise. Note that, in contrast to direction
finding problems, the matrix A is unstructured. Assuming that there is a block of J snapshots
available, the model (2.1) can be written as

Y = AS + V (2.2)

where Y = [y(1), . . . ,y(J)] ∈ C
M×J is the array data matrix, S = [s(1), . . . , s(J)] ∈ C

P×J

is the user waveform matrix, and V = [v(1), . . . ,v(J)] ∈ CM×J is the sensor noise matrix.
A quasi-static channel is assumed throughout the chapter. This assumption means that the
spatial signatures are block time-invariant (i.e., the elements of A remain constant over a block
of J snapshots).

Assuming that the user signals are uncorrelated with each other and sensor noise, the array
covariance matrix of the received signals can be written as

R , E{y(n)yH(n)} = AQAH + σ2
vIM (2.3)

where Q , E{s(n)sH(n)} is the diagonal covariance matrix of the signal waveforms, σ2
v is the

sensor noise variance.

The problem studied here is the estimation of the matrix A from noisy array observations
Y .
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2.3 Time-Varying User Power Loading Method

Before proceeding, we need to clarify that by identifiability we mean the uniqueness (up to
inherently unresolvable source permutation and scale ambiguities) of all user spatial signatures
given the exact covariance data. Identifiability in this sense is impossible to achieve with only
one known covariance matrix (2.3) because the matrix A can be estimated from R only up to
an arbitrary unknown unitary matrix [45]. The approach we will use to provide a unique user
spatial signature estimation is based on an artificial user power loading and PARAFAC model
analysis. Therefore, next we explain how this model is related to our problem.

Let us divide uniformly the whole data block of J snapshots into K sub-blocks, so that each
sub-block contains Ns = ⌊ J

K
⌋ snapshots, where ⌊x⌋ denotes the largest integer less than x. We

fix the transmit power of each user within each sub-block while changing it artificially2 between
different sub-blocks. It should be stressed that the proposed artificial time-varying user power
loading does not require precise synchronization among the users, but the users should roughly
know the boundaries of epochs over which the powers are kept constant (this can be achieved,
for example, using the standard power control feedback channel). Therefore, a certain level
of user coordination is required from the transmitter side3. We stress that the proposed user
power loading can be easily implemented by overlaying a small power variation on top of the
usual power control, without any other modifications to existing hardware, or communication
system/network parameters. Also, as it will be seen in the sequel, the user powers need not
vary much to enable blind identification. In particular, power variations that will be used are
in the order of 30%. Such power variations will not significantly affect the bit error rate (BER)
which is seriously affected only when order-of-magnitude power variations are encountered.

If power control is fast enough (in the sense that there are several power changes per channel
coherence dwell), we can exploit it as a sort of user power loading. However, power control is
usually much slower than the channel coherence time, because its purpose is to combat long-
term shadowing. For this reason, in practice it may not be possible to rely on the power control
variations, and we need to induce a faster (but much smaller in magnitude) power variation
on top of power control. This extra power variation need not “follow the channel”, i.e., it can
be pseudo-random and, hence, the channel need not be measured any faster than required for
regular power control.

Using the proposed power loading, the received snapshots within any kth sub-block corre-
spond to the following covariance matrix

R(k) = AQ(k)AH + σ2
vIM (2.4)

where Q(k) is the diagonal covariance matrix of the user waveforms in the kth sub-block. Using
all K sub-blocks, we will have K different covariance matrices {R(1), . . . ,R(K)}. Note that
these matrices differ from each other only because the signal waveform covariance matrices
Q(k) differ from one sub-block to another.

2Note that the effect of time-varying user powers has been exploited in [47] where an ESPRIT-type algorithm
has been proposed for blind source separation of nonstationary sources. Similar ideas have been used in [38]
and [48]. However, the authors of [38], [47] and [48] assume that the source powers vary because of signal
nonstationarity rather than artificial power loading.

3As it will be seen from our simulations, the methods proposed in this chapter will work well even in the
case when there is no user coordination (i.e., in the unsynchronized user case).
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Figure 2.1: Three-dimensional covariance array.

In practice, the noise power can be estimated and then subtracted from the covariance
matrix (2.4). Let us stack the K matrices R(k) − σ2

vIM , k = 1, . . . , K together to form a
three-way array R, which is natural to call the covariance array. The (i, l, k)th element of such
an array can be written as

ri,l,k ,
[
R
]
i,l,k

=

P∑

p=1

ai,pνp(k)a
∗
l,p (2.5)

where νp(k) , [Q(k)]p,p is the power of the pth user in the kth sub-block. Defining the matrix
P ∈ RK×P as

P ,




ν1(1) . . . νP (1)
...

. . .
...

ν1(K) . . . νP (K)




we can write the following relationship between Q(k) and P

Q(k) = Dk{P } (2.6)

for all k = 1, . . . , K. In (2.6), Dk{·} is the operator which makes a diagonal matrix by selecting
the kth row and putting it on the main diagonal while putting zeros elsewhere. The structure
of the three-dimensional covariance array R is shown in Figure 2.1.

Equation (2.5) implies that ri,l,k is a sum of rank-1 triple products. If P is sufficiently
small4, equation (2.5) represents a low-rank decomposition of R. Therefore, the problem of
spatial signature estimation can be reformulated as the problem of low-rank decomposition of
the three-way covariance array R.

4Exact conditions for P are given in the next section.
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2.4 Identifiability of PARAFAC Model

In this section, we give a brief review on PARAFAC model and study the identifiability of the
PARAFAC model-based spatial signature estimation. Towards this end, we discuss conditions
under which the trilinear decomposition ofR is unique. Identifiability conditions on the number
of sub-blocks and the number of array sensors are derived.

The PARAFAC model [42], [43] is a useful data analysis tool that has recently found appli-
cations in communications and array signal processing, e.g., [44], [46]. Generalizing the concept
of low-rank decomposition to higher-way arrays or tensors, PARAFAC is instrumental in the
analysis of data arrays indexed by three or more independent variables, just like singular value
decomposition (SVD) is instrumental in ordinary matrix (two-way array) analysis. Unlike SVD,
PARAFAC does not impose orthogonality constraints; the reason is that low-rank decomposi-
tion of higher-order tensorial data is essentially unique under certain relatively mild conditions
[43], [44], in contrast to low-rank matrix decomposition.

Because of its direct link to low-rank decomposition, PARAFAC analysis has found appli-
cations in numerous and diverse disciplines, e.g., cf. [44], [46] and references therein. Related
work on joint diagonalization, symmetric, super-symmetric, and rank-one tensorial decomposi-
tion, has also appeared in the signal processing literature, mostly in the context of higher-order
statistics (HOS) and independent component analysis (ICA)-based blind source separation [75]-
[78].

In order to study the identifiability of PARAFAC model, let us first define the Kruskal rank
of a matrix [43].

Definition 2.1. The Kruskal rank (or k-rank) of a matrix C is kC if and only if every kC
columns of C are linearly independent, and either C has kC columns or C contains a set
of kC + 1 linearly dependent columns. Note that k-rank is always less than or equal to the
conventional matrix rank. It can be easily checked that if C is full column rank, then it is also
full k-rank.

Using (2.6) and assuming that the noise term is subtracted from the matrix R(k), we can
rewrite (2.4) as

R(k) = ADk(P )AH (2.7)

for all k = 1, . . . , K. Let us introduce the matrix

Ra ,




AD1(P )AH

AD2(P )AH

...

ADK(P )AH




=




AD1(P )

AD2(P )
...

ADK(P )



AH = (P ⊙A)AH (2.8)

where ⊙ is the Khatri-Rao (column-wise Kronecker) matrix product [46].

To establish identifiability, we have to obtain under which conditions the decomposition
(2.8) of the matrix Ra via matrices P and A is unique (up to the scaling and permutation
ambiguities). In [43], the uniqueness of trilinear decomposition for the case of real-valued arrays
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has been established. These results have been later extended to the complex-valued matrix
case [44]. In the context of our present application, which involves a conjugate-symmetric
PARAFAC model, the results of [43] and [44] specialize to the following theorem. See also [51]
for a discussion of the corresponding real-symmetric model.

Theorem 2.1. Consider the set of matrices (2.7). If for P > 1

kA + kP + kA∗ = 2kA+ kP ≥ 2P + 2 (2.9)

then A and P are unique up to inherently unresolvable permutation and scaling of columns,
i.e., if there exists any other pair {Ã, P̃ } which satisfies (2.9), then this pair is related to the
pair {A,P } via

Ã = AΠΩ1, P̃ = PΠΩ2

where Π is a permutation matrix, and Ω1 and Ω2 are diagonal scaling matrices satisfying

Ω1Ω
∗
1Ω2 = IP .

For P = 1, A and P are always unique, irrespective of (2.9).

Proof: See [43], [44] and [51]. �

Note that the scaling ambiguity can be easily avoided by taking one of the array sensors
as a reference and normalizing user spatial signatures with respect to it. The permutation
ambiguity is unremovable but it is usually immaterial because typically the ordering of the
estimated spatial signatures is unimportant.

It is worth noting that condition (2.9) is sufficient for identifiability, and is necessary only
if P = 2 or P = 3, but is not necessary if P ≥ 4 [50]. Furthermore, for P > 1 the condition
kP ≥ 2 becomes necessary [49]. In terms of the number of sub-blocks the latter condition
requires that

K ≥ 2 .

The practical conclusion is that in the multiuser case, not less than two covariance matrices
must be collected to uniquely identify A which means that the users have to change their
powers at least once during the transmission. Similarly, it is necessary that M > 1.

The following result gives sufficient conditions for the number of sensors to guarantee almost
sure-identifiability5.

Theorem 2.2. Suppose that

• The elements of A are drawn from distribution PL(CMP ), which is assumed continuous
with respect to the Lebesgue measure in CMP ;

• The elements of P are drawn from distribution PL(RKP ), which is assumed continuous
with respect to the Lebesgue measure in RKP .

Then

5The definition of almost-sure identifiability in the context discussed is given in [52].
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• For 1 < P ≤ K, the value of

M ≥ P + 2

2
(2.10)

is sufficient for almost-sure identifiability.

• For P > K and K ≥ 2, the value of

M ≥ 2P + 2−K
2

(2.11)

is sufficient for almost-sure identifiability.

Proof: The assumptions of Theorem 2.2 mean that the following equalities hold almost
surely [52]

kA = rank{A} = min(M,P ) (2.12)

kP = rank{P } = min(K,P ) . (2.13)

Substituting (2.12) and (2.13) into (2.9), we have

2min(M,P ) + min(K,P ) ≥ 2P + 2 . (2.14)

The following cases should be considered:

1. M ≥ P . In this case, kA = P . Furthermore, as K ≥ 2, we have that kP ≥ 2. Therefore,
condition (2.14) is always satisfied.

2. M < P ; P ≤ K. In this case, kA = M , kP = P and condition (2.14) becomes

2M + P ≥ 2P + 2 .

This inequality is equivalent to (2.10).

3. M < P ; P > K. In this case, kA = M , kP = K and (2.14) can be written as

2M +K ≥ 2P + 2 .

This inequality is equivalent to (2.11). �

2.5 Estimators

We will now develop two techniques for blind spatial signature estimation based on the PARA-
FAC model of Section 2.3.
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In practice, the exact covariance matrices R(k) are unavailable but can be estimated from
the array snapshots y(n), n = 1, . . . , J . The sample covariance matrices are given by

R̂(k) =
1

Ns

kNs∑

n=(k−1)Ns+1

y(n)yH(n), k = 1, . . . , K .

These matrices can be used to form a sample three-way covariance array denoted as R̂.

If M > P then the noise power σ2
v can be estimated as the average of the smallest M − P

eigenvalues of the matrix

R̃ =
1

K

K∑

k=1

R̂(k) =
1

J

J∑

n=1

y(n)yH(n)

and the estimated noise component σ̂2
vIM can be subtracted from sub-blocks of the sample

covariance array R̂. In case M ≤ P , noise power can be estimated on system start-up, before
any transmission begins.

To formulate our techniques, we will need “slices” of the matrices R and R̂ along different
dimensions [44]. Towards this end, let us define the “slice” matrices

R(k)
a , [r:,:,k] , R

(l)
b , [r:,l,:] , R(i)

c , [ri,:,:]

where i, l = 1, . . . ,M ; k = 1, . . . , K; and ri,l,k ,
[
R
]
i,l,k

. Similarly,

R̂
(k)

a , [r̂:,:,k] , R̂
(l)

b , [r̂:,l,:] , R̂
(i)

c , [r̂i,:,:]

where i, l = 1, . . . ,M ; k = 1, . . . , K; and r̂i,l,k ,
[
R̂
]
i,l,k

.

For the sake of convenience, let us introduce K , AH and rewrite (2.8) as

Ra ,




R(1)
a

R(2)
a

...

R(K)
a




= (P ⊙A)K .

In the same way, let us define the matrices

Rb ,




R
(1)
b

R
(2)
b
...

R
(M)
b




= (KT ⊙P )AT , Rc ,




R(1)
c

R(2)
c

...

R(M)
c




= (A⊙KT )P T

and their sample estimates

R̂a ,




R̂
(1)

a

R̂
(2)

a

...

R̂
(K)

a



, R̂b ,




R̂
(1)

b

R̂
(2)

b

...

R̂
(M)

b



, R̂c ,




R̂
(1)

c

R̂
(2)

c

...

R̂
(M)

c



.
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Note that for the sake of algorithm simplicity, we will not exploit the fact that our PARAFAC
model is symmetric. That is, the algorithm that follows treats A and K as independent
variables; symmetry will only be exploited in the calculation of the final estimate of A.

2.5.1 Trilinear Alternating Least Square Estimator

The basic idea behind the TALS procedure for PARAFAC fitting is to update each time a
subset of parameters using least square (LS) regression while keeping the previously obtained
estimates of the rest of parameters fixed. This alternating projections-type procedure is iterated
for all subsets of parameters until convergence is achieved [42], [44], [46], [53].

In application to our problem, the PARAFAC TALS procedure can be formulated as follows.

• Step 1: Initialize P and A.

• Step 2: Find the estimate of K by solving the following LS problem

K̂ = arg min
K

∥∥R̂a − (P ⊙A)K
∥∥2

whose analytic solution is given by

K̂ = (P ⊙A)†R̂a

Set K = K̂.

• Step 3: Find the estimate of A by solving the following LS problem

Â = arg min
A

∥∥R̂b − (KT ⊙ P )AT
∥∥2

whose analytic solution is given by

Â = R̂
T

b

(
(KT ⊙P )†

)T

Set A = Â.

• Step 4: Find the estimate of P by solving the following LS problem

P̂ = arg min
P

∥∥R̂c − (A⊙KT )P T
∥∥2

whose analytic solution is given by

P̂ = R̂
T

c

(
(A⊙KT )†

)T

Set P = P̂ .

• Step 5: Repeat steps 2-4 until convergence is achieved and then compute the final
estimate of A as Â = (A+KH)/2.

The complexity of the TALS algorithm is O(P 3 +M2PK) per iteration. It is worth noting
that, when P is small relative to M and K, only a few iterations of this algorithm are usually
required to achieve convergence [46].
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2.5.2 Joint Diagonalization-Based Estimator

Using the idea of [38], we can obtain the estimate of A by means of a joint diagonalizer of the
matrices R(k), k = 1, . . . , K.

The estimator can be formulated as the following sequence of steps:

• Step 1: Calculate the eigendecomposition of R̃ and find the estimate σ̂2
v of the noise

power as the average of the M − P smallest eigenvalues of this matrix.

• Step 2: Compute the whitening matrix as

W = [(λ1 − σ̂2
v)

−1/2g1, . . . , (λP − σ̂2
v)

−1/2gP ]H

where {λp}Pp=1 are the largest (signal-subspace) eigenvalues of R̃ and {gp}Pp=1 are the
corresponding eigenvectors.

• Step 3: Compute the prewhitened sample covariance matrices as

R̂w(k) = WR̂(k)WH , k = 1, . . . , K .

• Step 4: Obtain a unitary matrix U as a joint diagonalizer of the set of matrices
{R̂w(k)}Kk=1.

• Step 5: Estimate the matrix A as

Â = W †U .

Several efficient joint diagonalization algorithms can be used in step 4, see [54] and [55]. For
example, the complexity of the AC-DC algorithm of [55] is O(M2PK +M3) per iteration.

It should be pointed out that the joint diagonalization-based estimator requires stronger
conditions in terms of the number of sensors as compared with the TALS estimator. Indeed,
M ≥ P is required for the joint diagonalization algorithms [38], [55], whereas this constraint is
not needed for TALS.

Both the TALS and joint diagonalization algorithms can be initialized randomly [46], [55].
Alternatively, if power control is fast enough (in the sense that there are several power changes
per channel coherence dwell), we can use the fact that the power changes are known at the
receiver to initialize the matrix P in TALS. However, as mentioned in Section 2.3, power control
algorithms are usually much slower than the channel coherence time because their purpose is to
combat long-term shadowing. For this reason, such an initialization of P may not be possible.

2.6 Modified Cramér-Rao Bound

In this section, we present a modified deterministic CRB on estimating the user spatial signa-
tures6. The model (2.1) for the nth sample of the kth sub-block can be rewritten as

y(k, n) = AQ1/2(k)s̃(n) + v(n), n = (k − 1)Ns + 1, . . . , kNs (2.15)

6The deterministic CRB is a relevant bound in cases when the signal waveforms are unknown deterministic
or random with unknown statistics, see, e.g., [56] and [57].
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where

s̃(n) , [s̃1(n), . . . , s̃P (n)]T = Q−1/2(k)s(n)

is the vector of normalized signal waveforms and the normalization is done so that all waveforms
have unit powers.

Hence, the observations in the kth sub-block satisfy the following model

y(k, n) ∼ CN (µ(k, n), σ2
vIM) (2.16)

where

µ(k, n) = AQ1/2(k)s̃(n) , n = (k − 1)Ns + 1, . . . , kNs . (2.17)

The unknown parameters of the model (2.15) are all entries of A, diagonal elements of
Q(k) (k = 1, . . . , K) and the noise power σ2

v . Note that, to make the model (2.15) identifiable,
we assume that the signal waveforms are known. Therefore, we study a modified (optimistic)
CRB. Note, however, that, as follows from our simulation results in the next section, such an
optimistic CRB still remains relevant for the problem considered, because the performances of
our estimators are rather close to it.

Also, note that the parameter σ2
v is decoupled with other parameters in the Fisher informa-

tion matrix (FIM) [57]. Therefore, without any loss of generality, σ2
v can be excluded from the

vector of unknown parameters.

A delicate point regarding the CRB for model (2.15) is the inherent permutation and scaling
ambiguities. To get around the problem of scaling ambiguity, we assume that each spatial
signature vector is normalized so that its first element is equal to one (after such a normalization
the first row of A becomes [1, . . . , 1]). To avoid the permutation ambiguity, we assume that the
first row of P is known and consists of distinct elements. Then, the vector of the parameters
of interest can be written as

α = [αT2 , . . . ,α
T
M ]T ∈ R

2(M−1)P×1 (2.18)

where

αm , [Re{ãm}T , Im{ãm}T ]T , ãm , [am,1, . . . , am,P ]T .

The vector of nuisance parameters can be expressed as

ζ = [p̃(2), . . . , p̃(K)]T ∈ R
(K−1)P×1 (2.19)

where p̃(k) is the kth row of the matrix P .

Using (2.18) and (2.19), the vector of unknown parameters can be written as

θ = [αT , ζT ]T ∈ R
(2(M−1)P+(K−1)P )×1 .
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Theorem 2.3. The (2(M − 1)P + (K − 1)P )× (2(M − 1)P + (K − 1)P ) FIM is given by

FIM =




Jα2,α2 0
. . .

0 JαM ,αM

Jα,p̃(2) . . . Jα,p̃(K)

JTα,p̃(2)
...

JTα,p̃(K)

J p̃(2),p̃(2) 0
. . .

0 J p̃(K),p̃(K)




(2.20)

where

Jα2,α2 = · · · = JαM ,αM
=

2

σ2
v


 Re{ΥHΥ} −Im{ΥHΥ}

Im{ΥHΥ} Re{ΥHΥ}


 (2.21)

J p̃(k),p̃(k) =
2

σ2
v

Re{(G(k))HG(k)} (2.22)

Jα,p̃(k) =
2

σ2
v

(IM−1 ⊗ F̃ (k))H̃(k) (2.23)

Υ =




f1(1) . . . fP (1)
...

. . .
...

f 1(K) . . . fP (K)


 ∈ C

KNs×P (2.24)

G(k) =




h1,1(k) . . . h1,P (k)
...

. . .
...

hM,1(k) . . . hM,P (k)


 ∈ C

MNs×P (2.25)

F̃ (k) =


 Re{FH(k)} −Im{FH(k)}

Im{FH(k)} Re{FH(k)}


 (2.26)

F (k) = [f 1(k), . . . ,fP (k)] ∈ C
Ns×P (2.27)

H̃(k) = [H̃
T

2 (k), . . . , H̃
T

M(k)]T (2.28)

H̃m(k) =


 Re{Hm(k)}

Im{Hm(k)}


 (2.29)

Hm(k) = [hm,1(k), . . . ,hm,P (k)] ∈ C
Ns×P (2.30)

fp(k) =

[√
νp(k)s̃p((k − 1)Ns + 1), . . . ,

√
νp(k)s̃p(kNs)

]T
∈ C

Ns×1 (2.31)

hm,p(k) =

[
am,ps̃p((k − 1)Ns + 1)

2
√
νp(k)

, . . . ,
am,ps̃p(kNs)

2
√
νp(k)

]T
∈ C

Ns×1 (2.32)

and ⊗ denotes the Kronecker product.
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The 2(M − 1)P × 2(M − 1)P spatial signature-related block of the CRB matrix is given in
closed form as

CRBα,α =

[
Jα,α−

2

σ2
v

K∑

k=2

(IM−1 ⊗ F̃ (k))H̃(k)
[
Re{GH(k)G(k)}

]−1

×H̃H
(k)(IM−1 ⊗ F̃ (k))H

]−1

(2.33)

where the upper-left block of (2.20) can be expressed as

Jα,α =




Jα2,α2 0
. . .

0 JαM ,αM


 =

2

σ2
v

IM−1 ⊗


 Re{ΥHΥ} −Im{ΥHΥ}

Im{ΥHΥ} Re{ΥHΥ}


 . (2.34)

Proof: See appendix to this chapter (Section 2.A). �

The obtained CRB expressions will be compared with the performance of the TALS and
joint diagonalization-based estimators in the next section.

2.7 Numerical Examples

In this section, the performance of the developed blind spatial signature estimators is compared
with that of the ESPRIT-like estimator of [31], the generalized array manifold (GAM) MUSIC
estimator of [28], and the derived modified CRB.

Although the proposed blind estimators are applicable to general array geometries, the
ESPRIT-like estimator is based on the uniform linear array (ULA) assumption. Therefore, to
compare the estimators in a proper way, we assume a ULA of M omnidirectional sensors spaced
half a wavelength apart, and P = 2 binary phase shift keying (BPSK) user signals impinging
on the array from the angles θ1 and θ2 relative to the broadside, where in each simulation run
θ1 and θ2 are randomly uniformly drawn from the whole field-of-view [−90◦, 90◦]. Throughout
the simulations, the users are assumed to be synchronized (except Figures 2.5 and 2.6 where
the case of unsynchronized users is considered), K = 10 sub-blocks are used in our techniques
(except Figure 2.11 where K is varied), and the user powers are changed between different
sub-blocks uniformly with a constant power change factor (PCF) of 1.2 (except Figure 2.10
where the PCF is varied). Note that P = SNR(EI +PCF ·DR) where SNR is the average user
signal-to-noise ratio (SNR) in a single sensor, EI is the matrix whose elements are all equal to
one, DR is a random matrix whose elements are uniformly and independently drawn from the
interval [−0.5, 0.5], and it is assumed that σ2

v = 1.

To implement the PARAFAC TALS and joint diagonalization-based estimators, we use
the COMFAC algorithm of [53] and AC-DC algorithm of [55], respectively. Throughout the
simulations, both our algorithms are initialized randomly. The stopping criterion of the TALS
algorithm is the relative error in fitting the matrices R̂a, R̂b and R̂c. The stopping criterion of
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the joint diagonalization algorithm is the relative joint diagonalization error. The algorithms
are stopped if such errors become small. Typically, both algorithms converged in less than 30
iterations.

In most figures, the estimator performances are compared in terms of the root-mean-square
error (RMSE)

RMSE =

√√√√ 1

LPM

L∑

l=1

∥∥Â(l)−A
∥∥2

(2.35)

where L = 500 is the number of independent simulation runs and Â(l) is the estimate of A
obtained from the lth run. Note that permutation and scaling of columns is fixed by means
of a least-squares ordering and normalization of the columns of Â(l). A greedy least-squares
algorithm [44] is used to match the (normalized) columns of Â to those of A. We first form a
P ×P distance matrix whose (p, q)th element contains the Euclidean distance between the pth
column of A and the qth column of Â. The smallest element of this distance matrix determines
the first match, and the respective row and column of this matrix are deleted. The process is
then repeated with the reduced-size distance matrix.

The CRB is averaged over simulation runs as well.

To verify that the RMSE is a proper performance measure in applications to communications
problems, one of our figures also illustrates the performance in terms of the BER when the
estimated steering vectors are used together with a typical detection strategy to estimate the
transmitted bits.

Example 1: Unknown Sensor Gains and Phases

Following [31], we assume in our first example that the array gains and phases are unknown,
i.e., the received data are modelled as (2.2) with

A = ΓA0

where A0 is the matrix of nominal (plane-wavefront) user spatial signatures and Γ is the
diagonal matrix containing the array unknown gains and phases, i.e., Γ = diag{g1e

jφ1, . . . ,
gMe

jφM}. The unknown gains g1, . . . , gM are independently drawn in each simulation run from
the uniform random generator with the mean equal to

√
3 and standard deviation equal to one,

while the unknown phases φ1, . . . , φM are independently and uniformly drawn from the interval
[0, 2π).

Figure 2.2 displays the RMSEs of our estimators and the ESPRIT-like estimator of [31] along
with the CRB versus J for M = 10 and SNR = 10 dB. Figure 2.3 shows the performances of
the same estimators and the CRB versus the SNR for M = 10 and J = 1000.

Figure 2.4 illustrates the performance in terms of the BER when the estimated spatial sig-

natures are used to detect the transmitted bits via the zero-forcing (ZF) detector sign(Â
†
y(n)).

In order to avoid errors in computing the pseudoinverse of the matrix A, the runs in which
AHA was ill-conditioned have been dropped. The resulting BERs are displayed versus the SNR
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Figure 2.2: RMSEs versus J for M = 10 and SNR = 10 dB. First example; synchronized users.
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Figure 2.3: RMSEs versus the SNR for M = 10 and J = 1000. First example; synchronized
users.
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Figure 2.4: BERs versus the SNR for M = 10 and J = 1000. First example; synchronized
users.

for M = 10 and J = 1000. Additionally, the results of the so-called clairvoyant ZF detector
sign(A†y(n)) are displayed in this figure. Note that the latter detector corresponds to the ideal
case when the source spatial signatures are exactly known and, therefore, it does not correspond
to any practical situation. However, its performance is included in Figure 2.4 for the sake of
comparison as a benchmark.

To demonstrate that the proposed techniques are insensitive to user synchronization, Fig-
ures 2.5 and 2.6 show the RMSEs of the same methods and in the same scenarios as in Figures 2.2
and 2.3, respectively, but for the case of unsynchronized users7.

To evaluate the performance with a smaller number of sensors, Figure 2.7 compares the
RMSEs of the estimators tested versus J for M = 4 and SNR = 10 dB. Figure 2.8 displays the
performances of these estimators versus the SNR for M = 4 and J = 1000.

To illustrate how the performance depends on the number of sensors, the RMSEs of the
estimators tested are plotted in Figure 2.9 versus M . Figures 2.10 and 2.11 compare the
performances of the proposed PARAFAC estimators versus the PCF and the number of sub-
blocks K, respectively. In these figures, J = 1000 and SNR = 10 dB.

Example 2: Unknown Coherent Local Scattering

In our second example, we address the scenario where the spatial signature of each nominal
(plane-wavefront) user is distorted by local scattering effects [40], [41]. In this example, the

7That is, the user powers vary without any synchronization between the users.



24 Chapter 2. Blind Spatial Signature Estimation

10
1

10
2

10
3

10
−2

10
−1

10
0

NUMBER OF SNAPSHOTS

R
M

S
E

TALS ESTIMATOR
JOINT DIAGONALIZATION−BASED ESTIMATOR
ESPRIT−LIKE ESTIMATOR
MODIFIED DETERMINISTIC CRB

Figure 2.5: RMSEs versus J for M = 10 and SNR = 10 dB. First example; unsynchronized
users.
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Figure 2.6: RMSEs versus the SNR for M = 10 and J = 1000. First example; unsynchronized
users.
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Figure 2.7: RMSEs versus J for M = 4 and SNR = 10 dB. First example; synchronized users.
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Figure 2.8: RMSEs versus the SNR for M = 4 and J = 1000. First example; synchronized
users.
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Figure 2.9: RMSEs versus M for SNR = 10 dB and J = 1000. First example; synchronized
users.
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Figure 2.10: RMSEs versus the PCF for SNR = 10 dB and J = 1000. First example; synchro-
nized users.
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Figure 2.11: RMSEs versus K for SNR = 10 dB and J = 1000. First example; synchronized
users.

pth user spatial signature is formed by five signal paths of the same amplitude including the
single direct path and four coherently scattered paths. Each of these paths is characterized by
its own angle and phase. The angle of the direct path is equal to the nominal user DOA while
the angles of scattered paths are independently drawn in each simulation run from a uniform
random generator with the mean equal to the nominal user DOA and the standard deviations
equal to 8◦ and 10◦ for the first and second users, respectively. The path phases for each user
are uniformly and independently drawn in each simulation run from the interval [0, 2π).

Note that in the second example it is improper to compare the proposed techniques with the
ESPRIT-like estimator of [31] because the latter estimator is not a relevant technique for the
scenario considered. Therefore, in this example we compare our techniques to the GAM-MUSIC
estimator of [28].

Figure 2.12 displays the performance of the spatial signature estimators tested versus the
number of snapshots J for M = 10 and SNR = 10 dB. Note that the SNR is defined here by
taking into account all signal paths. The performance of the same methods versus the SNR for
M = 10 and J = 1000 is displayed in Figure 2.13.

Discussion

Our simulation results clearly demonstrate that the proposed blind PARAFAC spatial signa-
ture estimators substantially outperform the ESPRIT-like estimator and the GAM-MUSIC
estimator. These improvements are especially pronounced at high values of SNR, number of
snapshots, and number of sensors.
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Figure 2.12: RMSEs versus J for M = 10 and SNR = 10 dB. Second example; synchronized
users.
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Figure 2.13: RMSEs versus the SNR for M = 10 and J = 1000. Second example; synchronized
users.
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Comparing Figures 2.2 and 2.3 with Figures 2.5 and 2.6, respectively, we observe that the
requirement of user synchronization is not critical to the performance of both the TALS and joint
diagonalization-based algorithms. As a matter of fact, the performances of these techniques do
not differ much in the cases of synchronized and unsynchronized users. This means that our
techniques can easily accommodate intercell interference provided that out-of-cell users also
play up and down their powers, because the fact that out-of-cell users will not be synchronized
is not critical performance-wise.

From Figure 2.10, it is clear that the performance of the proposed techniques can be im-
proved by increasing the PCF. This figure clarifies that the performance improvements of our
estimators over the ESPRIT-like estimator are achieved by means of using the power loading
proposed. From Figure 2.10, it follows that even moderate values of PCF (1.2 . . . 1.4) are suffi-
cient to guarantee that the performances of the proposed PARAFAC estimators are comparable
with the CRB and are substantially better than that of the ESPRIT-like estimator.

From Figure 2.11, we can observe that the performance of the proposed PARAFAC estima-
tors is also improved when increasing the number of sub-blocks while keeping the total block
length fixed. However, this is only true for small numbers of K; for K ≥ 8 curves saturate.
Note that this figure makes it clear that even a moderate number of sub-blocks (K = 4 . . . 6)
is sufficient to guarantee that the performance is comparable with the CRB and is better than
that of the ESPRIT-like estimator. We stress that the effects of the PCF and K cannot be
seen from the CRB in Figures 2.10 and 2.11 because the time-averaged user powers and the
total number of snapshots do not change in these figures.

Figures 2.12 and 2.13 show that both the TALS and joint-diagonalization based estimators
substantially outperform the GAM-MUSIC estimator if the values J and SNR are sufficiently
high. Interestingly, the performance of GAM-MUSIC does not improve much when increasing
J or SNR. This observation can be explained by the fact that the GAM-MUSIC estimator is
biased. Note that from Figure 2.12 it follows that GAM-MUSIC may perform better than the
proposed PARAFAC estimators in the case when J is small because power loading approach
does not work properly if there are only a few snapshots per sub-block (in this case, the
covariance matrix estimates for each sub-block become very poor).

Interestingly, as it follows from Figure 2.4, the proposed PARAFAC-based techniques com-
bined with ZF detector have the same BER slope as the clairvoyant ZF detector, while the
performance losses with respect to the latter detector do not exceed 3 dB at high SNRs.

There are several reasons why the proposed techniques perform better than the ESPRIT-like
algorithm. First of all, even in the case when the array is fully calibrated, the performance of
ESPRIT is poorer than MUSIC and/or maximum-likelihood (ML) because ESPRIT does not
take advantage of the full array manifold, but only of the array shift-invariance property. Sec-
ond, our algorithm takes advantage of the user power loading while the ESPRIT-like algorithm
does not.

As far as the comparison GAM-MUSIC method is concerned, better performances of the
proposed techniques can be explained by the above-mentioned fact that GAM-MUSIC uses the
first-order Taylor series approximation which is only adequate for asymptotically small angular
spreads. As a result, the GAM-MUSIC estimator is biased. Also, similarly to the ESPRIT-like
algorithm, GAM-MUSIC does not take any advantage of the user power loading.

Although the performance of the proposed estimators can be made comparable to the CRB



30 Chapter 2. Blind Spatial Signature Estimation

with proper choice of PCF and system parameters, it does not come close to attaining the CRB.
This can be attributed to the fact that the TALS estimator does not exploit the symmetry of
the model (K = AH), whereas joint diagonalization relies on an approximate pre-whitening
step. Both methods rely on finite-sample covariance and noise-power estimates. This explains
the observation that the CRB cannot be attained.

2.8 Chapter Summary

In this chapter, the problem of blind user spatial signature estimation using the PARAFAC
analysis model has been addressed. A time-varying user power loading in the uplink mode has
been proposed to make the model identifiable and to enable the application of the PARAFAC
analysis model. Identifiability issues and the relevant CRB have been studied and two blind
spatial signature estimation algorithms have been presented. The first technique is based on
the PARAFAC fitting TALS regression while the second one makes use of joint matrix diago-
nalization. These techniques have been shown to provide better performance than the popular
ESPRIT-type blind estimator of [31] and GAM-MUSIC estimator of [28]. Moreover, they are
also applicable to a more general class of scenarios.

2.A Derivation of the Modified Cramér-Rao Bound

The (j, l)th element of the FIM is given by [57]

FIMj,l =
2

σ2
v

K∑

k=1

kNs∑

n=(k−1)Ns+1

Re

{
∂µH(k, n)

∂θj

∂µ(k, n)

∂θl

}
. (2.36)

Using (2.17) along with (2.36), we have

∂µ(k, n)

∂Re{am,p}
=
√
νp(k)s̃p(n)ẽm (2.37)

∂µ(k, n)

∂Im{am,p}
= j
√
νp(k)s̃p(n)ẽm (2.38)

∂µ(k, n)

∂νp(k)
=

[
a1,ps̃p(n)

2
√
νp(k)

, . . . ,
aM,ps̃p(n)

2
√
νp(k)

]T
(2.39)

where ẽm is the vector containing one in the mth position and zeros elsewhere.

Using (2.37) and (2.38) along with (2.36) we obtain that

JRe{am,p},Re{am,q} = J Im{am,p},Im{am,q} (2.40)

=
2

σ2
v

K∑
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kNs∑

n=(k−1)Ns+1

Re

{√
νp(k)νq(k)s̃

∗
p(n)s̃q(n)

}

=
2

σ2
v

Re{ξHp ξq} (2.41)
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where

ξp , [fTp (1), . . . ,fTp (K)]T ∈ C
KNs×1 .

Similarly,

J Im{am,p},Re{am,q} = −JRe{am,p},Im{am,q} =
2

σ2
v

Im{ξHp ξq} . (2.42)

Therefore,

JRe{αm},Re{αm} = J Im{αm},Im{αm} =
2

σ2
v




Re{ξH1 ξ1} . . . Re{ξH1 ξP}
...

. . .
...

Re{ξHP ξ1} . . . Re{ξHP ξP}




=
2

σ2
v

Re{ΥHΥ} (2.43)

and

J Im{αm},Re{αm} = −JRe{αm},Im{αm} =
2

σ2




Im{ξH1 ξ1} . . . Im{ξH1 ξP}
...

. . .
...

Im{ξHP ξ1} . . . Im{ξHP ξP}




=
2

σ2
v

Im{ΥHΥ} . (2.44)

Using (2.43) and (2.44), we obtain (2.21). Note that the right-hand side of (2.21) does not
depend on the index m. Hence,

Jα,α =




Jα2,α2 0
. . .

0 JαM ,αM


 =

2

σ2
v

IM−1 ⊗
[

Re{ΥHΥ} −Im{ΥHΥ}
Im{ΥHΥ} Re{ΥHΥ}

]
. (2.45)

Next, using (2.39) along with (2.36) we can write for k = 2, . . . , K and p, q = 1, . . . , P

[
J p̃(k),p̃(k)

]
p,q

=
2

σ2
v

kNs∑

n=(k−1)Ns+1

M∑
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2
√
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2
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}

=
2

σ2
v

Re{cHp (k)cq(k)} (2.46)

where

cp(k) , [hT1,p(k), . . . ,h
T
M,p(k)]

T ∈ C
MNs×1 .

Stacking all P 2 elements given by (2.46) in one matrix we have

J p̃(k),p̃(k) =
2

σ2
v




Re{cH1 (k)c1(k)} . . . Re{cH1 (k)cP (k)}
...

. . .
...

Re{cHP (k)c1(p)} . . . Re{cHP (k)cP (k)}




=
2

σ2
v

Re{GH(k)G(k)}, k = 2, . . . , K . (2.47)
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Finally, using (2.37)-(2.39) along with (2.36) we can write for k = 2, . . .K, m = 2, . . . ,M
and p, q = 1, . . . , P

[
JRe{am},p̃(k)

]
p,q

=
2

σ2
v

kNs∑

n=(k−1)Ns+1

Re

{
1

2
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νq(k)
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}

=
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σ2
v

Re{fHp (k)hm,q(k)} (2.48)
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=
2

σ2
v

Im{fHp (k)hm,q(k)} . (2.49)

Collecting all (M − 1)P 2 elements given by (2.48) and (M − 1)P 2 elements given by (2.49) in
one matrix, we obtain

Jα,p̃(k) =
2

σ2
v




[
Re{FH(k)H2(k)}
Im{FH(k)H2(k)}

]

...[
Re{FH(k)HM(k)}
Im{FH(k)HM(k)}

]




, k = 2, . . . , K . (2.50)

Observing that
[

Re{FH(k)Hm(k)}
Im{FH(k)Hm(k)}

]
=

[
Re{FH(k)} −Im{FH(k)}
Im{FH(k)} Re{FH(k)}

][
Re{HH

m(k)}
Im{HH

m(k)}

]

= F̃ (k)H̃m(k)

we can further simplify (2.50) to

Jα,p̃(k) =
2

σ2
v

(
IM−1 ⊗ F̃ (k)

)
H̃(k) . (2.51)

Also, note that

JTα,p̃(k) = J p̃(k),α . (2.52)

Using (2.45), (2.47), (2.51) and (2.52) we obtain the expressions (2.20)-(2.32).

Computing the CRB for θ requires the inverse of the (2(M − 1)P + (K − 1)P )× (2(M −
1)P + (K − 1)P ) matrix (2.20). Our objective is to obtain the CRB associated with the vector
parameter α only, avoiding the inverse of the full FIM matrix. Exploiting the fact that the
lower-right sub-block




Jp(2),p(2)
. . .

Jp(K),p(K)




of (2.20) is a block-diagonal matrix and using the partitioned matrix inversion lemma (see [57],
p. 572), after some algebra we obtain (2.33) and (2.34), and the proof is complete.



Chapter 3

Blind Multiuser Detection in Impulsive

Noise

In this chapter, we consider the problem of blind DS-CDMA multiuser detection in impulsive
ambient noise. We link this problem to robust PARAFAC model fitting in impulsive noise. In
Section 3.1, we give a brief overview of the known techniques for multiuser detection in impul-
sive noise. The PARAFAC model for multiuser detection is introduced in Section 3.2. Several
common impulsive noise models are presented in Section 3.3. In Section 3.4, we develop two
iterative algorithms for robust PARAFAC model fitting based on least absolute error (LAE)
criterion. The first one is based on efficient interior point methods for linear programming
(LP), employed in an alternating fashion. The second one is based on weighted median filter-
ing (WMF) iterations. These two algorithms provide tradeoffs between the performance and
complexity. The CRB of the problem at hand is presented in Section 3.5. Simulation results
are given in Section 3.6. Section 3.7 briefly summarizes the chapter. The proof of property
(3.12) and the detailed derivation of CRBs are given in appendices (Sections 3.A and 3.B,
respectively).

3.1 Overview of Known Techniques

In conventional channel sharing approaches such as time-division multiple access (TDMA)
and frequency-division multiple access (FDMA), no more than one user is allowed to occupy
a certain given time-frequency slot. These approaches have the advantage that there is no
interference among different users. However, from the system capacity point of view, TDMA
and FDMA approaches work in a low capacity region. CDMA scheme, which increases the
achievable capacity region [17], has attracted much research interest in last decades [58].

Among two common CDMA schemes: frequency-hopping CDMA (FH-CDMA) and DS-
CDMA, the latter one is of particular interest. One of the reasons is that FH spread spectrum
systems experience occasional strong bursty errors, while DS spread spectrum radio systems

33
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experience continuous but lower-level random errors [58].

In a typical DS-CDMA system, each user is assigned a distinct spreading code. The user
spreading codes are employed at the receiver to simultaneously detect the signals transmitted
by all users. This approach is known as multiuser detection [16]. The spreading codes are either
known a priori or can be estimated at the receiver.

Considerable amount of literature has addressed multiuser detection problem in last decades
[16], [59]-[61]. Most of these works assume that the additive noise is Gaussian, primarily due to
the simplicity and elegancy of the mathematics involved in handling Gaussian noise. Moreover,
Gaussian noise assumption naturally stems from the central limit theorem. However, in many
physical channels such as power lines [62] and indoor and outdoor radio channels [63]-[65], the
channel noise may have non-negligible impulsive components. These impulsive components
arise due to physical or man-made impulsive interference such as automobile ignition, neon
light or some electronic emissions [65]. The impulsiveness nature of the channel noise in wireless
channel was shown in several channel measurement campaigns [63], [64]. Several recent models
for impulsive noise in wireless communications can be found in [66], [67].

It is well known that impulsive noise can be quite detrimental to the conventional systems
based on the Gaussian noise assumption. For example, the error rate results presented in [69]
indicate that the presence of impulsive noise can cause significant performance degradation of
DS-CDMA communications over that predicted from a Gaussian noise model. This implies
that in order to achieve reliable communication quality, the impulsive feature of the channel
noise should be taken into consideration.

Recently, some works have addressed the problem of multiuser detection in impulsive noise.
The most common practice is to apply some zero-memory nonlinearities for robust decorrelation,
such as the hard limiter, the hole puncher, and the clipper [71], [88], [89]. In [89], a nonlinear
preprocessor is designed based on the M-estimation method for robust regression proposed in
[81]. In [88], the threshold of a nonlinear filter is obtained adaptively by joint optimization of
BER and/or mean-square error (MSE). In [71], it is observed that the system performance can
be improved by postponing the nonlinear processing after the decorrelation operation.

The nonlinear filtering techniques mentioned above can greatly improve the robustness of the
multiuser detector against impulsive noise. However, in order to design such nonlinear filters,
a priori knowledge of the system parameters such as spreading codes, channel gain and SNR
is required at the receiver. Even for some “semi-blind” implementations of robust multiuser
detectors such as proposed in [89], the knowledge of signature waveforms is still required. In
wireless communications, however, it is a non-trivial task to obtain this knowledge (see Chapter
2). Therefore, fully blind multiuser receivers which are robust against impulsive noise are of
great interest. By fully blind we mean that the detector does not have any knowledge of the
channel gains, the spreading codes, and the SNR.

In this chapter, we propose a fully blind robust multiuser detection algorithm. We link
the robust multiuser detection problem to the robust PARAFAC model fitting problem. Com-
pared with conventional fully blind DS-CDMA multiuser detection algorithms which assume
Gaussian ambient noise [44], our approach achieves significant performance improvement in
impulsive noise with only a moderate performance degradation with respect to Gaussian noise.
Compared with the robust multiuser detectors based on zero-memory nonlinearities, our mul-
tiuser detectors also show better performance.
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3.2 PARAFAC Model for Multiuser Detection

Let us consider a multiple-access wireless communication system with P users using DS-CDMA
as the multiple-access scheme. The antenna array at the receiver has M sensors. Each informa-
tion bearing symbol from the pth user is spread by a distinct code sequence dp(i), i = 1, · · · , I,
where I is the spreading factor (spreading gain). Then the signal chips of the spread symbols
are pulse-shaped and transmitted through multipath wireless channels. We assume that the
maximal channel delay time is much less than a symbol duration. This is a quite common
assumption in CDMA systems [72] which corresponds to the flat fading channel where the sig-
nal chips from the previous symbol only leak to the immediately following symbol but have no
effects on other following symbols. In this scenario, the intersymbol interference (ISI) can be
eliminated by either discarding the prefix or guard chips inserting techniques [44], [72]. We also
assume a block fading channel, which is static during J symbols.

The waveform observed at the ith chip interval of the jth1symbol at the mth receive antenna
senor consists of the received signal from all P users superimposed with additive noise. We
assume that the signals arriving at the receiver are synchronized to within a fraction of chip
interval. The discrete time baseband signal at the receive antenna sensor can be written as

x̃m,i,j = xm,i,j + vm,i,j (3.1)

where xm,i,j is the signal component, while vm,i,j is the i.i.d. additive zero mean noise, which
may have significant impulsive component. The signal component xm,i,j can be written as

xm,i,j =

P∑

p=1

am,pbi,pcj,p (3.2)

for all m = 1, · · · ,M , i = 1, · · · , I, j = 1, · · · , J . Here am,p is the channel fading/gain between
user p and antenna element m, bi,p is the equivalent signature of the pth user, and cj,p is the
jth information bearing symbol of user p.

Let us introduce matrices and arrays which are useful for the development of our algorithms.
Let X denote an M × I ×J three-dimensional array whose (m, i, j)th element is xm,i,j in (3.2),
A – an M × P matrix whose (m, p)th element is am,p in (3.2), B – an I × P matrix whose
(i, p)th element is bi,p in (3.2), and C – a J × P matrix whose (j, p)th element is cj,p in (3.2).
Figure 3.1 shows the structure of the three-dimensional array X.

Similar to X, we also introduce two other M × I × J three-dimensional arrays X̃ and V
with elements given by (3.1). Then we can recast (3.1) into array form as

X̃ = X + V . (3.3)

Note that matrices A, B and C have their physical meanings in that A is the matrix of
fading channel gains between all P users and M sensors of the antenna at the receiver, B is the
equivalent signature of P users, and C is the matrix containing all the symbols transmitted by
P users during J symbol duration.

1With a little abuse of notations, in Chapter 3, j denotes the index of received signals.
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Figure 3.1: Received data array.

The fully blind multiuser detection problem can be formulated in the following way. Given

the noisy signal X̃ at the receive antenna array, we want to estimate matrix C, without a priori
knowledge about A and B.

Equation (3.2) expresses xm,i,j as a sum of P rank-1 triple products. This reminds us the
link between blind multiuser detection and trilinear decomposition or PARAFAC analysis.

The PARAFAC fitting problem is to estimate A, B, and C given the noisy data X̃. From
the data model in (3.2) and (3.3), we can find that the blind DS-CDMA multiuser detection
problem has the same mathematical formulation as the PARAFAC fitting problem. Therefore,
this interesting link opens an avenue for the development of DS-CDMA multiuser detection
algorithms in impulsive noise by solving the PARAFAC fitting in impulsive noise.

It is important to point out that the authors of [44] also linked the blind DS-CDMA multiuser
detection with PARAFAC analysis. However, in that paper the additive noise was assumed to
be Gaussian.

PARAFAC fitting problem for Gaussian noise have been solved by using alternating least
squares regression procedure (e.g., cf. [44], [53]). LS regression is optimal (in the ML sense)
when the additive ambient noise is i.i.d. Gaussian. However, when the additive noise has strong
impulsive components, the performance of LS regression may degrade significantly.

In this chapter, we develop two new iterative procedures for PARAFAC fitting in impulsive
noise. One procedure is based on LP; the other makes use of WMF (e.g., [83]). Their relative
merits are investigated via simulations and compared with the pertinent CRB, which are also
derived herein.

3.3 Modelling of Impulsive Noise

Before developing our algorithms, let us briefly review some models of impulsive noise. Ex-
amples of models with impulsive noise include Laplacian distribution model [92], the Class A
model [66], the α-stable model [68], and the ǫ-contaminated model [89]. Laplacian distribution
is more heavy tailed than Gaussian distribution and is therefore suited to model impulsive
noise. The Class A impulsive noise model is built by the infinite summation of weighted Gaus-
sian random variables with increasing variances. The α-stable model describes a class of stable
distribution with α (0 < α ≤ 2) parameterizing the heaviness of the tail of the distribution.



3.3. Modelling of Impulsive Noise 37

Among all α-stable distributions, Gaussian distribution and Cauchy distribution are special
cases with α = 2 and α = 1, respectively. The ǫ-contaminated model represents the ambient
noise which is the mixture of nominal Gaussian noise with ǫ-contaminated outliers. Among
the ǫ-contaminated noise model, the two-term Gaussian mixture model or the mixed-Gaussian
model is widely used [89]. The probability density function (PDF) of this noise model can be
written as

fmixed−Gaussian = (1− ǫ)CN (0, ν2) + ǫ CN (0, κν2) (3.4)

with 0 ≤ ǫ ≤ 1, and κ ≥ 1. Here, CN (0, ν2) represents nominal Gaussian background noise
and CN (0, κν2) models the impulsive component.

For α-stable distribution, two important issues should be noticed. First, no closed-form
expression for the PDF exists for α other than α = 1 and α = 2. For other α, we can only
write the characteristic function in closed-form as

φ(ω) = exp{−γ|ω|α}

where γ is a positive constant related to the scale of the distribution (also known as dispersion
in the case of the Cauchy distribution). Second, except for the Gaussian distribution, only the
moments of order less than α exist for α-stable distribution. This means that the power of
an α-stable noise can not be calculated in the conventional way as the second-order moment
of the noise. In [91], the so-called geometric power and geometric SNR are used to define the
power and SNR, respectively. The geometric power of symmetric α-stable noise is defined as
[91, pp. 38]:

S0 =
(Cgγ)

1/α

Cg

where Cg = eCe ≈ 1.78 is the exponential of the Euler constant Ce ≈ 0.5772. In particular, the
geometric power of complex Gaussian noise can be calculated as

S0,Gaussian = exp

{∫ +∞

−∞

∫ +∞

−∞

ln
√

Re{vm,i,j}2 + Im{vm,i,j}2
πσ2

v

× exp

{
−Re{vm,i,j}2 + Im{vm,i,j}2

σ2
v

}
dRe{vm,i,j} d Im{vm,i,j}

}
=

σv√
Cg

. (3.5)

For the complex Cauchy case the geometric power can be written as

S0,Cauchy =exp

{∫ +∞

−∞

∫ +∞

−∞
ln
√

Re{vm,i,j}2 + Im{vm,i,j}2

× γ

2π(Re{vm,i,j}2 + Im{vm,i,j}2 + γ2)3/2
dRe{vm,i,j} d Im{vm,i,j}

}
= 2γ . (3.6)

The geometric SNR is defined as [91, pp. 68]

SNR =
1

Cg

(
A

S0

)2

(3.7)

where A is the magnitude of the noise-free signal. Substituting (3.5) into (3.7) we find that
for the Gaussian case the geometric SNR is equivalent to the standard SNR. For the complex
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Cauchy case the geometric SNR can be obtained by substituting (3.6) into (3.7)

SNRCauchy =
A2

4Cgγ2
. (3.8)

In Section 3.6, we will study the performance of different multiuser detection algorithms in
Laplacian, Cauchy and ǫ-contaminated noise, respectively.

3.4 Trilinear Alternating Least Absolute Error (TALAE)

Regression

In this section, we develop algorithms which solve the problem of blind DS-CDMA multiuser
detection in impulsive noise. These algorithms are based on the robust PARAFAC model fitting
in impulsive noise and make use of the TALAE regression.

We start by introducing some useful notations. Let Am = Dm(A). Then, by “slicing” the
three-dimensional array X in a series of “slabs” (two-dimensional arrays) we obtain

Xm = BAmC
T , m = 1, . . . ,M .

Here such a slicing is made perpendicular to the mth dimension, i.e., Xm := [xm,·,·] is the I×J
two-dimensional slice of X corresponding to the given index m. Two other types of slicing of
X are useful in understanding the algorithms which will be developed in this section. They are
given by

Y i = CBiA
T , i = 1, . . . , I

Zj = ACjB
T , j = 1, . . . , J

where Bi = Di(B), Cj = Dj(C), while the J×M matrix Y i and M ×I matrix Zj are defined
as Y i := [x·,i,·] and Zj := [x·,·,j], respectively.

As mentioned in Section 3.2, the performance of the LS regression degrades dramatically
when the noise is impulsive. The LAE criterion is often used as a robust alternative to LS [81].
LAE regression is optimal (in the ML sense) when the additive noise is i.i.d. Laplacian (e.g.,
see [82]). An easy way to see this is to consider mean estimation under LS and LAE criteria.
These correspond to arithmetic mean and median operators, respectively. The median operator
rejects impulses regardless of strength2; whereas the arithmetic mean is skewed by even one
outlying sample.

Interestingly, as we will see, regression under the LAE criterion often performs well even
when measurement errors are not Laplacian, but rather drawn from the class of α-stable or
ǫ-contaminated distributions. It is therefore of interest to develop PARAFAC regression proce-
dures that optimize the LAE fitting criterion.

2Up to roughly J/2 impulses can be rejected, where J is the sample size.
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Let us introduce the tall matrix

X =




X1

...

XM




IM×J

=




BA1

...

BAM


C

T = (A⊙B)CT .

Similarly, we introduce the matrix of noisy data

X̃ =




X̃1

...

X̃M


 =




X1

...

XM


+




V 1

...

V M


 .

Then the conditional ML estimation problem for the matrix C given matrices A and B and
assuming i.i.d. Gaussian measurement noise is the LS fitting problem

min
C

∥∥X̃ − (A⊙B)CT
∥∥2
. (3.9)

If the measurement noise is i.i.d. Laplacian (with i.i.d. Laplacian-distributed real and
imaginary parts in the complex case), then ML estimation is equivalent to LAE regression.
Some manipulations are necessary in order to express the absolute error criterion in the form
of a convenient vector ℓ1 norm. Towards this end, introduce the operator F(·)

s = F(S) ,




S̆ ·,1
...

S̆·,L


 (3.10)

S̆·,l ,

[
Re{S·,l}
Im{S ·,l}

]
(3.11)

where S is a complex-valued M × L matrix, and S·,l denotes its lth column. The following
property holds (see Section 3.A for derivation):

F{DF } = (IL ⊗ G{D})F{F } (3.12)

where D and F are any M ×N and N × L complex-valued matrices, respectively, and G{D}
stands for the following operator

G{D} ,

[
Re{D} −Im{D}
Im{D} Re{D}

]
.

Using property (3.12), we find that the absolute error model fitting criterion can be written
as

∥∥x̃− (IJ ⊗ G{A⊙B})c
∥∥

1
(3.13)
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i.e., through the ℓ1 norm of a real-valued vector. Here, x̃ = F(X̃) and c = F(CT ).

Using the other two ways of slicing the array X, we introduce the matrices

Y =




Y 1

...

Y I




JI×M

= (B ⊙C)AT , Z =




Z1

...

ZJ




MJ×I

= (C ⊙A)BT

and correspondingly

Ỹ =




Ỹ 1

...

Ỹ I


 , Z̃ =




Z̃1

...

Z̃J




where Ỹ i, i = 1, . . . , I, and Z̃j, j = 1, . . . , J are the noisy slabs of X̃ along corresponding
dimensions.

Now we have all notations necessary to explain the new fitting algorithms.

3.4.1 TALAE Regression Based on Linear Programming

The idea behind this algorithm is similar to that of TALS regression for Gaussian noise3 [46],
[53] and is as follows: each time, update a subset of parameters using the LAE criterion,
conditioned on previously obtained estimates of the remaining parameters; proceed to update
another subset of parameters; repeat until convergence.

In more detail, we first initialize matricesA andB randomly or by single-invariance ESPRIT
when applicable [44], [46]. Then, given the matrix X̃, and these initial estimates of A and B

(which we denote hereafter as Â and B̂), our purpose is to find the estimate of the matrix C
which minimizes the norm (3.13). Specifically, we have to find the estimate of C by solving the
following optimization problem

ĉ = arg min
c

∥∥x̃− (IJ ⊗ G{Â⊙ B̂})c
∥∥

1
, Ĉ = (F−1{ĉ})T (3.14)

for given x̃, Â and B̂. In (3.14), F−1{·} denotes the inverse operator to F{·} of (3.10). Intro-
ducing the vector e = [1, 1, . . . , 1]T and the vector of slack variables q1 (both of commensurate
dimensions), we can equivalently write the problem (3.14) as

min
c, q1

eTq1 subject to x̃− (IJ ⊗ G{Â⊙ B̂})c � q1 (3.15)

x̃− (IJ ⊗ G{Â⊙ B̂})c � −q1

where � denotes the usual point-wise ordering. The optimization problem in (3.15) is an LP
problem that can be very efficiently solved using interior-point methods [84], [85].

3However, the norm of type (3.13) is now used instead of the Frobenius norm of (3.9).
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Using the second way of slicing the three-dimensional array (i.e., working with the data

ỹ = F(Ỹ )) and exploiting the property (3.12) we obtain that the estimate of A can be found
by solving the following optimization problem

â = arg min
a

∥∥ỹ − (IM ⊗ G{B̂ ⊙ Ĉ})a
∥∥

1
, Â = (F−1{â})T (3.16)

with given ỹ and previously estimated B̂ and Ĉ. This problem can be rewritten as the following
LP problem:

min
a, q2

eTq2 subject to ỹ − (IM ⊗ G{B̂ ⊙ Ĉ})a � q2

ỹ − (IM ⊗ G{B̂ ⊙ Ĉ})a � −q2

where q2 is the vector of slack variables of commensurate dimension.

Finally, using the third way of slicing the three-dimensional array and applying the property
(3.12) we obtain that the estimate of B can be found by solving the following optimization
problem:

b̂ = arg min
b

∥∥z̃ − (II ⊗ G{Ĉ ⊙ Â})b
∥∥

1
, B̂ = (F−1{b̂})T (3.17)

with given z̃ and previously estimated Â and Ĉ. This problem is equivalent to the following
LP problem:

min
b, q3

eTq3 subject to z̃ − (II ⊗ G{Ĉ ⊙ Â})b � q3

z̃ − (II ⊗ G{Ĉ ⊙ Â})b � −q3

where q3 is the vector of slack variables of commensurate dimension.

Fitting proceeds by updating one matrix at a time, conditioned on interim estimates of the
other two, in a round-robin fashion. Note that the conditional update of any given matrix
may either improve or maintain but cannot worsen the current fit. Monotone convergence of
the fit (but not necessarily to the global minimum) follows directly from this observation. The
per-iteration complexity of TALAE-LP is equal to the cost of solving LP problems [85]. This
is, however, of higher order of complexity as computing a matrix pseudo-inverse in the TALS
method [53] and can be estimated as O(M3I3 + I3J3 +M3J3) while the complexity of TALS
is O(PMIJ). Overall complexity depends on the number of iterations, which varies depending
on problem-specific parameters and the given batch of data.

3.4.2 TALAE Regression Based on Weighted Median Filtering

LP yields the optimal solution for each of the conditional optimization problems in (3.14),
(3.16) and (3.17). In the following, we show how one can iteratively solve (3.14) (and likewise
(3.16) and (3.17)), using simple WMF. Unlike the LP-based solution, the iterative solution
derived below is not necessarily an optimal solution of (3.14). However, the WMF iteration
is simpler, monotonically convergent, and it does not appear to affect the performance of the
overall model-fitting loop.
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Fixing all parameters in (3.14) except for c(j−1)2P+p (j ∈ {1, . . . , J}, p ∈ {1, . . . , 2P}), we
can simplify this problem as

min
c(j−1)2P+p

∥∥∥∥X̆ ·,j −
2P∑

f=1,f 6=p
G{Â⊙ B̂}·,fc(j−1)2P+f − G{Â⊙ B̂}·,pc(j−1)2P+p

∥∥∥∥
1

(3.18)

where X̆ ·,j = [Re{X̃ ·,j}T , Im{X̃ ·,j}T ]T , and G{Â⊙ B̂}·,p stands for the pth column of G{Â⊙
B̂}.

Defining

hj = X̆ ·,j −
2P∑

f=1,f 6=p
G{Â⊙ B̂}·,f c(j−1)2P+f

and

mp = G{Â⊙ B̂}·,p
the problem in (3.18) becomes

min
c(j−1)2P+p

∥∥hj −mpc(j−1)2P+p

∥∥
1
. (3.19)

The minimization problem in (3.19) can be further written as

min
c(j−1)2P+p

2MI∑

l=1

∣∣hj(l)−mp(l)c(j−1)2P+p

∣∣ (3.20)

where hj(l) and mp(l) are the lth elements of the vectors hj andmp, respectively. Equivalently,
(3.20) can be expressed as

min
c(j−1)2P+p

2MI∑

l=1

∣∣mp(l)
∣∣
∣∣∣∣
hj(l)

mp(l)
− c(j−1)2P+p

∣∣∣∣ (3.21)

provided that none of the elements mp(l) is zero. Note that if one of these elements is zero,
then the corresponding summand in (3.21) can be dropped because it becomes a constant in
this case (independent of c(j−1)2P+p). Note that the optimization problem (3.21) is solved by
WMF (e.g., see [83]) where {hj(l)/mp(l)}2MI

l=1 , {|mp(l)|}2MI
l=1 , and c(j−1)2P+p are the filter inputs,

weights, and output value, respectively. The WMF operation boils down to sorting, and can
thus be efficiently implemented at a complexity cost of 2MI log2(2MI).

Iterating the WMF over real and imaginary parts of all elements of the matrix C, e.g., in a
circular fashion, and likewise for the elements of the matrices A and B involved in the decom-
position, one obtains a LAE trilinear regression algorithm that is monotonically convergent in
terms of the LAE cost function. The per-iteration complexity of the TALAE-WMF algorithm
is then estimated as O(PMIJ log2(MIJ)), which can be much lower than the corresponding
complexity of TALAE-LP.

Note that the proposed robust PARAFAC algorithms (as any alternating-optimization-based
technique) can use any additional side-information by keeping the corresponding columns of
the respective matrices fixed during iterations or initializing them with preliminary (possibly
coarse) estimates. The advantage of PARAFAC fitting versus other approaches in this case is
that it uses all the model structure and aims for the ML solution.
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3.5 Cramér-Rao Bounds

In order to study and compare the performance of different multiuser detection algorithms, in
this section we present the results of the CRBs for the problem at hand. Detailed derivations
are listed in Section 3.B.

The CRB for Gaussian noise has been derived in [86]. Corresponding CRBs for impulsive
noise are of interest as benchmarks in our present context. Since the closed-form expression
for the density function of mixed-Gaussian noise is not available and the symmetric α-stable
distribution does not have an analytic expression for its density function. We will derive the
CRBs for the fully blind DS-CDMA multiuser detection problem for Laplacian and the special
case of Cauchy noise. First, the Cauchy distribution has a closed-form expression for its density
function. Second, estimators that perform well under the Cauchy distribution are robust in
different impulsive noise environments, i.e., the performance of such estimators does not change
significantly when other symmetric α-stable distributions are used [79].

One delicate point regarding the CRB for the trilinear decomposition model is the inherent
permutation and scale ambiguity. To derive a meaningful CRB, we assume that the first rows
of A and B are normalized to [1, . . . , 1]1×P , which resolves the scale ambiguity [86]. Further
we assume that the first row of C is known and consists of distinct elements, which resolves
the permutation ambiguity [86]. Then, we can write the 1 × (M + I + J − 3)P row-vector of
unknown complex parameters as

θ = [a2, . . . ,aM , b2, . . . , bI , c2, . . . , cJ ]

where am, m = 2, · · · ,M is the mth row of matrix A, bi, i = 2, · · · , I is the ith row of matrix
B, and cj, j = 2, · · · , J is the jth row of matrix C.

Theorem 3.1. The (M + I + J − 3)P × (M + I + J − 3)P FIM for the estimation of θ in
Gaussian, Laplacian and Cauchy noise is given by

FIM =


 F 1 F 2

FH
2 F c,c


 (3.22)

where

F 1 =


 F a,a F a,b

FH
a,b F b,b


 , F 2 =


 F a,c
F b,c


 (3.23)

F a,a = β
[
IM−1 ⊗ ((B ⊙C)H(B ⊙C))

]
(3.24)

F b,b = β
[
II−1 ⊗ ((C ⊙A)H(C ⊙A))

]
(3.25)

F c,c = β
[
IJ−1 ⊗ ((A⊙B)H(A⊙B))

]
(3.26)

F a,b = β
[
IM−1 ⊗ (B ⊙C)H

]
Ψ1,2 [II−1 ⊗ (C ⊙A)] (3.27)

F a,c = β
[
IM−1 ⊗ (B ⊙C)H

]
Ψ1,3 [IJ−1 ⊗ (A⊙B)] (3.28)

F b,c = β
[
II−1 ⊗ (C ⊙A)H

]
Ψ2,3 [IJ−1 ⊗ (A⊙B)] (3.29)
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β =





1
σ2

v
, for Gaussian noise

2
σ2

v
, for Laplacian noise

3
10γ2 , for complex Cauchy noise

1
2γ2 , for real Cauchy noise

(3.30)

σv is the standard deviation of the Gaussian or Laplacian distribution, γ > 0 is the dispersion
of the Cauchy distribution and

Ψ1,2 =




Ψ1,2(2, 2) . . . Ψ1,2(2, I)
...

. . .
...

Ψ1,2(M, 2) . . . Ψ1,2(M, I)


 (3.31)

Ψ1,3 =




Ψ1,3(2, 2) . . . Ψ1,3(2, J)
...

. . .
...

Ψ1,3(M, 2) . . . Ψ1,3(M,J)


 (3.32)

Ψ2,3 =




Ψ2,3(2, 2) . . . Ψ2,3(2, J)
...

. . .
...

Ψ2,3(I, 2) . . . Ψ2,3(I, J)


 . (3.33)

Here

Ψ1,2(m, i) =




0 . . . 0 . . . 0 . . . 0 . . . 0
. . .

0 . . . 1 . . . 0 . . . 0 . . . 0

0 . . . 0 . . . 1 . . . 0 . . . 0
. . .

0 . . . 0 . . . 0 . . . 1 . . . 0
. . .

0 . . . 0 . . . 0 . . . 0 . . . 0




← (i− 1)J + 1

← (i− 1)J + 2
...

← (i− 1)J + J

(3.34)

↑ ↑ ↑
m M +m (J − 1)M +m
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Ψ1,3(m, j) =




0 . . . 0 0 . . . 0 . . . 0 . . . 0
. . .

0 . . . 1 0 . . . 0 . . . 0 . . . 0
. . .

0 . . . 0 1 . . . 0 . . . 0 . . . 0
. . .

0 . . . 0 0 . . . 0 . . . 1 . . . 0




← j
...

← j + (i− 1)J
...

← j + (I − 1)J

(3.35)

↑ ↑ ↑
(m− 1)I + 1 (m− 1)I + 2 (m− 1)I + I

Ψ2,3(i, j) =




0 . . . 0 . . . 0 . . . 0 . . . 0
. . .

0 . . . 1 . . . 0 . . . 0 . . . 0

0 . . . 0 . . . 1 . . . 0 . . . 0
. . .

0 . . . 0 . . . 0 . . . 1 . . . 0
. . .

0 . . . 0 . . . 0 . . . 0 . . . 0




← (j − 1)M + 1

← (j − 1)M + 2
...

← (j − 1)M +M

(3.36)

↑ ↑ ↑
i I + i (M − 1)I + i

Proof: See Section 3.B. �

Finally, the CRB matrix of the unknown elements of C is given by

CRBc,c = (F c,c− FH
2 F

−1
1 F 2)

−1 . (3.37)

3.6 Numerical Examples

In this section, we compare the performance of the proposed blind robust multiuser detection
algorithms with that of the conventional blind multiuser detection algorithm [44], the robust
multiuser detection algorithms using nonlinear filtering technique [88], and against the pertinent
CRB.

The data X are contaminated by channel noise. Four models of the channel noise are used:
Gaussian noise, Laplacian noise, Cauchy noise, and mixed-Gaussian noise.
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For TALS fitting we use the COMFAC algorithm [53], which is a fast implementation of
TALS. The MOSEK convex optimization MATLAB toolbox [90] is used to solve LP problems
associated with our TALAE-LP algorithm. The interior-point based solver of the MOSEK tool-
box is applied. Scale and permutation ambiguities are inherent to this blind multiuser detection
problem [44]; the scale ambiguity manifests itself as a complex constant that multiplies each
individual row of C. For constant-modulus transmissions, this ambiguity can be removed via
automatic gain control (AGC) and differential encoding/decoding. We assume differentially-
encoded user signals throughout the simulations. For the purpose of performance evaluation
only, the permutation ambiguity is resolved using a greedy LS (C, Ĉ) column-matching algo-
rithm.

We present Monte Carlo simulations that are designed to assess the RMSE performance of
the aforementioned algorithms. The parameters used in the simulations are as follows: L =
number of Monte Carlo trials = 100; I = 8; J = 20; and α = 1, which yields Cauchy noise.
For Cauchy noise, geometric SNR (3.8) is used. While for the other three noises we use the
standard SNR.

Throughout the simulations we assume that the noise power is normalized to be equal to
1. User signals are redrawn from an i.i.d. Bernoulli distribution and differentially encoded for
each Monte Carlo trial. BPSK modulation is used for all user signals. The gains of the channel
matrix A and the elements of the equivalent spreading code matrix B are generated as i.i.d.
Gaussian unit variance random variables and are fixed in each Monte Carlo trial, and re-drawn
from one trial to another.

Even though dimensions and ranks are such that algebraic (ESPRIT-like) initialization
is possible for all three algorithms in our simulation setup, we choose to initialize all three
competing algorithms randomly for each batch of data. The reason is that we wish to assess
the global convergence characteristics of the three iterations.

The RMSE for each simulated point and for each method tested is calculated according to
the following expression

RMSE =

√√√√ 1

L(J − 1)P

L∑

l=1

∥∥Ĉ(l)−C
∥∥2

while the (averaged) CRB is calculated as

CRB =

√√√√
L∑

l=1

tr{CRBc,c(l)}
L(J − 1)P

.

In the first example, we assume that M = 8 sensors and P = 2 users. Figures 3.2-3.4 display
the performance of the aforementioned algorithms in terms of RMSE versus the SNR4 for the
case of Gaussian, Laplacian and Cauchy noise, respectively, and compare the performance with
the corresponding CRBs. Figure 3.5 shows the performance of the proposed TALAE methods
as compared with the TALS procedure with clipper nonlinearity [88]. The functional form of

4Geometric SNR in Cauchy case and standard SNR in other cases.
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Figure 3.2: RMSEs versus SNR. First example; Gaussian channel noise.
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Figure 3.3: RMSEs versus SNR. First example; Laplacian channel noise.
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Figure 3.4: RMSEs versus SNR. First example; Cauchy channel noise.

the clipper nonlinearity can be written as

ϕ(x) =

{
x , |x| < τ

sgn(x) · τ , otherwise

where τ is the threshold of the clipper, and sgn(·) denotes the sign function. In order to study
the effect of τ , we set different values of τ : 0.25γ, 0.5γ, γ, 10γ, 30γ, where γ is the dispersion of
the Cauchy noise. Figures 3.6 and 3.7 demonstrate the performance of the proposed algorithms
compared with the conventional TALS procedure and the TALS procedure with clipper nonlin-
earity in mixed-Gaussian ambient noise. The values of τ are set to be ν, 3ν, 10ν, where ν is the
standard deviation of the nominal background noise (3.4). In Figures 3.6 and 3.7, we change
the shape of the distribution by varying ǫ with fixed total noise variance σ2

v = (1− ǫ)ν2 + ǫκν2.
κ is set to κ = 100 in both figures, while ǫ is set to be ǫ = 0.1 and ǫ = 0.01 in Figures 3.6 and
3.7, respectively.

In the second example, SNR = 15 dB is fixed while the numbers of sensors and users are
varied. Figures 3.8 and 3.9 show the RMSEs of the methods tested versus the number of
antenna elements for the case of Cauchy noise, and for P = 2 and P = 4, respectively.

Figures 3.2 and 3.3 demonstrate that in the case of Gaussian noise, the TALS method
performs slightly better than the proposed robust algorithms, while in the case of Laplacian
noise, the proposed robust algorithms have slightly better performance as compared with the
TALS method. In the case of Cauchy noise (Figures 3.4, 3.5, 3.8, and 3.9), the TALS method
breaks down, while the performance of the proposed robust algorithms is not affected and is
close to the CRB (despite the fact that our techniques are designed for Laplacian noise). In
mixed-Gaussian noise (Figures 3.6 and 3.7) the performance of all algorithms depends on the
parameters κ and ǫ in (3.4). For the channel noise with less frequent impulsive components
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Figure 3.5: RMSEs versus SNR. First example; Cauchy channel noise.

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

SNR (dB)

R
M

S
E

TALS
TALAE LP
TALAE WMF
Clipper τ=ν
Clipper τ=3ν
Clipper τ=10ν

Figure 3.6: RMSEs versus SNR. First example; mixed-Gaussian channel noise, κ = 100, ǫ = 0.1.
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Figure 3.7: RMSEs versus SNR. First example; mixed-Gaussian channel noise, κ = 100, ǫ =
0.01.
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Figure 3.8: RMSEs versus M for P = 2. Second example; Cauchy channel noise.
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Figure 3.9: RMSEs versus M for P = 4. Second example; Cauchy channel noise.

(ǫ = 0.01), the conventional TALS algorithm performs quite well in high SNR region. While
its performance degrades dramatically when the background noise has more frequent impulsive
components (ǫ = 0.1).

The performance degradation of TALAE algorithms relative to TALS in the Gaussian case
can be considered as a moderate price for greatly improved robustness against heavy-tailed
Cauchy noise. The TALS procedure with clipper nonlinearity shows good performance for the
case of Cauchy noise as well (Figure 3.5). However, we can see that the performance of such
method depends on the choice of the threshold of the clipper τ . Thus, the selection of τ is
critical for good performance, especially in low SNR region. For the case of mixed-Gaussian
noise, the TALS procedure with clipper performs quite well in low SNR region. However,
in high SNR region, it shows some error-floors. Moreover, the TALS approach with clipper
nonlinearity is ad hoc and not optimal in the ML sense, while our approach does not use any ad
hoc parameters, shows better performance, and moreover, in the case of TALAE-WMF method
has the same computational complexity.

Comparing the two robust regressions (TALAE-LP versus TALAE-WMF), we see that they
behave very similarly performance-wise in all cases considered in our simulations. This was not
necessarily expected, because TALAE-LP jointly updates many parameters, and is therefore
capable of making “superdiagonal” optimization steps which are not possible with TALAE-
WMF. The latter updates one parameter at a time, and thus it may be more easily trapped
in ridges which do not allow fit improvements by means of updating only a single parameter.
Nevertheless, this possibility does not appear to affect performance in our simulations. Further
note that the two robust regressions appear robust against random initialization. Intuitively,
this fact can be attributed to the fact that we work with a relatively over-determined model.

We have seen that each complete update cycle of TALAE-WMF (in which all parameters are
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visited for update once, in any order) is computationally much simpler than the corresponding
cycle of TALAE-LP. To get a real sense of computational complexity, the number of iterations
required for convergence of both methods is also needed. This number varied between 10 and 20
depending on simulated noise model and initialization of matrices A and B. Throughout the
simulations, it was observed that TALAE-WMF requires 2-5 more iterations than TALAE-LP
for Gaussian or Laplacian noise, and about the same number of iterations for Cauchy noise.
This is indeed a positive result taking into account that TALAE-WMF can be implemented
with simple sorting hardware, whereas TALAE-LP and TALS require a sophisticated computing
capability.

3.7 Chapter Summary

In this chapter, the problem of robust blind DS-CDMA multiuser detection has been addressed.
By exploiting the link with PARAFAC analysis, the problem boils down to robust fitting of
PARAFAC model. Two algorithms based on LAE criterion have been proposed. The algorithms
rely on alternating optimization, using LP or WMF. Our results show that under heavy-tailed
noise, both algorithms outperform conventional blind DS-CDMA multiuser detection algorithm
based on alternating LS PARAFAC fitting procedure, and, even though they are matched to
the Laplacian distribution, they still perform well under Cauchy and mixed-Gaussian noise.
Moreover, their performance degrades only moderately under Gaussian noise. Between these
two algorithms, the WMF iteration is particular appealing from a simplicity viewpoint.

3.A Proof of Property (3.12)

The lth column of DF satisfies

˘[DF ]·,l =

[
Re{[DF ]·,l}
Im{[DF ]·,l}

]
=

[
Re{D} −Im{D}
Im{D} Re{D}

][
Re{F ·,l}
Im{F ·,l}

]
= G{D}F̆ ·,l

and therefore

F{DF } =




˘[DF ]·,1
...

˘[DF ]·,L


=




G{D} 0
. . .

0 G{D}







F̆ ·,1
...

F̆ ·,L


= (IL⊗ G{D})F{F } .

3.B Derivation of the Cramér-Rao Bounds

The proof for the case of Gaussian noise is given in [86]. Here we provide proofs for the Laplacian
and Cauchy cases only.

Laplacian case:
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The likelihood function in this case can be written as [92]

fLaplacian(X̃|θ) =
M∏

m=1

I∏

i=1

J∏

j=1

1

σ2
v

exp

{
− 2

σv

(∣∣∣Re
{
x̃m,i,j −

P∑

p=1

am,pbi,pcj,p

}∣∣∣

+
∣∣∣Im
{
x̃m,i,j −

P∑

p=1

am,pbi,pcj,p

}∣∣∣
)}

.

The corresponding log-likelihood (LL) function is given by

LLaplacian(θ) = MIJ ln
1

σ2
v

− 2

σv

M∑

m=1

I∑

i=1

J∑

j=1

(∣∣∣Re
{
x̃m,i,j −

P∑

p=1

am,pbi,pcj,p

}∣∣∣

+
∣∣∣Im
{
x̃m,i,j −

P∑

p=1

am,pbi,pcj,p

}∣∣∣
)
.

The complex FIM for LL LLaplacian(θ) can be expressed as

FIM = E

{(
∂LLaplacian(θ)

∂θ

)H (
∂LLaplacian(θ)

∂θ

)}

Taking partial derivatives of LLaplacian(θ) with respect to the unknown parameters, we obtain

∂LLaplacian(θ)

∂am,p
=

1

2

[
∂LLaplacian(θ)

∂Re{am,p}
−
√
−1

∂LLaplacian(θ)

∂Im{am,p}

]

=
1

σv

I∑

i=1

J∑

j=1

Re{vm,i,j}bi,pcj,p∣∣Re{vm,i,j}
∣∣ −

√
−1

Im{vm,i,j}bi,pcj,p∣∣Im{vm,i,j}
∣∣

∂LLaplacian(θ)

∂bi,p
=

1

σv

M∑

m=1

J∑

j=1

Re{vm,i,j}am,pcj,p∣∣Re{vm,i,j}
∣∣ −

√
−1

Im{vm,i,j}am,pcj,p∣∣Im{vm,i,j}
∣∣

∂LLaplacian(θ)

∂cj,p
=

1

σv

M∑

m=1

I∑

i=1

Re{vm,i,j}am,pbi,p∣∣Re{vm,i,j}
∣∣ −

√
−1

Im{vm,i,j}am,pbi,p∣∣Im{vm,i,j}
∣∣ .

Next let us derive expressions for the elements of FIM, starting from the element

E

{
∂LLaplacian(θ)

∂a∗m1,p1

∂LLaplacian(θ)

∂am2 ,p2

}

= E

{
1

σ2
v

I∑

i1=1

J∑

j1=1

I∑

i2=1

J∑

j2=1

(
Re{vm1,i1,j1}b∗i1,p1c∗j1,p1∣∣Re{vm1,i1,j1}

∣∣ +
√
−1

Im{vm1,i1,j1}b∗i1,p1c∗j1,p1∣∣Im{vm1,i1,j1}
∣∣

)

×
(

Re{vm2,i2,j2}bi2,p2cj2,p2∣∣Re{vm2,i2,j2}
∣∣ −

√
−1

Im{vm2,i2,j2}bi2,p2cj2,p2∣∣Im{vm2,i2,j2}
∣∣

)}

=
2

σ2
v

I∑

i=1

J∑

j=1

b∗i,p1c
∗
j,p1
bi,p2cj,p2δm1,m2

=
2

σ2
v

ẽTp1(B ⊙C)H(B ⊙C)ẽp2δm1,m2 (3.38)
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where ẽp is the pth unit coordinate vector, and δm,l stands for the Kronecker delta. In (3.38)
we use the fact that the real and imaginary parts of vm,i,j are statistically independent.

Thus, the matrix containing all the elements (3.38) (m1, m2 = 2, . . . ,M and p1, p2 =
1, . . . , P ) F a,a can be expressed in the form of (3.24) with the coefficient β = 2/σ2

v . In the same
way, we compute the matrices F b,b and F c,c in the form of (3.25) and (3.26), respectively.

Similarly, we can find the element

E

{
∂LLaplacian(θ)

∂a∗m,p1

∂LLaplacian(θ)

∂bi,p2

}
=

2

σ2
v

J∑

j=1

b∗i,p1c
∗
j,p1am,p2cj,p2

=
2

σ2
v

ẽTp1(B ⊙C)HΨ1,2(m, i)(C ⊙A)ẽp2 . (3.39)

Then the matrix containing all the elements (3.39) (m = 2, . . . ,M , i = 2, . . . , I and p1, p2 =
1, . . . , P ) F a,b can be written in the form of (3.27) with the coefficient β = 2/σ2

v . In the same
way, we find the matrices F a,c and F b,c given by (3.28) and (3.29), respectively. Applying the
matrix inversion lemma to the FIM matrix we obtain (3.37).

Cauchy case:

We have seen that the Laplacian CRB for the PARAFAC model only differs by a multiplica-
tive constant from the corresponding Gaussian CRB. In [93], it is shown that this is true for
general signal models observed in i.i.d. additive noise, provided that the noise PDF possesses
everywhere continuous first and second derivatives. This is not the case for the Laplacian PDF,
due to the discontinuity at the origin; however it is true for the Cauchy. In fact, in [93] and
[94] it is shown that the noise PDF-dependent multiplicative constant that appears in the FIM
can be computed as

β =

∫ +∞

−∞

|f ′

(v)|2
f(v)

dv, (3.40)

where f(·) is the noise PDF, and f
′

(·) is its first derivative. Hence we can proceed in this
fashion, calculating the integral above for the Cauchy PDF.

The expression for complex isotropic Cauchy density function in our case is given by [79]

fCauchy

(
Re{vm,i,j}, Im{vm,i,j}

)
=

γ

2π
(
Re{vm,i,j}2 + Im{vm,i,j}2 + γ2

)3/2 . (3.41)

The first derivative of the PDF (3.41) can be easily calculated as

f
′

Cauchy

(
Re{vm,i,j}, Im{vm,i,j}

)

=
1

2

[
∂fCauchy

(
Re{vm,i,j}, Im{vm,i,j}

)

∂Re{vm,i,j}
−
√
−1

∂fCauchy

(
Re{vm,i,j}, Im{vm,i,j}

)

∂Im{vm,i,j}

]

=−3γ

4

[
2Re{vm,i,j}

2π
(
Re{vm,i,j}2 + Im{vm,i,j}2 + γ2

)5/2 −
√
−1

2Im{vm,i,j}
2π
(
Re{vm,i,j}2 + Im{vm,i,j}2 + γ2

)5/2

]

=
3γ

4π

−Re{vm,i,j}+
√
−1Im{vm,i,j}(

Re{vm,i,j}2 + Im{vm,i,j}2 + γ2
)5/2
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and, correspondingly,

∣∣f ′

Cauchy

(
Re{vm,i,j}, Im{vm,i,j}

)∣∣2

fCauchy

(
Re{vm,i,j}, Im{vm,i,j}

) =
9γ

8π

Re{vm,i,j}2 + Im{vm,i,j}2(
Re{vm,i,j}2 + Im{vm,i,j}2 + γ2

)7/2 . (3.42)

Substituting (3.42) into (3.40) and calculating the integral we finally find the coefficient β for
the Cauchy noise case

β =

∫ +∞

−∞

∫ +∞

−∞

∣∣f ′

Cauchy

(
Re{vm,i,j}, Im{vm,i,j}

)∣∣2

fCauchy(Re{vm,i,j}, Im{vm,i,j})
dRe{vm,i,j} d Im{vm,i,j}

=
9γ

4

∫ +∞

−∞

∫ +∞

−∞

Re{vm,i,j}2 + Im{vm,i,j}2

2π
(
Re{vm,i,j}2 + Im{vm,i,j}2 + γ2

)7/2 dRe{vm,i,j} d Im{vm,i,j}

=
9γ

4

∫ +∞

0

∫ 2π

0

r2

2π(γ2 + r2)7/2
r dr dϑ

=
9γ

4

∫ +∞

0

r3

(γ2 + r2)7/2
d r =

9γ

4

2

15γ3
=

3

10γ2

where r =
√

Re{vm,i,j}2 + Im{vm,i,j}2 and ϑ = arctan
Im{vm,i,j}
Re{vm,i,j} are the polar coordinates.

In the proof above we considered complex noise. However, it worth noting that in the
particular case of real Cauchy noise the coefficient β is equal to 1/2γ2. Indeed, the real Cauchy
PDF is

fCauchy(vm,i,j) =
γ

π(v2
m,i,j + γ2)

(3.43)

and its first derivative is

f
′

Cauchy(vm,i,j) = −γ 2vm,i,j
π(v2

m,i,j + γ2)2
. (3.44)

Substituting (3.43) and (3.44) into (3.40) we obtain

β=

∫ +∞

−∞

(f
′

Cauchy(vm,i,j))
2

fCauchy(vm,i,j)
d vm,i,j=

4γ

π

∫ +∞

−∞

v2
m,i,j

(v2
m,i,j + γ2)3

d vm,i,j =
8γ

π

π

16γ3
=

1

2γ2

and the proof is complete.



56 Chapter 3. Blind Multiuser Detection in Impulsive Noise



Chapter 4

Robust Linear Receivers for MIMO

Systems

If both the transmitter and the receiver have multiple antennas, then a MIMO wireless com-
munication system arises naturally. In this chapter, we focus on multiuser MIMO systems.
New robust linear receiver techniques are developed for joint space-time decoding and inter-
ference rejection in multiple-access MIMO systems that use orthogonal space-time block codes
(OSTBCs) and erroneous CSI.

In Section 4.1, we give a brief overview of recently developed linear receivers for multiple-
access space-time block coded MIMO systems. Some background knowledge and system models
on point-to-point and multiple-access space-time block coded MIMO systems are given in Sec-
tion 4.2. An overview of the minimum variance (MV) linear multiuser receivers for MIMO
systems are also given in Section 4.2. Using different approaches to model the CSI mismatch,
in Sections 4.3 and 4.4, we propose robust linear receivers based on worst-case performance
optimization and stochastic programming, respectively. These receivers are shown to provide
different tradeoffs in terms of robustness, flexibility, performance, and computational complex-
ity. Simulation results are presented in Section 4.5. Section 4.6 briefly summarizes the chapter.
Proofs of Lemma 4.1, Lemma 4.2, and Theorem 4.1 are listed in Sections 4.A-4.C, respectively.

4.1 Introduction

Space-time coding has recently emerged as a powerful approach to exploit spatial diversity and
combat fading in MIMO wireless communication systems [6]-[10], [95]-[97]. OSTBCs [96], [97]
represent an attractive class of space-time coding techniques because they enjoy full diversity
and low decoding complexity. In the point-to-point MIMO communication case, the optimal
ML detector for this class of codes consists of a simple linear receiver which maximizes the
output SNR and the symbol-by-symbol detector. For each symbol, this ML detector can be
interpreted as a matched filter (MF) receiver [98].

57
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In the multiple-access MIMO case, the ML receiver has much more complicated structure
and prohibitively high complexity as compared with the ML receiver for the point-to-point
MIMO case. Therefore, in multiple-access scenarios suboptimal but simple linear receivers can
be a good choice [99]-[103].

Several linear receiver techniques have been recently developed for space-time coded multi-
ple-access MIMO systems [99]-[103]. For example, a MV linear receiver has been developed in
[99] for DS-CDMA systems which use multiple antennas and space-time block coding. However,
the scheme proposed in [99] is restricted by transmitters that consist of two antennas only. The
latter restriction is dictated by the Alamouti’s OSTBC scheme that is adopted in [99].

Another linear technique has been proposed in [100] where a decorrelator receiver has been
developed for a DS-CDMA based communication system. This receiver also uses the Alamouti’s
code and is limited by the assumption that the transmitter consists of two antennas and that
not more than two antennas are used at the receiver. Another restriction of the receiver of [100]
is that it is applicable only to the BPSK signal case.

One more linear receiver technique for the multiple-access MIMO case has been proposed
in [101]. Similar to [99] and [100], the approach of [101] is restricted to the case of Alamouti’s
code. Another restriction of this approach is that it cannot suppress more than one interferer.

A more general class of MV linear receivers has been recently proposed in [103]. In contrast
to [99]-[101], the techniques of [103] are applicable to the general case of arbitrary OSTBCs
and multiple interferers.

A common shortcoming of the techniques [99]-[103] is that they use the assumption that
the exact CSI is available at the receiver. In practice, this condition can be violated because of
channel estimation errors that are caused by limited/outdated training as well as the effects of
multiple-access interference (MAI) and noise.

In this chapter, we develop two classes of robust linear receiver techniques for joint space-
time decoding and interference rejection by using different CSI mismatch models. First, we
apply a deterministic model for the CSI mismatch and propose robust receivers under the frame-
work of worst-case performance optimization. Simulation results show significant performance
improvement of the robust linear receivers as compared with the conventional (non-robust)
receivers.

Second, taking into account that the worst-case approach may be overly pessimistic, we
propose a class of robust receivers using a stochastic model for the CSI mismatch. We formulate
the robust receiver design problems through probability-constrained stochastic optimization
problems [119], [120]. We prove the convexity of these problems and convert them into nonlinear
programming (NLP) and more simple second-order cone programming (SOCP) problems.

4.2 Background

In this section, we review the models for point-to-point and multiple-access space-time block
coded MIMO wireless systems. The latter model is used to formulate the multiple-access MIMO
linear receiver design problem.
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4.2.1 Space-Time Block Coded MIMO Model

The relationship between the input and the output of a single-access (point-to-point) MIMO
system with N transmit and M receive antennas and flat block-fading channel can be expressed
as [97]

Y = XH + V (4.1)

where

Y , [yT (1) · · · yT (T )]T

X , [xT (1) · · · xT (T )]T

V , [vT (1) · · · vT (T )]T

are the matrices of the received signals, transmitted signals, and noise, respectively, H is the
N ×M complex channel matrix, and T is the block length. Here,

y(t) = [y1(t) · · · yM(t)]

x(t) = [x1(t) · · · xN (t)]

v(t) = [v1(t) · · · vM(t)]

are the complex row vectors of the received signal, transmitted signal, and noise, respectively.

Let us denote the complex information-bearing symbols prior to space-time encoding as
s1, s2, . . . , sK and assume that these symbols belong to (possibly different) constellations Uk,
k = 1, 2, . . . , K. Let

s , [s1 · · · sK ]T .

Note that s ∈ S where S = {s(1) · · ·s(Q)} is the set of all possible symbol vectors and Q is the
cardinality of this set. The T ×N matrix X(s) is called an OSTBC if [97]

• all elements of X(s) are linear functions of the K complex variables s1, s2, . . . , sK and
their complex conjugates;

• for any arbitrary s, it satisfies

XH(s)X(s) = ‖s‖2IN .

It can be readily verified that the matrix X(s) can be written as [103], [114], [115]

X(s) =

K∑

k=1

(CkRe{sk}+DkIm{sk}) (4.2)

where Ck , X(ẽk), Dk , X(jẽk), and ẽk is the K × 1 vector having one in the kth position
and zeros elsewhere. Using (4.2), one can rewrite (4.1) as [103], [114], [115]

Y = A(H)s+ V (4.3)

where the “underline” operator for any matrix P is defined as

P ,

[
vec(Re{P })
vec(Im{P })

]
(4.4)
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and vec(·) is the vectorization operator stacking all columns of a matrix on top of each other.
Here, the 2MT × 2K real matrix A(H) is defined as [103], [115]

A(H) , [C1H · · · CKH D1H · · · DKH ] . (4.5)

The matrix A captures both the effects of the space-time code and the channel. An important
property of this matrix is that its columns have the same norms and are orthogonal to each
other:

AT (H)A(H) = ‖H‖2I2K . (4.6)

In the presence of the exact CSI at the receiver, the optimal (ML) space-time decoder uses
channel knowledge to find the closest point to the received signal in the noise-free observation
space Y = {Y (1),Y (2), . . . ,Y (Q)}, i.e., it obtains [97]

lopt = argmin
q∈{1,...,Q}

‖Y − Y (q)‖ (4.7)

and then uses this index to decode the transmitted bits. Here Y (q) is the noise-free received
signal matrix that corresponds to the vector of information-bearing symbols s(q).

The ML receiver can also be viewed as a matched filter whose output SNR is maximized
[98]. It can be shown [103], [115] that (4.7) is equivalent to the MF linear receiver, which
computes the following estimate of s:

ŝ =
1

‖H‖2 A
T (H)Y (4.8)

and builds the estimate of the vector s as

ŝ = [IK jIK ] ŝ . (4.9)

The kth element of ŝ is then compared with all points in Uk. The closest point is accepted as
an estimate of kth entry of s. This procedure is repeated for all k = 1, 2, . . . , K, that is, the
decoding is done symbol-by-symbol.

According to (4.6), the matrix 1
‖H‖2 A

T (H) in (4.8) is the pseudoinverse of A(H). There-

fore, (4.8) can be alternatively viewed as a decorrelator receiver.

Let us now consider an uplink multiple-access MIMO communication system shown in Fig-
ure 4.1. The transmitters (users) are assumed to have the same number of transmitting antennas
and to encode the information-bearing symbols using the same OSTBC1. The received signal
is given by [103]

Y =
P∑

p=1

XpHp + V (4.10)

where Xp is the matrix of transmitted signals of the pth transmitter, Hp is the channel matrix
between the pth transmitter and the receiver, and P is the number of transmitters.

Applying the “underline” operator of (4.4) to (4.10), we have [103]

Y =
P∑

p=1

A(Hp) sp + V (4.11)

1These assumptions are only needed for notational simplicity and can be relaxed, see [103].
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Tx 1
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Rx

H
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H P

Figure 4.1: Multiple-access MIMO system.

where sp is a K×1 vector of information-bearing symbols of the pth transmitter and, according
to (4.5), the matrix A(Hp) can be expressed as

A(Hp) = [C1Hp · · ·CKHp D1Hp · · ·DKHp] , [a1(Hp) · · ·a2K(Hp)] . (4.12)

In equation (4.12), ak(Hp) represents the space-time signature that corresponds to the kth
real-valued symbol transmitted by the pth user (i.e., the space-time signature that corresponds
to the kth component of the vector sp). Both the effects of the space-time code and the channel

of the pth user are captured in the matrix (4.12).

4.2.2 Conventional Multiple-Access MIMO Linear Receivers

In the multiple-access MIMO case, the MF receiver of (4.7) becomes highly non-optimal because
it ignores the effect of MAI treating it as a noise. In this case, the receiver performance
is determined by the signal-to-interference-plus-noise ratio (SINR) rather than the SNR and
some cancellation of MAI is required.

Using the model (4.11) and assuming without any loss of generality that the first transmitter
is the transmitter-of-interest, we can express the output vector of a linear receiver as [103]

ŝ1 = W TY (4.13)

where
W = [w1w2 · · · w2K ]

is the 2MT × 2K real matrix of the receiver coefficients and ŝ1 is the estimate of the vector s1

at the receiver output. The vector wk can be interpreted as the weight vector for the kth entry
of s1.
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Given the matrix W , the estimate of the vector of information-bearing symbols of the
transmitter-of-interest can be computed as

ŝ1 = [IK jIK ] ŝ1 .

Using such a linear estimate, the kth information-bearing symbol can be detected as a point in
Uk which is the nearest neighbor to the kth entry of ŝ1.

Using the framework of (4.13), we can interpret the MF receiver in (4.8) as a linear receiver
with the following coefficient matrix:

WMF =
1

‖H1‖2
A(H1) . (4.14)

The similarity of the vectorized multiple-access MIMO model (4.11) and models used in
array processing gives an opportunity to design the matrix W using the MV principle [1]-[3].
Using the MV approach, in [103] it has been proposed to estimate each entry of s1 by minimizing
the receiver output power while preserving a unity gain for this particular entry of s1, that is
[103]

min
wk

wT
k R̂wk subject to aTk (H1)wk = 1 for all k = 1, . . . , 2K (4.15)

where

R̂ =
1

J

J∑

i=1

Y i Y i
T

is the sample estimate of the 2MT × 2MT full rank covariance matrix

R , E{Y Y T}

of the vectorized data, Y i is the ith received data block.

The solution to (4.15) is given by [103]

WMV = [wMV,1 · · · wMV,2K ] (4.16)

where

wMV,k =
1

aTk (H1)R̂
−1
ak(H1)

R̂
−1
ak(H1) , k = 1, . . . , 2K . (4.17)

The form of the obtained MV receiver (4.16)-(4.17) is similar to that of the minimum variance
distortionless response (MVDR) receiver used in beamforming [1]-[3] and minimum output
energy (MOE) receiver used in multiuser detection [16]. Although the receiver (4.16) is able to
reject MAI, it does not cancel self-interference [99] which, for each wMV,k, is caused by other
entries of s1 than the kth one. Note that the complete cancellation of self-interference is a
very desirable feature because, otherwise, the symbol-by-symbol detector becomes non-optimal
[103].

To incorporate the self-interference cancellation feature into (4.15), it was proposed in [103]
to use additional zero-forcing constraints aTl (H1)wk = 0 for all l 6= k. These constraints
guarantee that self-interference is completely rejected.
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With such additional constraints, the problem (4.15) can be reformulated as [103]

min
W

tr{W T R̂W } subject to AT (H1)W = I2K . (4.18)

Using the Lagrange multiplier method, the solution to (4.18) can be written in the following
form [103]

W̃MV = R̂
−1
A(H1)

[
AT (H1)R̂

−1
A(H1)

]−1

. (4.19)

Note that the linear receivers (4.17) and (4.19) can be used not only in the case of multiple-
access MIMO systems with OSTBCs, but also in a more general case where linear (not neces-
sarily orthogonal) STBCs are used.

To improve the performance in the case of imperfect CSI and sample size, it was proposed in
[103] to apply fixed diagonal loading (DL) to (4.17) and (4.19). Then, the DL-based modification
of the MV receiver (4.16) can be written as

WDLMV = [wDLMV,1 · · · wDLMV,2K ] (4.20)

where

wDLMV,k=
1

aTk (H1)(R̂+ ̺I2MT )−1ak(H1)
(R̂+ ̺I2MT )−1ak(H1) , k=1, . . . , 2K (4.21)

and ̺ is the fixed DL factor.

Similarly, the DL-based modification of the MV receiver (4.19) takes the form

W̃DLMV = (R̂+ ̺I2MT )−1A(H1)
[
AT (H1)(R̂+ ̺I2MT )−1A(H1)

]−1

. (4.22)

Simulation results in [103] have demonstrated that the receiver (4.22) usually outperforms
(4.20). Unfortunately, it is not clear from [103] what is the proper choice of ̺ in (4.21) and
(4.22) and how it depends on the norm of the CSI errors. Furthermore, it is well known that
the optimal choice of the DL factor is scenario-dependent [104], [111]. Therefore, the robustness
of the fixed DL receivers (4.20) and (4.22) may be insufficient.

4.3 Robust Linear Receivers Based on Worst-Case Per-

formance Optimization

In this section, we use a deterministic model for the CSI mismatch and propose a class of robust
linear receivers under the framework of worst-case performance optimization [104], [107], [111].
In particular, we assume that the actual channel matrix resides in an uncertainty set, which
can be viewed as a sphere in a matrix space. The center of this sphere is the presumed channel
matrix, while its radius reflects the uncertainty level of the CSI mismatch. Based on this model,
we propose robust receivers which can be seen as a generalization of the techniques of (4.15)
and (4.18).
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Let us assume that the exact channel matrix H1 is not available at the receiver. The only
available quantity is its estimate Ĥ1 which represents a distorted (mismatched) copy of H1.
Let us introduce the error matrix

∆1 , H1 − Ĥ1 (4.23)

between the actual channel matrix H1 and its presumed (estimated) value Ĥ1 and let the
Frobenius norm of this error matrix be upper bounded by a known constant ε, that is

‖∆1‖ ≤ ε . (4.24)

Let us define the mismatched space-time signatures ak(Ĥ1) (k = 1, . . . , 2K) of the desired
user through the matrix

A(Ĥ1) = [C1Ĥ1 · · ·CKĤ1 D1Ĥ1 · · ·DKĤ1]

, [a1(Ĥ1) · · ·a2K(Ĥ1)] . (4.25)

The following Lemma will be needed to derive our robust MV receivers.

Lemma 4.1. For any OSTBC,

‖∆1‖ = ‖ek,1‖ for all k = 1, . . . , 2K (4.26)

where
ek,1 , ak(H1)− ak(Ĥ1) . (4.27)

Proof: see Section 4.A. �

The sought robust modification of (4.15) should minimize the output power subject to the
constraint that the distortionless response is maintained for the set of mismatched real-valued
space-time signature vectors A(ε) = {ck | ck = ak(Ĥ1 + ∆), ‖∆‖ ≤ ε}. This formulation
corresponds to the spherical uncertainty set case [104]. Then, the robust modification of (4.15)
can be written as the following optimization problem

min
wk

wT
k R̂wk subject to min

‖∆‖≤ε
wT
kak(Ĥ1 + ∆) ≥ 1 for all k = 1, . . . , 2K . (4.28)

The main modification of (4.28) with respect to (4.15) is that, for each k, instead of requir-
ing fixed distortionless response towards the single mismatched space-time signature ak(Ĥ1),
in (4.28) such distortionless response is maintained by means of inequality constraints for a
continuum of all space-time signatures given by the set A(ε). If (4.24) is satisfied, then from
(4.28) it follows that the distortionless response is also maintained for the actual space-time
signature ak(H1) = ak(Ĥ1 + ∆1). The constraints in (4.28) guarantee that the distortionless
response will be maintained in the worst case, i.e., for the particular vector ck ∈ A{ε} which
corresponds to the smallest value of wT

k ck.

Using Lemma 4.1, this problem can be transformed to

min
wk

wT
k R̂wk subject to min

‖ek‖≤ε
wT
k

(
ak(Ĥ1) + ek

)
≥ 1 for all k = 1, . . . , 2K .

(4.29)
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The problem mathematically similar to (4.29) arises in adaptive beamforming [104], [107] and
multiuser detection [111]. Using the results of [104], it can be straightforwardly shown that in
the case of a moderate mismatch parameter ε (i.e., in the case when wT

kak(Ĥ1) > ε‖wk‖), this
problem is equivalent to

min
wk

wT
k R̂wk subject to wT

kak(Ĥ1)− ε‖wk‖ = 1 for all k = 1, . . . , 2K . (4.30)

Applying the Lagrange multiplier method to (4.30), for each k = 1, . . . , 2K we obtain that the
solution to (4.30) is given by the equation [111]

2R̂wk + µε
wk

‖wk‖
= µak(Ĥ1) (4.31)

where µ is the unknown Lagrange multiplier. To get around the problem of computing µ, let
us assume that constant modulus symbol constellations are used. Hence, the vector wk can be
rescaled by an arbitrary constant without affecting the receiver performance [111]. Using this
fact and rescaling wk as wk := wk/µ, we can rewrite (4.31) as

wk =

(
2R̂+

ε

‖wk‖
I2MT

)−1

ak(Ĥ1) . (4.32)

Note that the term ε/‖wk‖ can be interpreted as an adaptive DL factor which is optimally
matched to the given level ε of the channel uncertainty. To solve (4.32), we can apply a
technique similar to that developed in [111]. From (4.32) we obtain that the optimal value of
‖wk‖ can be found as the root of the following nonlinear equation [111]

2MT∑

i=1

(
[ãk(Ĥ1)]i

2λi‖wk‖+ ε

)2

= 1 (4.33)

where

R̂ = UΛUT (4.34)

is the eigenvalue decomposition of R̂; Λ = diag{λ1 λ2 · · · λ2MT} is the diagonal matrix of the
eigenvalues of R̂; ãk(Ĥ1) = UTak(Ĥ1); and [·]i denotes the ith element of a vector.

Standard methods such as Newton-Raphson technique can be applied to solve equation
(4.33), see [111] for more details. Once this equation is solved, the obtained value of ‖wk‖ can
be inserted into the right-hand side of (4.32) to compute the optimal vector wk. Repeating this
procedure for all k = 1, · · · , 2K, we obtain the optimal weight matrix W which is the solution
of (4.28).

Next, let us develop a robust modification of the receiver (4.19). To obtain such a modi-
fication, we should add worst-case zero-forcing constraints for self-interference. Following this
idea and taking into account that in this case it is impossible to reject self-interference com-
pletely, we add to (4.29) additional constraints to limit the contribution of self-interference to
the receiver output power. Then, for each k, our problem takes the following form

min
wk

wT
k R̂wk subject to min

‖ek‖≤ε
wT
k

(
ak(Ĥ1) + ek

)
≥ 1

max
‖Ek‖≤η

‖(BT
k +ET

k )wk‖ ≤ δk (4.35)
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where the 2MT × (2K − 1) matrices Bk and Ek are defined as

Bk , [a1(Ĥ1) · · · ak−1(Ĥ1) ak+1(Ĥ1) · · · a2K(Ĥ1)]

Ek , [e1 · · · ek−1 ek+1 · · · e2K ]

respectively, δk is the value which limits the contribution of self-interference in the uncertainty
region ‖Ek‖ ≤ η, and η is the upper bound for ‖Ek‖.

Lemma 4.2. For any OSTBC,

η = ε
√

2K − 1 . (4.36)

Proof: see Section 4.B. �

Using triangle and Cauchy-Schwartz inequalities along with ‖Ek‖ ≤ η and Lemma 4.2, we
have

‖(BT
k +ET

k )wk‖ ≤ ‖BT
kwk‖+ ‖ET

kwk‖
≤ ‖BT

kwk‖+ ‖Ek‖‖wk‖
≤ ‖BT

kwk‖+ η‖wk‖
= ‖BT

kwk‖+ ε
√

2K − 1 ‖wk‖ . (4.37)

It can be readily verified that all the inequalities in (4.37) become equalities if

Ek =
ηwkw

T
kBk

‖wk‖‖BT
kwk‖

.

Using the latter observation and (4.37), we have that

max
‖Ek‖≤η

‖(BT
k +ET

k )wk‖ = ‖BT
kwk‖+ ε

√
2K − 1 ‖wk‖ . (4.38)

Note that, to zero-force self-interference in the uncertainty region as much as possible, the
parameter δk in (4.35) should be chosen as small as possible (subject to the constraint that
this problem remains feasible). The problem of potential infeasibility and, correspondingly, the
problem of choice of δk can be avoided by treating δk as a variable to be minimized. Following
this idea, let us add δk to the objective function in (4.35). Also, let us use (4.38) to simplify
the second constraint in (4.35). Then, we obtain the following problem:

min
wk,δk

√
wT
k R̂wk + δk subject to wT

kak(Ĥ1)− ε‖wk‖ ≥ 1

‖BT
kwk‖+ ε

√
2K − 1 ‖wk‖ ≤ δk . (4.39)

Now, let us convert this problem to the convex SOCP form [116]. The canonical SOCP problem
has the following formulation [116]

min
z

fTz

subject to ‖Qiz + bi‖ ≤ cTi z + di, i = 1, . . . , I (4.40)
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where z ∈ Rn are the optimization variables, and f ∈ Rn, Qi ∈ R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn,
and di ∈ R are the problem parameters. Here, R is the set of all real numbers. The constraint

‖Qiz + bi‖ ≤ cTi z + di (4.41)

is known as the second-order cone (SOC) of dimension ni.

To convert the optimization problem (4.39) to the canonical SOCP problem, we now use
the Cholesky decomposition of R̂:

R̂ = LTL (4.42)

where L is an upper-triangular matrix. Using (4.42), we obtain that

√
wT
k R̂wk =

√
wT
kL

TLwk = ‖Lwk‖ . (4.43)

Making use of (4.43) and introducing a new auxiliary variable τ1 which satisfies the inequality
τ1 ≥ ‖Lwk‖, the optimization problem (4.39) can be equivalently rewritten as

min
τ1,δk,wk

τ1 + δk subject to ‖Lwk‖ ≤ τ1

ε‖wk‖ ≤ wT
kak(Ĥ1)− 1 (4.44)

‖BT
kwk‖+ ε

√
2K − 1 ‖wk‖ ≤ δk .

The first and the second constraints in (4.44) are already written in the SOCP form. Let us now
convert the third constraint of (4.44) into SOCP constraints. Introducing auxiliary variables τ2
and τ3, this constraint can be written as

‖BT
kwk‖ ≤ τ2

ε
√

2K − 1 ‖wk‖ ≤ τ3 (4.45)

τ2 + τ3 ≤ δk .

Replacing the third constraint in (4.44) with (4.45), we finally obtain the following equivalent
form of the problem (4.35):

min
τ,δk,wk

τ1 + δk subject to ‖Lwk‖ ≤ τ1

ε‖wk‖ ≤ wT
kak(Ĥ1)− 1

‖BT
kwk‖ ≤ τ2 (4.46)

ε
√

2K − 1 ‖wk‖ ≤ τ3

τ2 + τ3 ≤ δk

where τ = [τ1, τ2, τ3]
T . Comparing (4.46) with the canonical form of a SOCP problem given

in (4.40), one can easily see that if z = [wT
k , τ

T , δk]
T , then we have five SOCs with Q1 =

[L 02MT×4], b1 = 02MT×1, c1 = [01×2MT 1 01×3]
T , d1 = 0; Q2 = [εI2MT 02MT×4],

b2 = 02MT×1, c2 = [aTk (Ĥ1) 01×4]
T , d2 = −1; Q3 = [BT

k 0(2K−1)×4], b3 = 0(2K−1)×1,
c3 = [01×(2MT+1) 1 01×2]

T , d3 = 0; Q4 = [ε
√

2K − 1 I2MT 02MT×4], b4 = 02MT×1, c4 =
[01×(2MT+2) 1 0]T , d4 = 0; Q5 = 01×(2MT+4), b5 = 0, c5 = [01×(2MT ) 0 − 1 − 1 1]T , d5 = 0.

The problem (4.46) represents a convex SOCP problem which can be straightforwardly and
efficiently solved using interior point algorithms [116], [117].
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Note that (4.46) can be solved for each value of k (k = 1, . . . , 2K) independently. Also,
in contrast to our first robust receiver (4.32), the receiver (4.46) is not restricted by constant
modulus symbol constellations.

It is also worth noting that the proposed receivers (4.32) and (4.46) do not need any knowl-
edge of the channel matrices of interfering users.

The main computational cost of our first receiver (4.32) is determined by the matrix inversion
and eigendecomposition operations in (4.32) and (4.34), respectively. Therefore, the complexity
of this receiver is O(M3T 3). The complexity of our second receiver (4.46) is mainly determined
by the complexity of the corresponding interior point algorithm used to solve the SOCP problem
(4.46) and is equal to O(M3T 3) per iteration [116]. Typically, less than ten to fifteen iterations
are required to converge (a commonly accepted fact in the optimization community [104] which
is also gained by our extensive simulations.)

Summarizing, our second receiver may have slightly higher computational complexity than
the first one and also requires a specific built-in convex optimization software. This moder-
ate increase in the implementational complexity of (4.46) is compensated by its more general
application to non-constant modulus signal constellations and, as shown in Section 4.5, by
remarkable performance improvements over (4.32).

4.4 Robust Linear Receivers Based on Stochastic Pro-

gramming

Worst-case designs may be overly conservative because the probability of occurrence of the
worst-case mismatch may be very low. In this section, we propose a less conservative approach to
robust linear MIMO receiver design based on stochastic programming [119], [120]. It guarantees
the robustness against CSI errors with a certain selected probability. Our approach is based
on a stochastic model of the CSI mismatch. The justification of this model follows from the
fact that in MIMO communication systems, orthogonal sequences are optimal for training if
nothing is known a priori about the channel. Then, it can be proven that for orthogonal training
sequences and additive white Gaussian noise (AWGN), the CSI errors are Gaussian [122], [123,
eq. (12)]. In order to show explicitly the functional relationship between ek and ∆1, we denote
hereafter ek(∆1), k = 1, · · · , 2K as the mismatch vectors of the space-time signature.

Let us obtain the receiver coefficient vector wk for the kth entry of s1 as the solution of the
following probability-constrained optimization problem

min
wk,δ

wT
k R̂wk + ‖δ‖2 (4.47)

subject to Pr{wT
k (ak(Ĥ1) + ek(∆1)) ≥ 1} ≥ ζ, (4.48)

Pr{σ1|wT
k (al(Ĥ1) + el(∆1))| ≤ δl} ≥ ζ, (4.49)

l = 1, . . . , 2K, l 6= k

where δ = [δ1, . . . , δk−1, δk+1, · · · , δ2K ]T is the (2K − 1) × 1 vector whose values limit the
contribution of self-interference, σ1 is the standard deviation of the waveform of the desired
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user, ζ is a certain probability value which should be selected according to the quality of
service (QoS) requirements, and Pr{·} denotes the probability operator whose form is assumed
to be known. It is important to note that the probability bound ζ in the problem (4.47)-(4.49)
can be selected from the interval (0, 1) and it determines the amount of channel mismatch that
is allowed at the receiver.

In the formulation (4.47)-(4.49), the receiver output power is minimized, while the distor-
tionless response for the kth entry of s1 is kept with a certain probability. The term ‖δ‖2 in
the objective function (4.47), together with the constraints in (4.49) guarantee that the self-
interference is suppressed with a certain selected probability. The motivation for this is that in
MIMO communications, the guaranteed self-interference suppression is very important for the
symbol-by-symbol detector (see the discussion in Sections 4.2 and 4.3). Problem (4.47)-(4.49) is
called in the optimization literature the chance-constrained or probability-constrained stochastic
programming problem [119], [120]. The constraints (4.48) and (4.49) can be also interpreted as
non-outage probability constraints.

Note that in the objective function (4.47), R̂ is proportional to the power of MAI and self-
interference. Therefore, to achieve a good performance in the whole SNR range, ‖δ‖2 should
also be proportional to the self-interference power (power of the user-of-interest). This is taken
into account by the term σ1 in the constraints in (4.49), because in order to satisfy the lth
constraint in (4.49), δl is proportional to σ1 for a given ζ .

Theorem 4.1. If the elements of ∆1 are uncorrelated and each element has circular complex
Gaussian distribution: [∆1]n,m∼ CN (0, σ2

h), then the constraints in (4.49) are convex if ζ ∈
[0.5, 1).

Proof: See Section 4.C. �

Theorem 4.2. If the elements of ∆1 are uncorrelated and each element has circular complex
Gaussian distribution: [∆1]n,m ∼ CN (0, σ2

h), then the optimization problem (4.47)-(4.49) is
convex if ζ ∈ (0.5, 1).

Proof: We first observe that the objective function (4.47) is a summation of two convex
quadratic functions. Thus, it is convex.

Now let us prove that the constraint (4.48) is also convex under the assumptions of the
theorem. First, from Section 4.A, we find that ek(∆1) is a linear combination of the real and
imaginary parts of the elements of the channel mismatch matrix ∆1. If the elements of ∆1 are
uncorrelated and have circular complex Gaussian distribution

[∆1]n,m∼CN (0, σ2
h), n = 1, . . .N, m = 1, . . . ,M

then, we find that ek(∆1) has multivariate real Gaussian distribution [124]. Its mean vector
and covariance matrix can be calculated, respectively, as

E{ek(∆1)} = ΨkE{∆1} = 02MT×1

E{ek(∆1)e
T
k (∆1)} = ΨkE{∆1 ∆1

T}ΨT
k =

σ2
h

2
ΨkΨ

T
k =

σ2
h

2

(
I2M ⊗ F kF

T
k

)
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where

F k =

{
Ck, k = 1, . . . , K

Im{Dk−K}, k = K + 1, . . . , 2K.

Since only ek(∆1) is a random variable in the product wT
k (ak(Ĥ1) + ek(∆1)), and both

wk and ak(Ĥ1) are deterministic values, the random variable wT
k (ak(Ĥ1) + ek(∆1)) has real

Gaussian distribution. Its mean and covariance can be computed, respectively, as

E{wT
k (ak(Ĥ1) + ek(∆1))} = wT

kE{ak(Ĥ1) + ek(∆1)}
= wT

k ak(Ĥ1) (4.50)

E{wT
k ek(∆1)e

T
k (∆1)wk} = wT

kE{ek(∆1)e
T
k (∆1)}wk

=
σ2
h

2
wT
k

(
I2M ⊗ F kF

T
k

)
wk

=
σ2
h

2

∥∥(I2M ⊗ F T
k )wk

∥∥2
. (4.51)

Using the standard error function for Gaussian distribution

erf(x) =
2√
π

∫ x

0

e−t
2

dt (4.52)

the left hand side of the constraint (4.48) can be written as

Pr{wT
k (ak(Ĥ1) + ek(∆1)) ≥ 1} =

1

2
− 1

2
erf

(
1−wT

kak(Ĥ1)

σh‖(I2M ⊗ F T
k )wk‖

)
. (4.53)

Substituting (4.53) into (4.48), we obtain the following constraint

1

2
− 1

2
erf

(
1−wT

kak(Ĥ1)

σh‖(I2M ⊗ F T
k )wk‖

)
≥ ζ

which can be equivalently written as

erf

(
wT
kak(Ĥ1)− 1

σh‖(I2M ⊗ F T
k )wk‖

)
≥ 2ζ − 1. (4.54)

If ζ > 0.5, we have 2ζ − 1 > 0. In this case, (4.54) can be written as

σh‖(I2M ⊗ F T
k )wk‖ ≤

wT
kak(Ĥ1)− 1

erf−1(2ζ − 1)
(4.55)

where erf−1(·) denotes the inverse error function. The constraint (4.55) is a SOC constraint
(see (4.41)), and thus it is convex.

Summarizing, both the objective function and the constraints are convex if ζ ∈ (0.5, 1).
Therefore, the problem (4.47)-(4.49) is convex. �
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Although the problem (4.47)-(4.49) is convex, it is nonlinear and does not have closed-form
solution. However, the problem can be solved numerically by the NLP approach [121] in the
following way.

Let us introduce a new vector

̟ , [(Lwk)
T , δT ]T .

where LTL is the Cholesky factorization of R̂ (4.42). Apparently, minimizing ‖̟‖ is equivalent
to minimizing the objective function of (4.47). Hence, introducing a new non-negative scalar
variable χ and a new constraint

‖̟‖ ≤ χ (4.56)

we can write a new objective function as follows

min
wk,δ,χ

χ. (4.57)

The deterministic equivalent form of the constraint (4.48) is given by (4.55). The probability
constraints (4.49) also can be converted into their deterministic equivalents. Using (4.50)-(4.52),
the left hand side of (4.49) can be written as

Pr{σ1|wT
k (al(Ĥ1) + el(∆1))| ≤ δl}

= Pr{σ1w
T
k (al(Ĥ1) + el(∆1)) ≤ δl} − Pr{σ1w

T
k (al(Ĥ1) + el(∆1)) ≤ −δl}

=
1

2
erf

(
δl − σ1w

T
kal(Ĥ1)

σhσ1‖(I2M ⊗ F T
l )wk‖

)
− 1

2
erf

(
−δl − σ1w

T
kal(Ĥ1)

σhσ1‖(I2M ⊗ F T
l )wk‖

)
(4.58)

l = 1, . . . , 2K, l 6= k.

Combining (4.55)-(4.58) together, we can rewrite the stochastic programming problem
(4.47)-(4.49) as the following deterministic NLP problem

min
wk,δ,χ

χ

s.t. ‖̟‖ ≤ χ

σh‖(I2M ⊗ F T
k )wk‖ ≤

wT
kak(Ĥ1)− 1

erf−1(2ζ − 1)

erf

(
δl − σ1w

T
kal(Ĥ1)

σhσ1‖(I2M ⊗ F T
l )wk‖

)
− erf

(
−δl − σ1w

T
kal(Ĥ1)

σhσ1‖(I2M ⊗ F T
l )wk‖

)
≥ 2ζ, (4.59)

l = 1, . . . , 2K, l 6= k.

The problem (4.59) is equivalent to the problem (4.47)-(4.49). However, the complexity
order of solving the former problem is O(M4.5T 4.5K4.5) [162], which is quite high for practi-
cal wireless communication systems. Below we show that the problem (4.47)-(4.49) can be
approximated to a SOCP problem.

The deterministic equivalent form of the constraint (4.48) is given by (4.55), which is a SOC
constraint. However, the constraints (4.49) can not be directly converted to SOC constraints. To
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enable such conversion, we approximate the constraints (4.49) using the Chebyshev inequality
that states that for any random variable ξ and any positive real number α,

Pr{|ξ| ≥ α} ≤ E{ξ2}
α2

. (4.60)

Since the constraints (4.49) share the same structure, we further discuss only the lth constraint.
Under the assumption that el(∆1) has Gaussian distribution and using (4.50) and (4.51), we
have

E
{∣∣wT

k (al(Ĥ1) + el(∆1))
∣∣2
}

= wT
k

(
al(Ĥ1)a

T
l (Ĥ1) +

σ2
h

2
(I2M ⊗ F lF

T
l )

)
wk. (4.61)

Applying (4.60) and (4.61), the left hand side of the lth constraint in (4.49) can be lower
bounded by

Pr{σ1|wT
k (al(Ĥ1) + el(∆1))| ≤ δl}

= 1− Pr{σ1|wT
k (al(Ĥ1) + el(∆1))| ≥ δl}

≥ 1− σ2
1

δ2
l

wT
k

(
al(Ĥ1)a

T
l (Ĥ1)+

σ2
h

2
(I2M ⊗ F lF

T
l )
)
wk . (4.62)

Using (4.62), we obtain the following approximated constraint

σ2
1

1− ζw
T
k

(
al(Ĥ1)a

T
l (Ĥ1) +

σ2
h

2
(I2M ⊗ F lF

T
l )
)
wk ≤ δ2

l . (4.63)

Furthermore, the approximated constraints in (4.49) can be summed up and written as

wk
TΣkwk ≤ ‖δ‖2 (4.64)

where

Σk ,
σ2

1

1− ζ
2K∑

l=1,l 6=k

[
al(Ĥ1)a

T
l (Ĥ1) +

σ2
h

2

(
I2M ⊗ F lF

T
l

)]
.

From (4.64), it can be seen that the modified constraints of (4.49) can be eliminated by
including them in the objective function of (4.47). Using this trick, the objective function of
(4.47) can be rewritten as

wT
k (R̂ + Σk)wk.

Let ZT
kZk be the Cholesky factorization of R̂ + Σk and let us introduce a new variable τ

such that ‖Zkwk‖ ≤ τ . Then the optimization problem (4.47)-(4.49) can be modified to the
following SOCP problem

min
wk,τ

τ

subject to ‖Zkwk‖ ≤ τ

σh‖(I2M ⊗ F T
k )wk‖ ≤

wT
kak(Ĥ1)− 1

erf−1(2ζ − 1)
. (4.65)

The modified problem (4.65) can be easily solved using standard and highly efficient interior-
point methods, for example, using the SeDuMi package [117]. Using the primal-dual potential
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reduction method, the problem (4.65) can be solved with the complexity order of O(M3T 3) [85].
Moreover, the amount of computation per iteration in interior-point methods is O(n2

∑
i ni),

where n is the dimension of the optimization variables, and ni is the dimension of the ith SOC
constraint [116]. Comparing the problem (4.46) with the problem (4.65), the latter one requires
less computation, since it has two SOC constraints less than the former one.

4.5 Numerical Examples

In this section we study the performance of the proposed robust receivers through numerical
simulations.

Throughout the simulations, we assume a single receiver of M = 8 antennas. The number
of transmitters is varied in different simulation examples. The interfering transmitter uses the
same OSTBC as the transmitter of interest. The interference-to-noise ratio (INR) is equal to
20 dB and the quadriphase shift keying (QPSK) modulation scheme is used. All plots are
averaged over 1000 independent simulation runs. In each simulation run, the elements of the
true channel matricesHp (for p = 1, · · · , P ) are independently drawn from a complex Gaussian
random generator with zero mean and unit variance.

The proposed robust receivers (4.32), (4.46), and (4.65) are compared with the MF receiver
(4.14) and the DLMV receiver (4.22). The numbers in the figure legends refer to the equation
number of the corresponding receiver in the text. Note that the imperfect CSI case is assumed,
i.e., all these receivers use the presumed (erroneous) channel matrix Ĥ1 rather than the actual
channel matrix H1. In each simulation run, each element of the presumed channel matrix Ĥ1

is generated by drawing a complex Gaussian random variable with zero mean and the variance
σ2
h = 0.1 and adding this variable to a corresponding element of the matrix H1. Moreover,

the performance of the so-called informed MV receiver is tested and included in all plots. The
latter receiver corresponds to the ideal case when (4.19) is used with the exactly known H1.
Obviously, this receiver does not correspond to any practical situation and is included in our
simulations for the sake of comparison only (as a benchmark).

The SeDuMi convex optimization MATLAB toolbox [117] has been used to solve the SOCP
problems (4.46) and (4.65). SeDuMi toolbox applies interior-point method which is computa-
tionally efficient. We have observed that the interior-point method converges typically in less
than 15 iterations.

The DL factor of ̺ = 10σ2
v is used in the DLMV receiver where σ2

v is the noise variance.
Note that this is a popular ad hoc choice of ̺ [103], [104].

In the first example, P = 2 transmitters with N = 2 antennas per transmitter are assumed
and the full-rate Alamouti’s OSTBC (T = 2, K = 2) is used [96]. In this example, the
parameter ε = 6σh is used in the worst-case robust receivers (4.32) and (4.46), and ζ = 0.95 is
taken for the probability-based robust receiver (4.65). It should be noted that this value of ε
is nearly optimal for this example. In Figure 4.2, SERs of all the receivers tested are displayed
versus the SNR for J = 35. Figure 4.3 shows the SERs of the same receivers versus the number
of data blocks for SNR = 20 dB.

In the second example, we assume P = 2 transmitters. Each transmitter hasN = 3 antennas
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Figure 4.2: SER versus SNR; first example.
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Figure 4.3: SER versus number of data blocks; first example.
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Figure 4.4: SER versus SNR; second example.
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and the 3/4-rate (K = 3; T = 4) orthogonal design STBC from [97] is used. The parameter
ε = 7σh is taken for the worst-case receivers (which is nearly optimal for this example), and
ζ = 0.95 is used for the probability-based receiver. Figure 4.4 shows the receiver SERs versus
the SNR for J = 70, while Figure 4.5 displays the receiver SERs versus the number of data
blocks for SNR = 20 dB.

In the third example, we assume P = 4 transmitters. Each transmitter has N = 3 antennas
and the half-rate (K = 4; T = 8) orthogonal design STBC from [97] is used. The parameters
ε = 6σh and ζ = 0.99 are taken in this example2. Figure 4.6 displays the SERs versus SNR
of all the receivers tested for J = 130, while Figure 4.7 shows the receiver SERs versus the
number of data blocks for SNR = 20 dB.
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Figure 4.6: SER versus SNR; third example.

From Figures 4.2-4.7, it follows that in all examples, the proposed robust receivers (4.32),
(4.46), and (4.65) provide better performance tradeoffs over the whole tested SNR range as
compared with the other receivers (including the informed MV receiver). As expected, the
receivers (4.46) and (4.65) substantially outperform (4.32) because the former techniques take
advantage of an additional nulling of self-interference, see [103] and the discussion in Section 4.2.
Furthermore, as it can be expected from [103], these performance improvements of (4.46) and
(4.65) relative to (4.32) are especially pronounced at high SNRs. Comparing the worst-case
receivers (4.32) and (4.46) with the probability-based receiver (4.65), we find that in most
cases, the latter one shows better performance. The reason is that the probability-based robust
designs are more flexible and less conservative than the worst-case approaches.

2We observed during simulations that the value of ζ should be set larger, with the increasing number of
interferers. It can be explained that for the scenario with large number of users, the guaranteed distortionless
response to the symbol of interest becomes very important.
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Figure 4.7: SER versus number of data blocks; third example.

It can be observed from Figures 4.2, 4.4, and 4.6 that very substantial performance im-
provements over the DLMV receiver at high SNR values are achieved in our robust receivers
at the price of slightly worse performance at low SNR values (where both the DLMV and our
techniques perform quite well). Such performance degradation of the DLMV receiver at high
SNR values can be explained by the fact that this receiver uses the fixed DL factor. The poor
performance of the informed MV receiver is due to its insufficient robustness against finite
sample effects.

4.6 Chapter Summary

In this chapter, two classes of new linear receiver techniques for joint space-time decoding and
interference rejection in multiple-access MIMO systems have been developed. These techniques
use orthogonal space-time block codes and have an improved robustness against CSI errors. The
first class of techniques uses the deterministic CSI mismatch model and the worst-case perfor-
mance optimization approach is applied. The second class of receivers applies the stochastic
CSI model and provides robustness against CSI errors with a certain selected probability. Both
classes of the proposed receivers have been shown to provide a substantially improved robust-
ness against CSI mismatches as compared with the existing non-robust multiple-access MIMO
receiver algorithms. Comparing the two classes of the proposed receivers, the latter one is more
flexible and less conservative.
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4.A Proof of Lemma 4.1

Let

Gk ,

{
Ck, k = 1, . . . , K

Dk−K, k = K + 1, . . . , 2K .
(4.66)

Using the definition of the underline operator (4.4) along with well-known properties of the
Kronecker product and vec(·) operator [118], we have

ak(H1)=

[
vec(Re{GkH1})
vec(Im{GkH1})

]

=

[
Re{(IM ⊗Gk)vec(H1)}
Im{(IM ⊗Gk)vec(H1)}

]

=

[
Re{IM ⊗Gk} −Im{IM ⊗Gk}
Im{IM ⊗Gk} Re{IM ⊗Gk}

][
vec(Re{H1})
vec(Im{H1})

]

=Ψkh1 (4.67)

where

Ψk ,

[
Re{IM ⊗Gk} −Im{IM ⊗Gk}
Im{IM ⊗Gk} Re{IM ⊗Gk}

]
(4.68)

is a 2MT × 2MN real-valued matrix, and h1 , H1. Using the linearity of the underline

operator (4.4), the vector ek,1 , ak(H1)− ak(Ĥ1) can be written as

ek,1 = GkH1 −GkĤ1 = Gk∆1 = Ψkd1 (4.69)

where

d1 , ∆1 . (4.70)

Since for any OSTBC GH
k Gk = IN , ∀k = 1, . . . , 2K [97], one can easily prove from (4.68)

that for any OSTBC

ΨT
kΨk = I2MN (4.71)

Using (4.69) and (4.71), the Euclidean norm of ek,1 can be expressed as

‖ek,1‖ =

√
dT1 ΨT

kΨkd1 = ‖d1‖ = ‖∆1‖ . (4.72)

Lemma 4.1 is proven.
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4.B Proof of Lemma 4.2

Using the definition of the Frobenius norm along with Lemma 4.1 (i.e., using the constraints
‖ek‖2 ≤ ε; k = 1, . . . , 2K), we obtain

‖Ek‖ =

√
tr{ET

kEk}

=

√√√√
2K∑

i=1;i6=k
eTi ei

≤ ε
√

2K − 1 (4.73)

where the inequality in the third row of (4.73) becomes equality if and only if ‖ek‖2 = ε;
k = 1, . . . , 2K. Hence, from (4.73) we conclude that

η = max ‖Ek‖ = ε
√

2K − 1 (4.74)

and Lemma 4.2 is proven.

4.C Proof of Theorem 4.1

Let us first introduce the following lemma.

Lemma 4.3. Let vectors v1, . . . ,vn have a joint real Gaussian distribution with a covariance
matrix B, so that

E{(vi − E{vi})(vl − E{vl})T} = rilB, ∀i, l, i, l = 1, . . . , n (4.75)

where ril are some constants. Then the set

K(ζ) =
{
x
∣∣Pr{vT1 x ≥ κ1 ∧ . . . ∧ vTnx ≥ κn} ≥ ζ

}
(4.76)

is convex for ζ ≥ 0.5. Here ∧ denotes the set intersection operation, 0 < ζ ≤ 1, and κi are
arbitrary real constants.

Proof: See [120, p. 312]. �

The constraints (4.49) share the same structure. Thus, it is enough to show that at least
one of them is convex. Let us rewrite the lth constraint in (4.49) in the following equivalent
form

Pr
{

(al(Ĥ1) + el(∆1))
Twk + δl ≥ 0 ∧ −(al(Ĥ1) + el(∆1))

Twk + δl ≥ 0
}
≥ ζ. (4.77)

The constraint (4.77) is called joint chance constraint in the stochastic programming literature
[119], [120].
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To be consistent with the notations used in Lemma 4.3, let us denote

v1 , [(al(Ĥ1) + el(∆1))
T , 1]T

v2 , [−(al(Ĥ1) + el(∆1))
T , 1]T

x, [wT
k , δl]

T

κ1 , 0 κ2 , 0 . (4.78)

Then, (4.77) can be equivalently written as

Pr{vT1 x ≥ κ1 ∧ vT2 x ≥ κ2} ≥ ζ. (4.79)

As the vectors v1 and v2 have joint Gaussian distribution, such that

E{(v1 − E{v1})(v1 − E{v1})T} = E{(v2 − E{v2})(v2 − E{v2})T} = B (4.80)

where

B =

[
E{el(∆1)e

T
l (∆1)} 02MT×1

01×2MT 0

]
=

[
σ2

h

2
(I2M ⊗ F lF

T
l ) 02MT×1

01×2MT 0

]
(4.81)

and
E{(v1 − E{v1})(v2 − E{v2})T} = −B. (4.82)

Lemma 4.3 can be applied. Thus, the convexity of the constraints (4.49) follows for ζ ∈ [0.5, 1).
This completes the proof.



Chapter 5

Linear Block Precoding for OFDM

Systems

In this chapter, a new linear precoding technique based on the mean cutoff rate maximization
criterion is proposed. In Section 5.1, we give a shot introduction to OFDM communications
and briefly review the existing precoding techniques. Section 5.2 is devoted to the design of
cutoff rate maximization-based linear block precoder. Section 5.3 addresses the issue of joint
channel-coded and linearly-precoded OFDM communication systems. Simulation results are
presented in Section 5.4. Section 5.5 briefly summarizes the chapter.

5.1 OFDM Systems with Linear Block Precoding

OFDM is a promising multiuser communication scheme which enables to mitigate MAI by
means of providing each user with a non-intersecting fraction of subcarriers [18]. Due to the
IFFT at the transmitter and the FFT at the receiver, the frequency selective fading channel is
converted by OFDM into parallel flat fading channels [19]. This greatly facilitates the equalizer
design at the receiver.

However, a well known disadvantage of the OFDM scheme is that, at each subcarrier, the
channel may be subject to a deep fading. This makes a reliable detection of the information-
bearing symbols at this particular subcarrier very difficult and, as a result, the overall perfor-
mance of the system may degrade substantially. Thus, the transceiver optimization is required.

A general transceiver optimization framework is discussed in [125]. In application to OFDM
systems, a popular recent approach to improve the performance of OFDM systems in fading
environments is to use linear block precoding at the transmitter [126]. For example, the min-
imum mean-square error (MMSE) and the minimum bit error rate (MBER) precoders for ZF
equalization have been proposed in [126] and [127], respectively, and the MBER precoder for
MMSE equalization has been studied in [128]. Another efficient precoding technique based on

81
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Figure 5.1: System block diagram of conventional OFDM communication systems.

the channel capacity maximization has been proposed in [129].

Unfortunately, the application of precoders [126]-[129] may be limited by the fact that they
require the full channel knowledge at the transmitter. To avoid this drawback, another linear
precoder has been designed in [130] based on maximization of the diversity and coding gains.
In contrast to the precoders of [126]-[129], the technique of [130] requires only the knowledge
of the order of the multipath channel at the transmitter.

Another MBER based technique that does not require any channel information has been
proposed in [131]. However, the class of MBER-optimal channel independent precoders devel-
oped in [131] is limited by the case when the MMSE equalization and QPSK modulation are
used. Moreover, the performance of MBER precoder with MMSE equalization can be signif-
icantly improved by combining it with a water-filling procedure [128]. However, in the latter
case the full channel knowledge at the transmitter is required.

In this chapter, a new linear precoder is proposed that maximizes the channel mean cutoff
rate and requires the knowledge of the average relative channel multipath powers and delays at
the transmitter. Our simulations show that the proposed precoder substantially outperforms
the approach of [130] and several other linear precoding techniques in terms of BER.

5.2 Proposed Linear Block Precoder

For the sake of simplicity and following [126]-[129], let us consider the single-user block trans-
mission system with Nc subcarriers. The extension to the multiuser case can be done straight-
forwardly by allocating a different group of subcarriers to each user [130]. The frequency
selective wireless channel between the transmitter and the user is characterized by the path
gains hl (l = 1, · · · , LP ) and the delays τl (l = 1, · · · , LP ), where LP is the total number of
paths. We assume that the coefficients hl (l = 1, · · · , LP ) are independent (but not necessarily
identically distributed) zero-mean complex Gaussian random variables with the variances σ2

l

(l = 1, . . . , LP ).

The block diagram of a conventional OFDM communication system is shown in Figure 5.1.
It works in the following way. The tth block of transmitted symbols x(t) = [x(tNc), · · · , x(tNc+
Nc−1)]T is first serial-to-parallel converted. Then the converted signal is IFFT-modulated and
the cyclic prefix (CP) is inserted to form one OFDM symbol. It is assumed that the length
of the CP is longer than the maximum path delay. Finally the symbol is pulse-shaped and
transmitted through the channel. The channel is assumed to be constant during the OFDM
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symbol transmission time. Hereafter, for notational simplicity the block index dependence of
x is omitted.

After removing the CP, the received Nc × 1 signal vector y at the receiver can be written
as [19]

y = HFH
t x+ n (5.1)

where F t is the Nc ×Nc normalized FFT matrix with its (i, l)th entry given by

[F t]i,l =
1√
Nc

exp

(
−j2π(i− 1)(l − 1)

Nc

)

H is the Nc × Nc circulant channel matrix between the transmitter and the receiver with its
(k, l)th entry given by h(k−l+1)modNc

, and n is the Nc× 1 vector of the receiver AWGN with the
variance of σ2

vINc
. After the FFT operation and parallel-to-serial conversion, the Nc×1 output

symbol vector r can be written as
r = F ty. (5.2)

Substituting (5.1) into (5.2) and using the fact that F tHF
H
t = Dc [19], where

Dc = diag{d1, d2, · · · , dNc
}

is the diagonal matrix of the subcarrier channel gains, the received symbol block can be written
as [19]

r = Dcx+ v (5.3)

where v = F tn with E{vvH} = σ2
vINc

. The channel gain dn (n = 1, · · · , Nc) of the nth
subcarrier is given by [132]1

dn =
1√
Nc

LP∑

l=1

hl exp

(
−j2πnτl
NcTs

)
(5.4)

where Ts is the sampling interval.

If linear block precoding is used at the transmitter, then x =
√
EsTs, where Es is the

transmitted symbol power, s = [s1, . . . , sW ]T is the W × 1 vector of the information-bearing
symbols, and T is the Nc×W precoding matrix [126]. Below, we assume that W = Nc because
in this case, the data rate is not sacrificed [19]. Then, equation (5.3) can be written as

r =
√
EsDcTs+ v. (5.5)

The channel cutoff rate R0 is a lower bound on the Shannon channel capacity, beyond which
the sequential decoding becomes impractical [133], [134]. It also specifies an upper bound on
the error rate of the optimal ML decoder and has been frequently used as a practical coding
limit because it can be calculated in a simpler way than the channel capacity [134]. Therefore,
the cutoff rate appears to be a proper criterion for the design of linear block precoders. Note

1Note that the frequency domain channel response is often expressed through the FFT, but in this case the
true multipath channel taps need to be converted to equivalent taps which have delays that are integer multiples
of the sampling period. Therefore, following [132] we use the discrete Fourier transform (DFT) instead of FFT
to calculate the channel impulse response in (5.4).
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that it has been previously used as a performance metric for OFDM systems [135], [136], and
as a design criterion for transmitter optimization in MIMO channels [137].

We assume that a discrete constellation is used at the transmitter, the full channel knowledge
is available at the receiver, and the ML technique is used to detect the symbols s from the
received data r. The conditional PDF of the received data can be written as

f(r|s(i),T ,Dc) =
1

(πσ2
v)
Nc

exp

(
−‖r −

√
EsDcTs

(i)‖2
σ2
v

)
(5.6)

where s(i) is the ith member of the transmit vector constellation. To simplify the notation
further, let us denote f(r|s(i),T ,Dc) as f(i). The mean cutoff rate can be calculated as [133,
p. 361]

R0 = −log2EDc





∫

r


 1

MNc
c

MNc
c∑

i=1

√
f(i)




2

dr





= −log2




1

MNc
c

+
1

M2Nc
c

MNc
c∑

i=1

MNc
c∑

l=1
l6=i

EDc

{∫

r

√
f(i)f(l) dr

}

 (5.7)

where Mc is the constellation size. Substituting (5.6) into (5.7) we obtain the following expres-
sion for the mean cutoff rate

R0 = − log2




1

MNc
c

+
1

M2Nc
c

MNc
c∑

i=1

MNc
c∑

l=1
l6=i

EDc

{
exp

(
−Es‖DcT (s(i) − s(l))‖2

4σ2
v

)}

 . (5.8)

Using the results of [139], the expectation of exponential quadratic form in (5.8) can be written
as

EDc

{
exp

(
−Es‖DcT (s(i) − s(l))‖2

4σ2
v

)}
=

rank{Ei,l}∏

k=1

(
1 +

Es
4σ2

v

λk

)−1

(5.9)

where

Ei,l , EDc
{DcTei,le

H
i,lT

HDH
c }, ei,l , s(i) − s(l) (5.10)

λk is the kth non-zero eigenvalue of the matrix Ei,l. Substituting (5.9) in (5.8), after straight-
forward manipulations we obtain

R0 =−log2




1

MNc
c

+
1

M2Nc
c

MNc
c∑

i=1

MNc
c∑

l=1
l6=i

rank{Ei,l}∏

k=1

(
1 +

Es
4σ2

v

λk

)−1


 . (5.11)

It is worth noting that the expression (5.11) for the mean cutoff rate is directly related to the
expression for the Chernoff bound on the pairwise error probability (PEP). In particular, the
second term under the logarithm in (5.11) can be seen as an average of the Chernoff bounds on
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PEP for all distinct pairs of symbols. In other words, the maximization of mean cutoff rate is
equivalent to the minimization of averaged PEP. This observation provides further motivation
to choose the mean cutoff rate as a criterion for precoder design.

It is well known that the precoder based on PEP minimization also provides maximum
diversity gain [138]. Therefore, the maximization of the mean cutoff rate will achieve the
maximum diversity gain under the following condition [138]

∣∣[T ]n(s
(i) − s(l))

∣∣ 6= 0, n = 1, . . . , Nc, i, l = 1, . . . ,MNc

c

where [T ]n is the nth row of T .

To compute the matrix Ei,l explicitly, let us introduce the vector

d , [[Dc]1,1, · · · , [Dc]Nc,Nc
]T .

Then, Ei,l can be rewritten as

Ei,l = Rd ◦ (Tei,le
H
i,lT

H) (5.12)

where ◦ stands for the Schur-Hadamard matrix product and Rd , Ed{ddH}. The (n, k)th
entry of Rd is given by

[Rd]n,k =
1

Nc

LP∑

l=1

σ2
l exp

(
−j2π(n− k)τl

NcTs

)
. (5.13)

Our task now is to design the precoding matrix T which maximizes R0 in (5.11) subject
to the power constraint ‖T ‖ =

√
Nc. This problem does not have any analytical solution, but

it can be solved by using either algebraic number-theoretic techniques or by computer search
over compact parameterizations of unitary matrices [130], [138]. Here, we obtain T through
computer search over the unitary2 parameterization expressed via Givens rotation matrices.
For the details of this technique, see, for example, [138]. Provided that each user occupies a
moderate number of subcarriers (not more than 3 subcarriers per user), and since the precoding
matrices can be designed for each user independently, we can conclude that the total number
of real optimization parameters for the particular user is Nc(Nc − 1) ≤ 6. If the number of
optimization parameters is small, full search is computationally feasible, and, thus, the design
of our precoder becomes practically feasible as well.

It can be seen from (5.11)-(5.13) that only the knowledge of the average relative channel
powers and delays is required at the transmitter for the design of our linear precoder. Although
the channel state variations can be very fast due to small-scale fading, the power and multipath
delay variations are typically much slower [18]. Therefore, a low-rate feedback can be used to
convey this information to the transmitter.

2Note that unitary precoders have the advantage that they do not alter the Euclidian distance between the
entries of any block of information-bearing symbols [130].
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Figure 5.2: System block diagram of joint channel-coded and linearly-precoded OFDM com-
munication systems.

5.3 Joint Channel-Coded and Linearly-Precoded OFDM

Systems

To mitigate fading and noise effects, practical wireless systems often employ some form of outer
channel coding (CC). In fact, channel coding and linear precoding techniques can be combined
to combat channel fading [143].

The block diagram of a joint channel-coded and linearly-precoded OFDM communication
system is shown in Figure 5.2. It operates in the following way. A sequence of information bits
is first encoded by error-correction CC. The coded bits then pass through a random interleaver
Π1. The output of Π1 are mapped to constellation symbols. After constellation mapping, suc-
cessive blocks of Nc symbols are linearly precoded by the matrix T . The precoded symbols
are interleaved by a second interleaver Π2, which is needed to decorrelate the subcarrier chan-
nel gains. The output of Π2 passes through the OFDM modulator. The resulting output is
transmitted through the channel.

From Figure 5.2 we can observe that the channel encoder, the interleaver Π1, and the linear
precoder together represent a serial concatenated encoder [140]. In such an encoder, the linear
precoder and the channel encoder can be seen as the inner encoder and the outer encoder,
respectively. Therefore, the standard decoding schemes for serial concatenated codes can be
used to decode the joint channel-coded and linearly-precoded symbols.

5.3.1 Hard-Decision Decoding Scheme

The block diagram of the first scheme, which is referred to as the hard-decision decoding scheme
(HDDS), is shown in Figure 5.3. HDDS consists of the ML symbol detector and Viterbi decoder.
In this scheme, the ML symbol detector is used to detect the symbols encoded by the linear
precoder, while the Viterbi decoder is applied to decode the convolutional CCs. Note that such
decoding scheme is suboptimal because hard decision is used at the output of the ML symbol
detector. However, the computational complexity of this decoder is relatively low, provided
that each user occupies only a moderate number of subcarriers.
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Figure 5.4: Block diagram of iterative (turbo) decoder.

5.3.2 Soft-Decision Decoding Scheme

The second decoding scheme we refer to as the soft-decision decoding scheme (SDDS). The
block diagram of SDDS is shown in Figure 5.4. It is based on the iterative (turbo) decoding
technique. The main components of SDDS are two maximum a posteriori (MAP) soft-input
soft-output (SISO) modules. Each SISO module is a four-port device which receives bits of soft
information and outputs the updated soft information calculated by the MAP algorithm [140].
The updated soft information is exchanged between two SISO modules in an iterative way.
Normally the soft information is represented through the LL ratio. Compared with the hard
information, the soft information not only contains the result of a decision, but also reflects the
reliability of this decision [140].

The merit of the iterative (turbo) decoding scheme is that during each iteration, the so-
called extrinsic information (which is the soft information passed from one SISO module to
another) increases the reliability of the decision. Therefore, after a finite number of iterations,
the reliability of the decision will be high enough, and the iteration process will be terminated.
Then, the final decision can be made by passing the value of the likelihood ratio of each bit
through a threshold detector. Detailed discussion about the turbo principle is beyond the scope
of this chapter, and we refer readers to [140] and [143] for more information.

Note that SDDS can greatly improve the performance of the joint channel-coded and
linearly-precoded OFDM system. However, compared with HDDS, SDDS has higher com-
putational complexity, because the computations involved in the MAP algorithm are at least
4 times of that involved in the Viterbi algorithm [143]. Moreover, SDDS requires more mem-
ory as compared with HDDS. Therefore, HDDS and SDDS offer different tradeoffs in terms of
performance, system requirement and hardware/software complexity.
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5.4 Numerical Examples

In this section, we investigate the performance of the proposed precoder in multipath indoor
and outdoor channels. As an example of a Rayleigh fading outdoor channel, we choose the
ETSI “Vehicular A” channel environment which has been defined for the evaluation of UMTS
radio interface proposals [141]. The multipath time delays and the variances of the multipath
gains of the “Vehicular A” channel are shown in Table 5.1. Correspondingly, as an example of

Table 5.1: Characteristics of the ETSI “Vehicular A” channel environment.

Tap Time Delays (Ts) Average Power (dB)

1 0 0
2 1.55 -1
3 3.55 -9
4 5.45 -10
5 8.65 -15
6 12.55 -20

a multipath Rayleigh fading indoor channel we choose the HIPERLAN/2 “Model A” channel,
which represents a typical office environment [142]. The multipath time delays and the variances
of the multipath gains of the HIPERLAN/2 “Model A” channel are shown in Table 5.2. The
Doppler frequencies for these two channels are set to be equal to 100 Hz and 50 Hz, respectively.

Throughout the simulations, a multiuser block transmission system with 64 subcarriers is
assumed. All subcarriers are allocated among the users and interleaved [130] such that the
subcarriers assigned to the same user are as less correlated to each other as possible. Each user
is provided with Nc = 3 subcarriers and the BPSK modulation is used.

In our first example, different precoding techniques are compared with each other when no
CC is used. This enables us to study the net effect of precoding on the performance of OFDM
systems. Six different techniques are compared: the approach where no precoding is used, the
MMSE-ZF precoder of [126], the MBER-ZF precoder of [127], the MBER-MMSE precoder of
[128], the Vandermonde precoder of [130], and the proposed precoder. The precoders of [126]-
[128] are assumed to utilize the full channel knowledge at the transmitter, while our precoder
uses only the average relative channel powers and delays. It is also important to stress that
without any precoding, T = INc

, and the detection of each information-bearing symbol is
decoupled from the detection of any other symbols. Thus, provided that a constant-modulus
constellation is used, the ML and MMSE symbol detectors are equivalent in this case.

Figure 5.5 displays the channel mean cutoff rate of the aforementioned precoding schemes
versus the SNR for the ETSI “Vehicular A” channel environment. It can be seen from this
figure that, as expected, the proposed linear precoder has the highest mean cutoff rate among
all the techniques tested.

Figure 5.6 compares the BER performances of the same techniques with different symbol
detectors for the ETSI “Vehicular A” channel environment. In this figure, the performances
of the proposed, MBER-MMSE, and Vandermonde precoders are displayed both in the cases
when the ML and MMSE symbol detectors are used. Additionally, the BER performances of
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Table 5.2: Characteristics of the HIPERLAN/2 “Model A” channel environment.

Tap Time Delays (Ts) Average Power (dB)

1 0 0
2 0.2 -0.9
3 0.4 -1.7
4 0.6 -2.6
5 0.8 -3.5
6 1 -4.3
7 1.2 -5.2
8 1.4 -6.1
9 1.6 -6.9
10 1.8 -7.8
11 2.2 -4.7
12 2.8 -7.3
13 3.4 -9.9
14 4 -12.5
15 4.8 -13.7
16 5.8 -18.0
17 6.8 -22.4
18 7.8 -26.7

the MMSE-ZF and MBER-ZF precoders are displayed along with the BER of the standard
approach where no precoding is used. All results are averaged over 1000 simulation runs.

Figure 5.7 shows the channel mean cutoff rate of all aforementioned precoders versus SNR
for the HIPERLAN/2 “Model A” channel environment. As in the previous case, in this indoor
channel scenario the proposed linear precoder has the highest R0.

Finally, the BER performances of all tested precoders are compared in Figure 5.8 in the
HIPERLAN/2 “Model A” channel case.

We can observe that our linear precoder substantially outperforms all other techniques tested
in terms of BER for both the ETSI “Vehicular A” and HIPERLAN/2 “Model A” channel envi-
ronments. Interestingly, this conclusion is true when the ML-based as well as non-ML (MMSE)
receivers are used, with the only exception for the MBER-MMSE precoder. In particular, the
performance of the latter precoder is comparable to the performance of our precoder used with
the MMSE receiver. This fact demonstrates that although the mean cutoff rate based precoder
has been proposed for the ML-based symbol detector, it also provides a good performance when
applied with the simpler MMSE symbol detector.

In our second example, we compare the performance of OFDM systems with combined
coding-precoding, with CC only, with precoding only, and without CC and precoding. The
proposed precoder and the Vandermonde precoder are used in this simulation example. The
Vandermonde precoder is chosen for comparison to the proposed precoder as one that shows
the best performance among known precoders tested in the previous example.

First, we study the system performance when HDDS is used at the receiver. For this
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Figure 5.7: Cutoff rate versus SNR. First example with the HIPERLAN/2 “Model A” channel
environment.
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Figure 5.9: BER versus SNR. Second example with the ETSI “Vehicular A” channel environ-
ment; HDDS.
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simulation, the rate 1/2 convolutional code in the HIPERLAN/2 standard [142], [143] with
generator (133, 171) is used. The size of the interleaver Π1 (see Figure 5.2) is 256 OFDM
symbols. Figures 5.9 and 5.10 show the BER performance of different OFDM configurations for
the ETSI “Vehicular A” and the HIPERLAN/2 “Model A” channel environments, respectively.
From these two figures, it can be seen that OFDM system with combined coding-precoding
shows the best performance among the techniques tested. Moreover, the scheme where the cutoff
rate maximization based precoder is used outperforms the scheme based on the Vandermonde
precoder of [130].
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Figure 5.11: BER versus SNR. Second example with the ETSI “Vehicular A” channel environ-
ment; SDDS.

Second, we investigate the system performance when SDDS is applied at the receiver. For
this simulation the rate 1/2 systematic convolutional code with generator (5, 7) is used. Fig-
ure 5.11 shows the system performance for the ETSI “Vehicular A” channel environment. Two
iterations are carried out before the final decision. From Figure 5.11, we observe that SDDS
substantially enhances the overall system performance. However, this performance improve-
ment is at the price of higher decoding complexity and larger memory consumption. We can
also see from Figure 5.11 that the scheme where the cutoff rate maximization based precoder
is used outperforms the scheme based on the Vandermonde precoder of [130].

5.5 Chapter Summary

In this chapter, a new linear precoder for block OFDM transmissions has been proposed. Our
precoder is based on the maximization of the channel mean cutoff rate and requires only the
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knowledge of the average relative channel multipath powers and delays at the transmitter. Sim-
ulation results show substantial performance improvements achieved by the proposed precoding
technique relative to the existing linear block precoders which typically require the full chan-
nel knowledge at the transmitter. The proposed linear precoding technique can be combined
with channel coding technique to further enhance the performance of OFDM communication
systems. It can be readily generalized to the MIMO case.



Chapter 6

Adaptive OFDM with Channel State

Feedback

In this chapter, we study the performance of OFDM-based communication systems whose
transmitter has only one bit of CSI per subcarrier obtained through a low-rate feedback. Sec-
tion 6.1 gives a short introduction to adaptive OFDM communication systems with one-bit-
per-subcarrier channel state feedback and formulates the system model. In Section 6.2, we
consider the perfect feedback channel case and present our analysis of the ASCS, APA, and
AMS schemes applied to OFDM systems with one-bit-per-subcarrier feedback. Section 6.3 is
devoted to the analysis and optimization of the APA and AMS schemes in the case when the
feedback channel suffers from errors or delays. Section 6.4 presents simulation results where
the performances of the ASCS, APA, and AMS schemes are compared under the conditions of
perfect and imperfect feedback channels. Section 6.5 briefly summarizes the chapter.

6.1 System Models and Background

One of the disadvantages of OFDM communication systems is that some subcarriers may suffer
from deep fading. As we have already seen from Chapter 5, error-correction channel coding
and linear precoding techniques can be applied to mitigate fading. Furthermore, if some CSI
is available at the transmitter, adaptive modulation and resource allocation techniques can be
applied to allocate bits and transmitted powers to the subcarriers [20], [144]-[145]. However, in
wireless communications it can be difficult to obtain such CSI. For example, in the downlink
mode of cellular communications, if the time-division duplex (TDD) mode is used, the downlink
transmit CSI can be obtained by estimating the uplink channel and using the uplink-downlink
reciprocity. However, in practical situations fast channel variability and user mobility may
prohibit to use the aforementioned reciprocity property. Moreover, this property does not hold
if the frequency-division duplex (FDD) mode is used. In the latter case, some feedback has to be
exploited to transmit the downlink CSI from the receiver to the transmitter. As the bandwidth

95
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consumed by the feedback channel is proportional to the feedback rate, it is interesting to study
the performance of systems which enable only a low-rate CSI feedback. For example, the use
of one-bit channel state feedback in Alamouti-type systems has been studied in [146], while the
asymptotic lower bound on the minimum feedback rates for multicarrier transmission has been
derived in [147].

In this chapter, the performance of OFDM communication systems with one-bit-per-sub-
carrier CSI feedback is studied. The uncoded transmission case is considered and the raw BER is
used as the criterion to evaluate the system performance. Assuming that the feedback channel is
perfect, three adaptive approaches including ASCS, APA, and AMS are used to exploit the CSI
feedback and compared via simulations. For the latter two techniques, a closed-form expression
for the BER is also derived and, based on it, the parameters of these techniques are optimized.

In practical situations, the feedback channel may be erroneous and may suffer from a feed-
back delay. Therefore, the feedback CSI may be unreliable. Motivated by these facts, the
impact of an imperfect CSI feedback on the performance of the APA and AMS techniques is
also studied, and it is investigated how to exploit the knowledge of the fact that the feedback
is imperfect to optimize the parameters of these techniques.

Let us consider the point-to-point OFDM communication system (5.3), as that described
in Section 5.2, and introduce an Nc ×Nc diagonal matrix P c of the transmitted powers of the
symbols corresponding to different subcarriers. We have

x = P 1/2
c s . (6.1)

Substituting (6.1) into (5.3), we obtain

r = DcP
1/2
c s+ v.

From (5.4), it is obvious that dn is a zero-mean complex Gaussian random variable with
the variance of 1

Nc

∑LP

l=1 σ
2
l . Without any loss of generality, we normalize the variance of the

channel gain at each subcarrier so that 1
Nc

∑LP

l=1 σ
2
l = 1. It can be seen that d1, . . . , dNc

all are
identically distributed. The absolute value of each dn, n = 1, · · · , Nc is Rayleigh-distributed
with the PDF

p(α) = 2α exp(−α2). (6.2)

We assume that the transmitter transmits at the constant data rate of nr bits per second
(bps) and that the transmitter has perfect knowledge of the SNR, while the receiver has perfect
downlink CSI knowledge. The CSI is transmitted back to the transmitter through a low-
rate feedback channel. More specifically, we consider the case when a total number of Nc

bits containing the CSI for all subcarriers (i.e., one bit per subcarrier) is transmitted to the
transmitter in one feedback cycle.

6.2 Perfect One-Bit-Per-Subcarrier CSI Feedback

In this section, we assume that the feedback channel is perfect (i.e., there are no feedback
errors and/or delays) and study several efficient ways to make use of Nc feedback bits (one
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bit per subcarrier) available. Clearly, it is impossible to provide a sufficiently accurate CSI
feedback to the transmitter with only Nc bits. To illustrate this fact, we note that in wireless
communications, the order of the multipath channel can be about LP = 10 [141], and the
typical choice of the number of information-bearing subcarriers for wireless local area networks
(WLANs) is Nc = 52 [18]. Assuming that 16 bits are used to represent a real-valued number,
320 bits are required to feedback the full CSI and, therefore, more than six bits of feedback
per subcarrier (or, equivalently, more than 6Nc bits in total) are required in this case. Thus,
the question how to make use of only one feedback bit per subcarrier in an efficient way is of a
great practical interest.

6.2.1 Adaptive Subcarrier Selection

The idea of the considered subcarrier selection strategy is that subcarriers which are affected
by a deep fading should be excluded and only subcarriers with high channel gains should be
used.1

The feedback in the system with ASCS can be organized in the following way. The receiver
sorts the channel gains in all Nc subcarriers and picks R subcarriers with the highest channel
gains. If some particular subcarrier has been selected, “1” is conveyed back to the transmitter to
indicate that this particular subcarrier should be used; otherwise “0” is transmitted to indicate
that this subcarrier should be dropped. The transmitter equally distributes the available power
among the selected subcarriers. In order to keep constant data rate for different numbers of
selected subcarriers, different types of signal modulation may be used.

To determine the optimal number of subcarriers, a theoretical analysis of the error probabil-
ity is required. However, such an analysis appears to be a very difficult task because it involves
order statistics of correlated random variables (channel gains of different subcarriers). Thus,
we limit our study of the ASCS strategy by simulations presented in Section 6.4.

6.2.2 Adaptive Power Allocation

As an alternative to the ASCS strategy, the one-bit-per-subcarrier CSI feedback can be used to
adaptively allocate transmitted powers according to the channel gain at each subcarrier under
the constraint that the average transmitted power per subcarrier is fixed. In the practical (suf-
ficiently high) SNR range, it is known that more power should be allocated to faded subcarriers
than to non-faded ones to minimize the BER [20]. However, as we will see below, at low SNRs
the situation may be reversed, that is, the BER is minimized when more power is allocated to
non-faded subcarriers with high channel gains.

With one-bit-per-subcarrier CSI feedback, APA can be implemented in the following way.
If the channel gain of some subcarrier is below a certain threshold u, the feedback bit “0” is
conveyed to the transmitter and, in this case, the transmitter allocates the transmitted power
ψ1 to this particular subcarrier. Otherwise, the feedback bit “1” is delivered to the transmitter

1Such a strategy is, however, somewhat different from the techniques used in [148] and [149] where other
approaches to subcarrier selection are addressed.
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and it allocates the transmitted power ψ2 to this subcarrier. We refer to this technique as
conventional APA.

In what follows, we present a theoretical study of the average BER of the conventional APA
strategy and further optimize this power allocation scheme.

The exact SER in the case of M-PSK modulation can be calculated as [150]

Ps(MPSK) =
1

π

∫ Mc−1
Mc

π

0

∫ ∞

0

exp

(
−gPSKα

2Es
sin2φ σ2

v

)
p(α) dαdφ (6.3)

where Es is the transmitted signal power, Mc denotes the constellation size, and gPSK =
sin2(π/Mc). Hereafter, we assume that the Gray mapping is always used to map bits to symbols.
In this case, the BER can be approximated as [5]

Pb ≈
1

log2Mc

Ps. (6.4)

Substituting Mc = 4 into (6.3) and using (6.4), we obtain that in the QPSK modulation case,

Pb(QPSK) =
1

2π

∫ 3
4
π

0

∫ ∞

0

exp

(
− α2Es

2 sin2φ σ2
v

)
p(α) dαdφ.

In this case, the BER of the APA technique with one-bit-per-subcarrier feedback can be calcu-
lated as

PAPA
b (QPSK, u, ψ1, ψ2) =

1

2π

[∫ 3
4
π

0

∫ u

0

exp

(
− α2ψ1Es

2 sin2φ σ2
v

)
p(α) dαdφ

+

∫ 3
4
π

0

∫ ∞

u

exp

(
− α2ψ2Es

2 sin2φ σ2
v

)
p(α) dαdφ

]
(6.5)

where ψ1 denotes the normalized transmitted power when the value of the channel gain lies
in the interval [0, u) and ψ2 denotes the normalized transmitted power when the value of the
channel gain lies in the interval [u,∞).

Let us now obtain the optimal threshold u and optimal power allocations ψ1 and ψ2 which
minimize (6.5) subject to both the average and peak transmit power constraints. Such optimal
values of u, ψ1, and ψ2 can be found as a solution to the following constrained optimization
problem

min
u,ψ1,ψ2

PAPA
b (QPSK, u, ψ1, ψ2)

subject to

∫ u

0

ψ1p(α) dα+

∫ ∞

u

ψ2p(α) dα = 1 (6.6)

0 < ψ1 < ψM , 0 < ψ2 < ψM , u > 0

where ψM denotes the normalized maximum transmitted power which is determined by the
transmission hardware peak power. The first constraint in (6.6) limits the normalized average
transmitted power, while the second and third constraints in (6.6) limit the normalized peak
transmitted powers. Substituting (6.2) into (6.6), we see that the objective function is a highly
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Table 6.1: Optimal parameters of conventional APA.

SNR (dB) 0 5 10 15 20 25

u 0.4724 1.1774 0.7147 0.4724 0.3246 0.2265
ψ1 0.2 1.1 1.6 2.6 4.6 10.5
ψ2 1.2 0.7 0.6 0.6 0.6 0.5

nonlinear function of u, ψ1, and ψ2. To solve the problem (6.6), the method proposed in [151]
can be used. The idea of this method is to quantize the parameters u, ψ1, and ψ2 and obtain
a suboptimal solution using standard dynamic programming techniques.

Table 6.1 shows the optimal parameters for the conventional APA scheme which uses one
bit feedback for each subcarrier. The optimal values of parameters u, ψ1, and ψ2 are obtained
here by solving the optimization problem (6.6).

Let us now consider the effect of correlation of the channel gains between subcarriers. From
(5.13) it follows that the channel gains in adjacent subcarriers are highly correlated. This
fact can be exploited in the following way. The CSI feedback can be provided for every other
subcarrier (i.e., for the subcarriers with the indices 2, 4, 6, . . .) rather than for each subcarrier.
Then the CSI feedback is only required for Nc/2 subcarriers. In this case, we can use 2 bits
of feedback per subcarrier and still have Nc bits of feedback in total. If such an approach is
adopted, then four normalized transmitted power levels ψi (i = 1, 2, 3, 4) and, correspondingly,
three thresholds ul (l = 1, 2, 3) can be used in the APA scheme. Hereafter, we refer to this
technique as modified APA. The BER for this scheme can be computed as

PAPA
b (QPSK,u,ψ) =

1

2π

4∑

i=1

∫ 3
4
π

0

∫

Ωi

exp

(
− α2ψiEs

2 sin2φ σ2
v

)
p(α) dαdφ

where u = [u1, u2, u3]
T is the vector of the thresholds, ψ = [ψ1, ψ2, ψ3, ψ4]

T is the vector of the
normalized transmitted powers, and Ωi = [ui−1, ui) (i = 1, · · · , 4) are the channel gain intervals
with u0 = 0 and u4 = ∞. Then, the optimal values of the vector parameters u and ψ can be
found by solving the following constrained optimization problem:

min
u,ψ

PAPA
b (QPSK,u,ψ)

subject to
4∑

i=1

∫

Ωi

ψip(α) dα = 1 (6.7)

0 < ψi < ψM , i = 1, 2, 3, 4

0 < ul <∞, l = 1, 2, 3.

Table 6.2 shows the optimal parameters u and ψ for the modified APA scheme when the
correlation between adjacent subcarriers is exploited and two bits of feedback for every other
subcarrier is provided. The optimal values of parameters are obtained by solving problem (6.7).

Another important question is whether it is beneficial to reduce the total number of subcar-
riers but to increase the constellation dimension. For example, if the number of subcarriers is
reduced twice (to Nc/2), then the same amount of information at the same rate can be trans-
mitted by using the constellation whose dimension is four times higher than in the case of Nc
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Table 6.2: Optimal parameters of modified APA.

SNR (dB) 0 5 10 15 20 25

u1 0.3654 0.2792 0.5049 0.2265 0.1591 0.1591
u2 0.6269 0.8936 0.7732 0.4031 0.3246 0.3246
u3 1.5174 1.3774 1.1362 0.7147 0.5972 0.7147
ψ1 0.1 0.3 2.0 5.8 16.3 28.3
ψ2 0.7 1.3 1.1 2.2 2.7 1.5
ψ3 1.3 0.9 0.7 1.0 0.9 0.4
ψ4 1.0 0.6 0.4 0.4 0.3 0.1

subcarriers. For example, if the QPSK modulation has been used in the case of Nc subcarriers,
then 16-QAM modulation should be used in the case of Nc/2 subcarriers to maintain the same
data transmission rate.

The BER for M-QAM modulation can be computed as [150]

Pb(MQAM) =
1

log2Mc

[
4

π

(
1− 1√

Mc

)∫ π
2

0

∫ ∞

0

exp

(
−gQAMα

2Es
sin2φ σ2

v

)
p(α) dαdφ

− 4

π

(
1− 1√

Mc

)2∫ π
4

0

∫ ∞

0

exp

(
−gQAMα

2Es
sin2φ σ2

v

)
p(α) dαdφ

]
(6.8)

where gQAM = 3/(2(Mc − 1)). Substituting Mc = 16 into (6.8), the BER of the OFDM scheme
with APA that uses Nc bits of feedback, Nc/2 subcarriers, and 16-QAM modulation can be
written as

PAPA
b (16QAM,u,ψ) =

1

4

[
3

π

4∑

i=1

∫ π
2

0

∫

Ωi

exp

(
−0.1α2ψiEs

sin2φ σ2
v

)
p(α) dαdφ

− 9

4π

4∑

i=1

∫ π
4

0

∫

Ωi

exp

(
−0.1α2ψiEs

sin2φ σ2
v

)
p(α) dαdφ

]
.

Similar to (6.7), the parameters u and ψ of this scheme can be optimized by solving the
following constrained optimization problem

min
u,ψ

PAPA
b (16QAM,u,ψ)

subject to

4∑

i=1

∫

Ωi

ψip(α) dα = 1 (6.9)

0 < ψi < ψM , i = 1, 2, 3, 4

0 < ul <∞, l = 1, 2, 3.

Table 6.3 shows the optimal parameters for the APA scheme with a reduced number of
subcarriers. These parameters are obtained by solving the optimization problem (6.9).
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Table 6.3: Optimal parameters of APA with reduced number of subcarriers.

SNR (dB) 0 5 10 15 20 25

u1 0.4031 0.2265 0.2792 0.4386 0.2265 0.1591
u2 0.8027 0.5364 0.8326 0.6563 0.4386 0.3246
u3 0.9904 1.5174 1.2213 0.9904 0.8027 0.6856
ψ1 0.1 0.1 0.3 2.3 6.8 18.7
ψ2 0.4 0.3 1.4 1.3 2.1 2.5
ψ3 1.2 1.3 0.9 0.8 0.8 0.8
ψ4 1.8 0.9 0.6 0.4 0.3 0.2

6.2.3 Adaptive Modulation Selection

The AMS scheme is based on the following idea. When a certain subcarrier is corrupted by
fading, a constellation with smaller dimension and higher transmitted power can be assigned to
this particular subcarrier, while constellations of larger dimensions and less transmitted power
can be assigned to the subcarriers whose channel gain is high. Similar to the case of ASCS, a
low-rate one-bit-per-subcarrier feedback can be used to divide the subcarriers into two groups
that use different constellations and transmitted powers.

For example, to achieve the data rate of 2 bps per subcarrier, we can use the BPSK modula-
tion at faded subcarriers and the 8-PSK modulation at non-faded subcarriers. In this case, the
data rate can be expressed as (log2 2)

∫ u
0
p(α) dα + (log2 8)

∫∞
u
p(α) dα where the threshold u

of the channel gain is used to divide subcarriers into ”faded” and ”non-faded” groups. Taking
into account that the data rate of 2 bps per subcarrier is chosen, the value of u can be found
by solving the following data rate constraint equation

∫ u

0

p(α) dα+ 3

∫ ∞

u

p(α) dα = 2. (6.10)

Using (6.2), we obtain from (6.10) that u =
√

ln 2. Then, the BER for this particular AMS
scheme can be written as

PAMS
b (BPSK, 8PSK, ψ1, ψ2) =

1

π

[∫ π
2

0

∫ √
ln 2

0

exp

(
−α

2ψ1Es
sin2φ σ2

v

)
p(α) dαdφ

+
1

3

∫ 7π
8

0

∫ ∞

√
ln 2

exp

(
−sin2(π/8)α2ψ2Es

sin2φ σ2
v

)
p(α) dαdφ

]
. (6.11)

The following constrained optimization problem should be solved to obtain the optimum power
allocation in this case

min
ψ1,ψ2

PAMS
b (BPSK, 8PSK, ψ1, ψ2)

subject to ψ1 + ψ2 = 2 (6.12)

0 < ψ1, ψ2 < 2.

Table 6.4 lists the values of optimal power allocation for BPSK and 8-PSK constellations
obtained by solving the optimization problem (6.12).
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Table 6.4: Optimal parameters of AMS.

SNR (dB) 0 5 10 15 20 25

ψ1 1.2925 1.0945 1.0554 1.2629 1.5799 1.8049
ψ2 0.7075 0.9055 0.9446 0.7371 0.4201 0.1951

6.3 Imperfect One-Bit-Per-Subcarrier CSI Feedback

In the previous section, we assumed that the feedback channel is perfect. However, in real-world
applications, this channel may be erroneous and/or may suffer from a feedback delay. In this
section, we extend the results of the previous section to the imperfect feedback channel case by
considering two types of imperfections: feedback errors and delays.

6.3.1 Erroneous Feedback Channel

We model the erroneous feedback channel as a binary symmetric channel with the error prob-
ability ζ . Note that the performance gain obtained from one bit CSI feedback decreases with
increasing ζ , and if ζ is high enough, then such erroneous CSI feedback can sometimes even
worsen the system performance. Therefore, it is important to study the impact of erroneous
feedback to the performance of the APA and AMS techniques.

Adaptive Power Allocation

Here, we consider only the conventional APA scheme, because obtaining optimal parameters for
modified APA and APA with reduced number of subcarriers in the case of imperfect feedback
seems to be mathematically intractable.2 Taking the feedback error into account, the BER can
be calculated as

QAPA
b (QPSK, u, ψ1, ψ2; ζ) = (1− ζ)PAPA

b (QPSK, u, ψ1, ψ2) + ζ PAPA
b (QPSK, u, ψ2, ψ1). (6.13)

Substituting (6.5) into (6.13), we obtain the BER of the APA scheme. In the case of
erroneous CSI feedback, the power constraint should also be modified as follows

ζ

(∫ u

0

ψ1f(α) dα+

∫ ∞

u

ψ2f(α) dα

)
+ (1− ζ)

(∫ u

0

ψ2f(α) dα+

∫ ∞

u

ψ1f(α) dα

)
= 1 . (6.14)

Therefore, the optimal parameters from Table 6.1 can not be used in the case of erroneous CSI
feedback, because (6.14) is not satisfied.

However, if the error probability ζ is known at the transmitter, we can find the optimal
values of u, ψ1, and ψ2 that optimize the performance of the APA scheme under erroneous

2Of course, brute force search can be performed here to find optimal parameters. However, it is unlikely to
be used in practice.
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Table 6.5: Optimal parameters of APA with erroneous feedback channel.

SNR (dB) 0 5 10 15 20 25

u 0.61 1.07 0.73 0.49 0.32 0.21
ζ = 0.15 ψ1 0.71 1.13 1.41 1.84 2.36 2.82

ψ2 1.17 0.78 0.68 0.64 0.62 0.60
u 0.65 1.04 0.72 0.49 0.32 0.20

ζ = 0.4 ψ1 0.94 1.05 1.12 1.18 1.21 1.23
ψ2 1.05 0.94 0.89 0.86 0.85 0.84

feedback. Similar to (6.6), the optimal values of u, ψ1, and ψ2 can be found as a solution of
the following constrained optimization problem

min
u,ψ1,ψ2

QAPA
b (QPSK, u, ψ1, ψ2; ζ)

subject to ζ

(∫ u

0

ψ1f(α) dα+

∫ ∞

u

ψ2f(α) dα

)
+ (1− ζ)

(∫ u

0

ψ2f(α) dα+

∫ ∞

u

ψ1f(α) dα

)
= 1

0 < ψ1 < ψM ; 0 < ψ2 < ψM ; u > 0. (6.15)

Note that both the objective function and the first constraint of the problem (6.15) differ from
that of the problem (6.6), respectively. Table 6.5 summarizes optimal parameters for the APA
scheme with erroneous feedback channel when the probability of error in the feedback channel
is equal to 0.15 and 0.4, respectively. It can be seen that when the feedback channel becomes
less reliable, it is judicious to equally distribute the power between “faded” and “non-faded”
channel realizations.

Adaptive Modulation Selection

For the AMS scheme with erroneous CSI feedback the BER can be calculated as

QAMS
b (BPSK, 8PSK, ψ1, ψ2; ζ) = (1− ζ)PAMS

b (BPSK, 8PSK, ψ1, ψ2)

+ζ PAMS
b (BPSK, 8PSK, ψ2, ψ1). (6.16)

Substituting (6.11) into (6.16), we can obtain the BER for the AMS scheme. In particular, we
will find the critical value of the error probability ζ above which one-bit-per-subcarrier feedback
can only worsen the system performance.3 Specifically, the feedback remains meaningful only
if the following condition is satisfied

QAMS
b (BPSK, 8PSK, ψ1, ψ2; ζ) ≤ Pb(QPSK). (6.17)

If (6.17) holds as equality, we obtain the critical value of ζ . These values for different SNRs are
listed in Table 6.6 in the case when the optimal parameters from Table 6.4 are used. We can
see from this table that the critical error probability of the feedback channel depends on the
SNR conditions of the communication channel.

3For the APA scheme, the critical ζ is meaningless, because the power constraint may not be satisfied.
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Table 6.6: Critical probability of feedback error of AMS.

SNR (dB) 0 5 10 15 20 25

ζ 0 0 0.1975 0.2079 0.1277 0.0603

Table 6.7: Optimal parameters of AMS with erroneous feedback channel.

SNR (dB) 0 5 10 15 20 25

ψ1 1.3110 1.0596 0.9812 1.0628 1.0812 1.0653
ψ2 0.6890 0.9404 1.0188 0.9372 0.9188 0.9347

However, if the error probability ζ is known at the transmitter, we can find the optimal
values of ψ1 and ψ2 that optimize the performance of the AMS scheme under erroneous feedback
channel. These optimal values can be found as a solution to the following optimization problem

min
ψ1,ψ2

QAMS
b (BPSK, 8PSK, ψ1, ψ2; ζ)

subject to ψ1 + ψ2 = 2 (6.18)

0 < ψ1, ψ2 < 2.

Table 6.7 shows the optimal values of ψ1 and ψ2 for the AMS scheme with erroneous feedback
channel when ζ = 0.15.

6.3.2 Delayed Feedback Channel

The second source of imperfections in the feedback channel is the delay between the actual CSI
and the CSI received at the transmitter. Therefore, it is also important to study the impact of
outdated CSI on the APA and AMS approaches.

Let α0 and ατ be the channel gains at the time slots 0 and τ , respectively. It has been
shown in [152] and [153, p. 142] that the joint PDF of α2

0 and α2
τ has the following form

fα2
0,α

2
τ
(x, y; ρ) =

1

1− ρ exp

(
−x+ y

1− ρ

)
I0

(
2
√
ρxy

1− ρ

)
(6.19)

where I0(·) is the modified Bessel function of the first kind of the order 0, and ρ = cov(x,y)√
var(x)var(y)

is the correlation coefficient which characterizes the feedback delay.



6.3. Imperfect One-Bit-Per-Subcarrier CSI Feedback 105

Table 6.8: Critical ρ of conventional APA.

SNR (dB) 0 5 10 15 20 25

ρ 0.8121 0.4518 0.6489 0.7556 0.8510 0.9404

Adaptive Power Allocation

Using (6.19), we obtain that in the case of delayed one bit CSI feedback and QPSK modulation,
the BER for the APA scheme can be written as

RAPA
b (QPSK, u, ψ1, ψ2; ρ) =

1

2π

[∫ u2

0

∫ ∞

0

∫ 3π
4

0

exp
(
− xEsψ1

2 sin2φ σ2
v

)
fα2

0,α
2
τ
(x, y; ρ) dφ dx dy

+

∫ ∞

u2

∫ ∞

0

∫ 3π
4

0

exp
(
− xEsψ2

2 sin2φ σ2
v

)
fα2

0,α
2
τ
(x, y; ρ) dφ dx dy

]
. (6.20)

Using the following property of the first-order Marcum Q-function [153, p. 75]

∫ ∞

0

x exp

(
−x

2 + z2

2

)
I0(zx) dx = 1

we can simplify the integral in (6.20) as

RAPA
b (QPSK, u, ψ1, ψ2; ρ) =

1

2π

∫ 3π
4

0

[
1

A1 + 1
(1− exp(−B1u

2)) +
1

A2 + 1
exp(−B2u

2)

]
dφ

(6.21)
where

Ai =
ψiEs

2 sin2φ σ2
v

, Bi =
ψiEs + 2 sin2φ σ2

v

ψiEs(1− ρ) + 2 sin2φ σ2
v

, i = 1, 2.

It can be seen that if there is no feedback delay (i.e., ρ = 1), equation (6.21) yields the same
BER result as in (6.5). It is also worth noting that when increasing the delay τ , the coefficient
ρ decreases, but the BER increases. Therefore, we can find the critical value of the correlation
coefficient ρ under which the CSI feedback becomes meaningless. This can be done by solving
the following equation

RAPA
b (QPSK, u, ψ1, ψ2; ρ) = Pb(QPSK).

The critical values for the coefficient ρ at different SNRs and for optimal parameters from
Table 6.1 are listed in Table 6.8. As we can see from this table, for some values of SNR the
critical value of the coefficient ρ can be quite large and, thus, only very short feedback delays
can be tolerated by the communication system. Moreover, we can also see from Table 6.8 that
the critical value of ρ depends on SNR in a nonlinear way.

If ρ is known at the transmitter, we can find the values of u, ψ1, and ψ2 that optimize the
performance of the APA scheme under delayed CSI feedback. These values can be found by
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Table 6.9: Optimal parameters of conventional APA with feedback delay.

SNR (dB) 0 5 10 15 20 25

u 0.5364 1.1774 0.8326 0.8326 0.8326 0.8326
ψ1 0.7 1.1 1.3 1.5 1.6 1.6
ψ2 1.1 0.7 0.7 0.5 0.4 0.4

Table 6.10: Critical ρ of AMS.

SNR (dB) 0 5 10 15 20 25

ρ 1 1 0.7515 0.6725 0.7455 0.8172

solving the following constrained optimization problem

min
u,ψ1,ψ2

RAPA
b (QPSK, u, ψ1, ψ2; ρ)

subject to

∫ u

0

ψ1f(y) dy +

∫ ∞

u

ψ2f(y) dy = 1

0 < ψ1 < ψM ; 0 < ψ2 < ψM ; u > 0.

Table 6.9 summarizes these optimal parameters for the conventional APA scheme when
ρ = 0.8.

Adaptive Modulation Selection

Let us study the performance of the AMS scheme in the case of outdated CSI feedback. Using
equations (6.11) and (6.19), we obtain the BER of the AMS scheme in the following form:

RAMS
b (BPSK, 8PSK, ψ1, ψ2; ρ) =

1

π

[∫ ln 2

0

∫ ∞

0

∫ π
2

0

exp
(
− xEsψ1

sin2φ σ2
v

)
fα2

0,α
2
τ
(x, y; ρ) dφ dx dy

+
1

3

∫ ∞

ln 2

∫ ∞

0

∫ 7π
8

0

exp
(
−sin2(π/8)xEsψ2

sin2φ σ2
v

)
fα2

0,α
2
τ
(x, y; ρ) dφ dx dy

]
.

Then, the critical value of ρ can be found by solving the following equation

RAMS
b (BPSK, 8PSK, ψ1, ψ2; ρ) = Pb(QPSK).

Table 6.10 summarizes the critical values of the coefficient ρ calculated for different SNRs
and for optimal parameters from Table 6.4. Comparing Table 6.10 with Table 6.8, we observe
that at moderate/high SNRs, the AMS scheme is more robust to CSI feedback delays than
the APA approach. Moreover, the performance of the AMS scheme can be improved if the
coefficient ρ is known at the transmitter. In such a case, we can find the optimal values of ψ1
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Table 6.11: Optimal parameters of AMS with feedback delay.

SNR (dB) 0 5 10 15 20 25

ψ1 1.3032 1.0568 0.9953 1.0811 1.2244 1.3412
ψ2 0.6968 0.9432 1.0047 0.9189 0.7756 0.6588

and ψ2 by solving the following constrained optimization problem

min
ψ1,ψ2

RAMS
b (BPSK, 8PSK, ψ1, ψ2; ρ)

subject to ψ1 + ψ2 = 2

0 < ψ1, ψ2 < 2.

Table 6.11 shows the optimal values of these parameters for the AMS scheme with delayed CSI
feedback when ρ = 0.8.

6.4 Numerical Examples

The channel model used in our simulations is based on the ETSI “Vehicular A” channel envi-
ronment [141], see Table 5.1. In all examples we assume that the transmitter transmits at the
fixed data rate of nr = 128 bps and the available number of subcarriers is Nc = 64.

6.4.1 Perfect CSI Feedback

Adaptive Subcarrier Selection

In the first example, three different system configurations are compared: where no subcarrier
selection is used, where 32 “best” subcarriers are selected, and where 16 “best” subcarriers
are selected. To keep the same data rate for each system configuration, we use the QPSK
modulation for no subcarrier selection, 16-QAM modulation for the selection of 32 subcarriers,
and 256-QAM modulation for the selection of 16 subcarriers.

Figure 6.1 shows the performance of all three system configurations in terms of BER versus
SNR. The tradeoff between the number of subcarriers and the modulation used can be seen
from this figure. In particular, the adaptive selection of 32 subcarriers has the best performance
among the system configurations tested. However, the adaptive selection of 16 subcarriers has
much worse performance than that of 32 subcarriers and at low and moderate SNRs can even
perform worse than the configuration without subcarrier selection.

We stress here that, since no theoretical analysis of BER is possible for the ASCS scheme,
this may limit its practical application. Moreover, in multiuser OFDM communication scenarios
only a small number of subcarriers may be assigned to each user, and this scheme may not be
applicable.



108 Chapter 6. Adaptive OFDM with Channel State Feedback

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

NO SUBCARRIER SELECTION
32/64 SUBCARRIER SELECTION
16/64 SUBCARRIER SELECTION

Figure 6.1: BER versus SNR; perfect CSI feedback. ASCS with different numbers of selected
subcarriers.
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Figure 6.2: BER versus SNR; perfect CSI feedback. Conventional and modified APA.
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Adaptive Power Allocation

Hereafter, in each figure we display theoretical BER curves that correspond to the derived
analytical expressions, and the numerical BER curves obtained via simulations.

BERs of the conventional and modified APA schemes are shown versus SNR in Figure 6.2.
The QPSK modulation and the optimal parameters from Tables 6.1 and 6.2 are used, respec-
tively, for these two schemes. The theoretical BER for the modified APA scheme with the
optimal parameters from Table 6.2 assumes that there is a full correlation between each pair of
adjacent subcarriers.

From Figure 6.2, it can be seen that both tested APA schemes outperform the non-adaptive
OFDM scheme. There is only a slight performance difference between conventional and modified
APA.

Comparing the results of Figure 6.2 with that of Figure 6.1, we can see that the APA
approach is less efficient than the ASCS scheme with 32 selected subcarriers. This is especially
true at high SNRs. However, the APA scheme allows an easier optimization as compared with
the ASCS approach.

Figure 6.3 shows BER of the APA scheme with reduced number of subcarriers versus SNR.
The optimal parameters from Table 6.3 are used to obtain this figure. It can be seen that this
scheme performs better than the non-adaptive OFDM scheme at moderate and high SNRs.
However, it has higher BER than the conventional APA scheme and the ASCS scheme with
32 selected subcarriers in the SNR interval of [0; 20] dB. In other words, the APA scheme with
reduced number of subcarriers does not bring any performance improvements as compared with
the conventional APA approach. Note that, due to the fact that (6.4) is an approximation,
the theoretical and numerical curves do not coincide at low SNRs in the case when large
constellation dimensions are used.

Adaptive Modulation Selection

Figure 6.4 displays BER of the AMS scheme with the optimal parameters taken from Ta-
ble 6.4 versus SNR. In this figure, the BPSK and 8-PSK modulations are used at “faded” and
“non-faded” subcarriers, respectively. It can be seen from Figure 6.4 that the AMS scheme
outperforms the non-adaptive approach. However, the AMS scheme has higher BER than the
conventional APA approach. Moreover, comparing Figure 6.4 with Figures 6.2 and 6.3, we can
notice that the AMS scheme has higher BER then the modified APA approach, but outperforms
the APA approach with reduced number of subcarriers at low and moderate SNRs.

6.4.2 Imperfect CSI Feedback

Erroneous Feedback Channel

Figure 6.5 displays BER of the AMS scheme with erroneous feedback channel versus SNR. In
this figure, ζ = 0.15 is taken. The optimal parameters from Table 6.4 are selected, and the
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Figure 6.3: BER versus SNR; perfect CSI feedback. Conventional APA and APA with reduced
number of subcarriers.
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Figure 6.4: BER versus SNR; perfect CSI feedback. Conventional APA and AMS.
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Figure 6.5: BER versus SNR; erroneous CSI feedback. AMS.

BPSK and 8-PSK modulations are used at “faded” and “non-faded” subcarriers, respectively.

We can see from this figure that the performance of the AMS approach degrades severely in
the case of erroneous feedback compared with the perfect feedback case. For example, at the
BER of 3 · 10−3, the performance degradation of the AMS approach with erroneous feedback
amounts to 7.5 dB compared with the performance of the AMS approach with perfect feedback.
Moreover, at high SNRs the AMS scheme performs worse than the non-adaptive scheme.

It is worth noting that these simulation results also agree with the results shown in Table 6.6.
In particular, from Table 6.6 it can be seen that the critical value of the error probability ζ at
low SNRs of 0 and 5 dB is equal to zero, which means that the AMS scheme cannot tolerate
any errors in the feedback channel. Indeed, from Figure 6.5 we can observe that the theoretical
BER of the AMS scheme is larger than that of the non-adaptive scheme at the SNRs of 0 and
5 dB. Moreover, as we can see from Table 6.6, the critical values of ζ at the SNRs of 20 and
25 dB are lower than the value of ζ used in simulations and, indeed, the performance of the
AMS scheme is worse than the performance of non-adaptive scheme in the SNR interval of
[20; 25] dB (see Figure 6.5).

The BERs of the conventional APA and AMS schemes versus SNR are shown in Figure 6.6
for ζ = 0.15. The QPSK modulation is used in this figure for the APA technique. The optimal
parameters from Table 6.5 are used for the APA technique which we refer to as “robust APA”.
This terminology reflects the fact that ζ is known and is used in the APA technique to obtain
the optimal parameters u, ψ1, and ψ2 from solving (6.15). For the AMS scheme, the BPSK
and 8-PSK modulations are used for “faded” and “non-faded” subcarriers, respectively, and
the optimal parameters from Table 6.7 are selected. The terms “robust AMS” and “non robust
AMS” correspond to the cases of known and unknown ζ , respectively. In the first case, the
parameters ψ1 and ψ2 are optimized by solving (6.18) (which uses the knowledge of ζ), while
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Figure 6.6: BER versus SNR; erroneous CSI feedback. Conventional APA and AMS (non-robust
and robust).

in the second case these parameters are obtained from solving (6.12) which does not use this
knowledge.

As can be seen from Figure 6.6, the performance of the AMS scheme can be significantly
improved if the error probability ζ is known at the transmitter. It can also be seen that the
robust APA scheme outperforms the non-adaptive one.

Delayed Feedback Channel

Jakes’ fading model is used to simulate the delayed feedback channel [5]. The maximal Doppler
frequency of 67 Hz is used, which corresponds to the vehicular speed of 36 km/h at the carrier
frequency of 2 GHz. We take ρ = 0.8, which corresponds to the feedback delay of 37 symbol
durations in the IS-136 standard [154].

The BER versus SNR curves for the APA and AMS schemes using the optimal parameters
of Tables 6.1 and 6.4, respectively, are shown in Figure 6.7. The QPSK modulation is used for
the conventional APA approach, while the BPSK and 8-PSK modulations are used at “faded”
and “non-faded” subcarriers, respectively, for the AMS scheme.

From Figure 6.7, we can conclude that at the moderate and high SNRs, the APA approach
is more sensitive to the delay in the feedback channel as compared with the AMS approach.
At the BER of 2 · 10−3, the performance degradation of the APA approach due to the feedback
channel delay amounts to 7 dB, while the corresponding degradation of the AMS scheme is only
3 dB. Moreover, the APA scheme shows in this case worse performance than the non-adaptive
OFDM technique.
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Figure 6.7: BER versus SNR; delayed CSI feedback. Conventional APA and AMS.
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Figure 6.8: BER versus SNR; delayed CSI feedback. Conventional APA and AMS (non-robust
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It is also worth noting that the results of Figure 6.7 agree with the results of Tables 6.8
and 6.10. Indeed, the theoretical BER for the AMS technique can be seen to be higher than
that for the non-adaptive scheme at SNRs of 0 and 5 dB. For these SNRs, as can be seen
from Table 6.10, the critical value of the correlation coefficient ρ is equal to one, which means
that the AMS scheme cannot tolerate any delays in the feedback channel. Moreover, the APA
and AMS approaches perform worse than the non-adaptive scheme at the SNRs for which the
critical value of ρ given in Tables 6.8 and 6.10 is higher than the value of 0.8 that is used in
Figure 6.7.

Figure 6.8 displays the BERs of the conventional APA and AMS schemes with delayed
feedback channel versus SNR. In this figure, the coefficient ρ is assumed to be known at the
transmitter. Similar to the case of erroneous feedback channel, we refer to such APA and AMS
approaches as robust ones. Vice versa, we call the APA and AMS schemes non-robust if the
optimal parameters are found under the assumption that ρ is unknown. The optimal parameters
for the robust APA and AMS techniques are shown in Tables 6.9 and 6.11, respectively.

It can be clearly seen from Figure 6.8 that the performance of both APA and AMS ap-
proaches can be substantially improved if the parameter ρ is known at the transmitter. This
improvement is more pronounced for the APA scheme.

6.5 Chapter Summary

In this chapter, the performance of OFDM communication systems with one-bit-per-subcarrier
CSI feedback has been studied. Three adaptive techniques including ASCS, APA, and AMS
schemes have been used to exploit such CSI feedback. We found that even one-bit-per-subcarrier
CSI feedback can greatly improve the overall system performance if the feedback channel is
perfect. Among the three approaches tested, the ASCS approach has the best performance.
However, the performance of OFDM systems with one-bit-per-subcarrier feedback can be even
worse than the performance of the OFDM system without any feedback if the feedback channel
is imperfect. It has been demonstrated that the performance of both the APA and AMS
approaches can be substantially improved by exploiting the knowledge of how imperfect the
feedback channel is.



Chapter 7

Concluding Remarks and Future Work

In wireless communications, multi-antenna and multi-carrier techniques attract great research
interest due to their advantages in enhancing system capacity and improving communication
quality. In this thesis, we have proposed and studied several advanced algorithms for multi-
antenna and multi-carrier communications.

Concluding Remarks:

In Chapter 2, we have addressed the spatial signature estimation problem. Spatial signa-
ture estimation is of great interest in wireless communications, since the knowledge of spatial
signatures can be used for beamforming to separate the user-of-interest from other interfering
users. We have proposed bandwidth-efficient approaches to estimate the user spatial signa-
ture. The proposed approaches employ the time-varying user power loading, which makes the
model identifiable. Based on the PARAFAC analysis model, two algorithms have been devel-
oped. The first one is based on the TALS regression in PARAFAC fitting, and the second one
utilizes joint matrix diagonalization. Compared with other blind spatial signature estimation
approaches, our estimators provide better performance and are applicable to a more general
class of scenarios.

Chapter 3 has investigated the problem of robust blind DS-CDMA multiuser detection in
impulsive ambient noise. By exploiting the multiple antennas at the receiver, this problem can
be linked to robust PARAFAC fitting in impulsive noise. The conventional PARAFAC fitting
procedure applies LS fitting, and its performance degrades dramatically if the additive noise
has strong impulsive components. Motivated by this fact, we have proposed two robust fitting
procedures for PARAFAC model, which utilize the LAE criterion. These two procedures work
in an iterative fashion and make use of LP and WMF, respectively. In comparison to the blind
DS-CDMA multiuser detection algorithm with conventional TALS PARAFAC fitting, the pro-
posed approaches show distinct performance improvement in impulsive noise, while only small
performance degradation in Gaussian noise. Compared with the TALS PARAFAC fitting pro-
cedure which employs ad hoc nonlinear preprocessing techniques, the proposed procedures also
show better performance. Between two proposed algorithms, the WMF iteration is particular
appealing from a simplicity viewpoint.
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In Chapter 4, we have studied multiple-access MIMO wireless communications when trans-
mitters (users) also have multiple antennas and use OSTBCs. The linear receiver design problem
for joint space-time decoding and interference rejection has been addressed. In particular, we
have considered the practical scenario when the receiver has only presumed CSI, which is the ap-
proximated version of the actual one. Using different approaches to model the CSI mismatches,
two classes of robust linear receivers have been proposed. The first class of receivers is based on
the worst-case performance optimization when the deterministic CSI mismatch model is used,
while the second one employs the stochastic programming technique, based on the stochastic
CSI mismatch model. Compared with the existing linear receivers for multiple-access MIMO
communication, both classes of linear receivers show an improved robustness against CSI errors.

In Chapter 5, we have investigated the problem of linear precoder design for OFDM systems.
We have proposed a cutoff rate maximization-based linear block precoder, which only requires
the knowledge of the average relative channel multipath powers and delays at the transmitter.
Substantial performance improvements are achieved by our precoding technique relative to the
existing linear block precoders. It has been shown that the proposed linear precoder can be
combined with channel coding technique to further enhance the performance of OFDM systems.

Finally, in Chapter 6, we have analyzed the performance of an adaptive OFDM system whose
transmitter has only one-bit-per-subcarrier channel state feedback. Three adaptive techniques:
ASCS, APA, and AMS have been proposed to exploit this feedback. It has been shown that
this one-bit feedback can greatly improve the system performance. Moreover, the impact of
imperfections of the feedback channel on the system performance, and the ways to improve the
performance by exploiting the knowledge of how imperfect the feedback channel is have also
been studied in Chapter 6.

Future Work:

In Chapter 3, for the TALS PARAFAC fitting procedure with nonlinear processing, the
nonlinear filtering is performed before the TALS fitting. Thus, the signal component may also
be distorted. It is therefore interesting to study the performance of the TALS procedure with
nonlinear operations performed after the TALS fitting, which will only process the impulsive
noise component. However, since the DS-CDMA multiuser detector proposed in Chapter 3 is
fully blind and the fitting procedures work in an iterative fashion, nonlinear operations after
LS fitting may bring some problems such as the convergence of the iterative procedure. This
issue is interesting and deserves further study.

The robust linear receivers proposed in Chapter 4 were developed under the assumption of
quasi-static fading channel. This means that the MIMO channel is fixed for one block duration
and independently changed in the next block. However, in practical scenarios, the channel
fading is continuously varying. Therefore, this observation leaves room for further study of
linear receivers robust against CSI errors in continuously time-varying channels.

For the linear block precoding technique developed in Chapter 5, when the number of
subcarriers assigned to one user is large, the computational complexity of the proposed precoder
design is high. How to reduce the computational burden of the optimization problem can be
the subject of a deeper study.

In Chapter 6, the optimal parameters for the APA and AMS schemes are derived in the
case of uncoded transmissions. It would be interesting to apply these adaptive methods and
derive the optimal parameters for the channel-coded OFDM systems.
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[31] D. Astèly, A. L. Swindlehurst, and B. Ottersten, “Spatial signature estimation for uniform
linear arrays with unknown receiver gains and phases,” IEEE Trans. Signal Processing,
vol. 47, pp. 2128-2138, Aug. 1999.

[32] A. J. Weiss and B. Friedlander, “‘Almost blind’ steering vector estimation using second-
order moments,” IEEE Trans. Signal Processing, vol. 44, pp. 1024-1027, April 1996.

[33] B. G. Agee, S. V. Schell, and W. A. Gardner, “Spectral self-coherence restoral: A new
approach to blind adaptive signal extraction using antenna arrays,” Proc. IEEE, vol. 78,
pp. 753-767, April 1990.

[34] Q. Wu and K. M. Wong, “Blind adaptive beamforming for cyclostationary signals,” IEEE
Trans. Signal Processing, vol. 44, pp. 2757-2767, Nov. 1996.

[35] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE
Proc., vol. F-140, pp. 362-370, Dec. 1993.

[36] M. C. Dogan and J. M. Mendel, “Cumulant-based blind optimum beamforming,” IEEE
Trans. Aerospace and Electronic Systems, vol. 30, pp. 722-741, July 1994.

[37] E. Gonen and J. M. Mendel, “Applications of cumulants to array processing, Part III: Blind
beamforming for coherent signals,” IEEE Trans. Signal Processing, vol. 45, pp. 2252-2264,
Sep. 1997.

[38] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source sep-
aration technique using second-order statistics,” IEEE Trans. Signal Processing, vol. 45,
pp. 434-444, Feb. 1997.

[39] N. Yuen and B. Friedlander, “Performance analysis of blind signal copy using fourth order
cumulants,” J. Adaptive Control and Signal Processing, vol. 10, No. 2/3, pp. 239-266, 1996.

[40] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochastic model of the temporal
and azimuthal dispersion seen at the base station in outdoor propagation environments,”
IEEE Trans. Vehicular Technology, vol. 49, pp. 437-447, March 2000.

[41] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “Spatial channel characteristics in
outdoor environments and their impact on BS antenna system performance,” in Proc. VTC,
Ottawa, Canada, May 1998, vol. 2, pp. 719-723.

[42] R. A. Harshman, “Foundation of the PARAFAC procedure: Model and conditions for an
“explanatory” multi-mode factor analysis,” UCLA Working Papers in Phonetics, vol. 16,
pp. 1-84, Dec. 1970.

[43] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics,” Linear Algebra Applicat., vol. 16,
pp. 95-138, 1977.

[44] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC receivers for DS-
CDMA systems,” IEEE Trans. Signal Processing, vol. 48, pp. 810-823, March 2000.

[45] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decomposition of N-way
arrays,” J. Chemometrics, vol. 14, pp. 229-239, 2000.



120 Bibliography

[46] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in sensor array
processing,” IEEE Trans. Signal Processing, vol. 48, pp. 2377-2388, Aug. 2000.

[47] M. K. Tsatsanis and C. Kweon, “Blind source separation of non-stationary sources using
second-order statistics,” in Proc. 32nd Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, Nov. 1998, vol. 2, pp. 1574 -1578.

[48] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures of nonsta-
tionary sources,” IEEE Trans. Signal Processing, vol. 49 pp. 1837-1848, Sep. 2001.

[49] R. L. Harshman, “Determination and proof of minimum uniqueness conditions for
PARAFAC1,” UCLA Working Papers in Phonetics, vol. 22, pp. 111-117, 1972.

[50] J. M. F. ten Berge and N. D. Sidiropoulos, “On uniqueness in CANDECOMP/PARAFAC,”
Psychometrika, vol. 67, No. 3, Sep. 2002.

[51] J. M. F. ten Berge, N. D. Sidiropoulos, and R. Rocci, “Typical rank and INDSCAL di-
mensionality for symmetric three-way arrays of order I×2×2 or I×3×3,” Linear Algebra
Applicat., to appear.

[52] T. Jiang, N. D. Sidiropoulos, and J. M. F. ten Berge, “Almost-sure identifiability of multi-
dimensional harmonic retrieval,” IEEE Trans. Signal Processing, vol. 49, pp. 1849-1859,
Sep. 2001.

[53] R. Bro, N. D. Sidiropoulos, and G. B. Giannakis, “A fast least squares al-
gorithm for separating trilinear mixtures,” in Proc. Int. Workshop Independent
Component Analysis and Blind Signal Separation, Aussois, France, Jan. 1999.
(http://www.ece.umn.edu/users/nikos/public html/3SPICE/code.html)

[54] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous diagonalization,” SIAM
J. Matrix Analysis and Applicat., vol. 17, pp. 161-164, Jan. 1996.

[55] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares sense with applica-
tion in blind source separation,” IEEE Trans. Signal Processing, vol. 50, pp. 1545-1553,
July 2002.

[56] P. Stoica and A. Nehorai, “Performance study of conditional and unconditional direction-
of-arrival estimation,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 1783-
1795, Oct. 1990.

[57] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle
River, NJ: Prentice-Hall, 1993.

[58] V. K. Garg, IS-95 CDMA and cdma2000 Cellular/PCS Systems Implementation. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[59] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division
multiple-access communications,” IEEE Trans. Communications, vol. 38, pp. 509-519,
April 1990.
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