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Abstract

Demands for mobile communication increase tremendously in recent years. Multi-access by

Spatial Division Multiple Access (SDMA), which exploits the spatial diversity of the wireless

system, has inspired great research interests. A very important parameter in SDMA is the

Spatial Signature (SS) of signals. By using antenna array at the basestation(BS), SS can

be estimated. Many algorithms have been developed using training sequences. However, a

serious disadvantage of using training sequence is that it reduces the overall transmission

rate. Therefore, blind approaches, which don’t need training sequences, are desired.

In this thesis, we propose a blind SS estimation algorithm, which exploits the struc-

ture of the second order statistics (covariance matrices) of signals. A PARAllel FACtor

(PARAFAC) analysis model is used to develop such an algorithm. Identifiability potential

of the PARAFAC model is studied. We show that our model can also be solved through an-

other class of method — Joint Approximate Diagonalization (JADE). Numerical simulations

are carried out for both PARAFAC and JADE. The results show that PARAFAC clearly

outperforms JADE. The comparison with deterministic Cramér-Rao Bound (D-CRB) shows

that our algorithm stays close to what is the theoretically best performance-wise.
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Introduction

In recent years, mobile communication becomes more and more popular. On one hand,

the number of mobile communication users increases tremendously. On the other hand,

services provided through mobile communications have exceeded pure speech and included

multimedia data, which leads to the request of higher data rate transmission. Both trends

exacerbate the main problem faced in mobile communication: interference. For example, in

Code Division Multiple Access (CDMA) systems, the increasing density of users causes more

serious Multiuser Access Interference (MAI). The increasing of data rate causes more serious

Inter-symbol Interference (ISI) and Inter-chip Interference (ICI) [25]. A well known method

to combat interference is diversity technique [19]. One promising way to achieve diversity is

to apply antenna arrays, which can achieve spatial diversity. The Spatial Signature (SS) of

signals, which is defined as the vector of received electric fields at antenna array, becomes

very important in this case. It acts as an important role in Spatial Division Multiple

Access (SDMA) systems as the temporal signature in CDMA systems. However, in mobile

communication the SS is usually unknown to the receiver and therefore has to be estimated.

This work will focus on the estimation of SS. We consider the scenario of uplink

(mobile—base station) SS estimation. First we would like to point out the differences of

SS estimation and traditional Direction Of Arrival (DOA) estimation. Generally speaking,

SS contains the mixture information of DOA, multi-path effect, wavefront distortion, etc.

Therefore, the estimation of SS includes the estimation of DOA as its subset. In [28], the

DOAs are determined from the SS. Further on, the number of DOAs which is identifiable

2
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with given SS is discussed in [23].

Many algorithms have been developed to estimate the SS [23],[1], or jointly estimate

SS with other parameters [11]. In [23], maximum likelihood (ML) algorithm was devel-

oped. A well known disadvantage for ML is that it requires parameter space search and is

therefore computationally intensive. Some algorithms are computationally simple than ML

algorithm. For example, provided large number of snapshots, matched filter (MF) method

can be used [23]. However, it still requires training sequences, which reduces the overall

transmission rate. In this thesis we propose a blind method which don’t require training

sequences. Some methods use parametric methods, where they assume that the geometry of

the antenna array is known (usually Uniform Linear Array (ULA) is used). For example, in

[1], a closed form ESPRIT-like estimator is proposed. However, one disadvantage of para-

metric method is that if the geometry of the array is unknown or some calibration errors

exist, the performance of estimation will degrade seriously. See [26], [29] for detailed discus-

sions. Our method proposed in this theis, which uses PARAllel FACtor (PARAFAC) model

[10],[21],[22], is nonparametric and doesn’t require any knowledge of the array geometry. In

fact, the array geometry can be arbitrary.

This thesis is organized as follows. Chapter 1 introduces some background knowledge,

which are necessary for the development of our algorithm. Chapter 2 presents our main

theorem. In this chapter, we first build the discrete-time baseband equivalent data model

that we work with. Then we solve our problem by fitting the PARAFAC model. The

identifiability potential of the PARAFAC model in our scenario will be discussed. This is

followed by showing the algorithm used for fitting PARAFAC model. Besides PARAFAC

we also find that our model can be solved by Joint Approximate Diagonalization Estimation

(JADE) [2]. We also deal with this in Chapter 2. Numerical simulation results are presented

in Chapter 3, where we carry out simulations to verify our algorithm and present some

discussions about PARAFAC model. The derivation of deterministic Cramér-Rao Bound
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can be found in the appendix.



Chapter 1

Background

Since the application of antenna array in mobile communications, great impact has taken

place. Antenna array has many advantages over conventional single antenna. It enhances

signal power at the output of the antenna array and reduces interference. Therefore, system

capacity is increased and communication reliability is improved. We will introduce some

basic knowledge about array processing in this chapter.

On the other hand, PARAFAC or more general, three way analysis, is a very general

mathematic model and analysis method. Due to its concise and general mathematic for-

mulation, it has attracted many research interests. We will give a short introduction to it

in the second half of this chapter.

1.1 Array Processing

Antenna array was first invented in military applications [12]. Now it plays an important

role in a wide range of areas, such as radar, sonar, radio astronomy, communications,

seismology and medical diagnosis. The possibility and benefit of applying antenna array

in mobile communication have been studied intensively in the last decade. Due to the

physical size and power consumption constraints, antenna arrays are normally installed in

5
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Figure 1.1: Basic diagram of a narrowband adaptive antenna array

base station (BS) 1. Therefore, we constrain the introduction here only to the uplink (mobile

station (MS) to BS) in mobile communication.

In rural and suburb environments, BSs are mounted on the top of high buildings or

towers, where there are no obstacles near the antenna array. Normally the distances be-

tween MS and BS are large enough to satisfy the far region conditions for transmitting

and receiving antennas. If we consider the uplink in mobile communication, the incoming

electromagnetic wave at the BS can be treated as plane wave.

In Figure 1.1, we plot the basic diagram of a narrowband adaptive antenna array with K

antennas. The weight vector w = [w1, w2, . . . , wK ]T can be set based on a certain criteria.

The DOA of incoming signals are calculated with respect to the broad side of the array
1recently mobile phones installed with 2 or 3 antennas are also available.
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(Take the m-th signal as an example, whose DOA θm is marked on Figure 1.1). Without

loss of generality, we first consider an antenna array with arbitrary manifold and the first

antenna as the reference antenna. The signal x1(t) at the output of the first antenna can

be written as

x1(t) = sm(t) + n1(t), (1.1)

where sm(t) is the received m-th signal, n1(t) is the noise at the first antenna. Under the

plane wave assumption the signal received by the k-th antenna is a delayed (phase shift)

version of sm(t).

xk(t) = sm(t) exp (jφk−1) + nk(t), (1.2)

where φk−1 denotes the phase shift between the received signal at k-th antenna and the

first antenna. If we recast the received signals into vector form, we will obtain:

x(t) =




x1(t)

x2(t)
...

xK(t)




=




1

exp (jφ1)
...

exp (jφK−1)




sm(t) +




n1(t)

n2(t)
...

nK(t)




= amsm(t) + n(t), (1.3)

where am = [1, exp(jφ1), . . . , exp(jφK−1)]T is called the steering vector or the spatial sig-

nature of signal sm(t).

Normally the sensors in the antenna array are arranged in a regular geometry, such as

uniform linear array (ULA), uniform rectangular array (URA) or uniform circular array

(UCA). The reason for this is that these geometries are symmetric and offer some redun-

dancy which can be exploited. For example, let’s consider here an ULA with K antennas

of equal displacement d. In this case, the phase shift term in equation (1.2) becomes

φk−1 =
2π

λ
(k − 1)d sin θm. (1.4)

And the spatial signature of sm(t) now becomes

am = [1, exp (j
2π

λ
d sin θm), . . . , exp (j

2π

λ
(K − 1)d sin θm)]T . (1.5)
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If the array is required to steer [−π
2 , π

2 ], we require d 6 λ
2 , which is well known as a standard

linear array.

Now suppose there are M signals. The received signals at the antenna array is the

superposition of M signals

x(t) =
M∑

m=1

amsm(t) + n(t). (1.6)

Recast it in matrix form, we have

x(t) =
(

a1 a2 . . . aM

)




s1(t)

s2(t)
...

sM (t)




+ n(t) = As(t) + n(t), (1.7)

where A = [a1,a2, . . . ,aM ] is the SS matrix, s(t) = [s1(t), s2(t), . . . , sM (t)]T is the signal

vector at time t. We can easily find that A in an ULA has Vandermonde structure. This

redundancy can be exploited, e.g. in spatial smoothing and sub array processing [24].

If we take a further look into Figure 1.1, we can find that the adaptive array has

similarities with a transversal FIR filter. The weighting vector w is used to carry out

spatial filtering. After the filtering operation, we will obtain the output signal

y(t) = wHx(t). (1.8)

There are two main topics contained in array processing. One is beamforming, where

the key problem boils down to find an optimum w, which satisfies certain performance

criteria, such as maximum signal to interference plus noise ratio (SINR). Huge amount of

researches have contributed to this topic. Further discussions about beamforming is out of

the range of this thesis. Refer to [24] and the references therein for detailed discussion.

The problem to be discussed in this thesis belongs to another main topic in array

processing—parameter estimation. The parameters we are interested in array processing

are DOA, signal numbers, signal spatial signatures, etc.. Again tremendous research have
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been done in the last two decades, see [24] and the references therein. This thesis deals with

SS estimation.

1.2 Parallel Factor Analysis

Consider a three way array, whose element xi,j,k can be formed as

xi,j,k =
F∑

f=1

a(i, f)b(k, f)c(f, j), (1.9)

where a(i, f) is the (i, f)-th element of a I ×F matrix A, b(k, f) is the (k, f)-th element of

a K × F matrix B, c(f, j) is the (f, j)-th element of a F × J matrix CT . Equation (1.9)

expresses that xi,j,k is a sum of triple products. This model is known as trilinear analy-

sis, trilinear decomposition or PARAllel FACtor analysis. This model was first proposed

by Harshman in 1970 [10] for data analysis in psychometics. Later on it was also ap-

plied in chemometrics for spectrophotometric, chromatographic and flow injection analysis.

Sidiropoulos first introduced this method to array signal processing [21]. PARAFAC anal-

ysis belongs to a more general analysis method—three way analysis in that there are some

constraints between the factors in PARAFAC model. For a tutorial overview to PARAFAC

analysis, we can read [4].

To make equation (1.9) more clear, let’s represent it in a graphic way in Figure 1.2.

The matrix X:,:,k can be written as X:,:,k = ADk(B)CT . It can be imagined that by

cutting the three way “cake” X and take the k-th slide we will get X:,:,k. Further on, if

we stack all of the K matrix on top of one another, we will obtain a very tall matrix. We

denote it as X(a). See the left part of Figure 1.3. If we repeat the same operation in other

two directions, we will obtain another two tall matrices X(b) and X(c). See the middle and

right part of Figure 1.3. X(a),X(b) and X(c) are called the unfolded matrices of X.

Let’s define some concepts about “three way” which will be used later in this thesis.
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kjix ,,

i th

f=1,…,F

f=1,…,F

f=
1

,…
,F

j th

A )(BkD
T
C

Figure 1.2: (i, j, k)-th element of a three way array

• Three way rank: Smallest number of rank-one terms for additive decomposition of a

three way array. Basically it shares the same definition as a matrix rank.

• Three way rank-one factors: Rank-one three way array outer product of 3 vectors.

With these definitions, we can find the rank of X is F from equation (1.9).

Let’s now derive the closed form of the unfolded matrices

X(a) =




AD1(B)CT

AD2(B)CT

...

ADK(B)CT




=




AD1(B)

AD2(B)
...

ADK(B)




CT =




b11a1 b12a2 . . . b1FaF

b21a1 b22a2 . . . b2FaF

...
... . . .

...

bK1a1 bK2a2 . . . bKFaF




CT .

(1.10)

Each column in the most right matrix is now



b1iai

b2iai

...

bKiai




= bi ⊗ ai. (1.11)

Insert equation (1.11) into equation (1.10), we obtain

X(a) =
(

b1 ⊗ a1 b2 ⊗ a2 . . . bF ⊗ aF

)
CT = (B¯A)CT , (1.12)
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k=1,…,K

i=
1
,…

,I
i=

1
,…

,I
i=

1
,…

,I

j=
1
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j=1,…,J

k=1,…,K

i=
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,…
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i=
1

,…
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j=1,…,J
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=
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X(a) X(b) X(c)

Figure 1.3: Cut three way array and form tall matrices
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where ¯ denotes Khatri-Rao product, which is column-wise Kronecker product. Some

properties about Khatri-Rao product can be found in [3]. In the same way we can obtain

the closed form solution for X(b) and X(c)

X(b) = (A¯C)BT (1.13)

X(c) = (C¯B)AT . (1.14)



Chapter 2

Main Theorem

In this chapter we will develop our algorithm for blind SS estimation. First we build the

equivalent discrete base-band signal model that we work on. In the second section we apply

PARAFAC analysis to solve our problem. In section 3 we introduce briefly another method

JADE, which can also be applied to solve our problem.

2.1 Data Model

In this thesis we consider the scenario of uplink in CDMA mobile communication. Consider

M users (mobile stations) communicate with base station at the same time. Each user

symbol bit is spread by Walsh orthogonal sequences [7]. The base station is equipped with

an antenna array composed of K antennas. We assume flat fading channel and Additive

White Gaussian (AWG) noise in the receiving antenna array. Besides, we also assume that

all the users of the same channel are synchronized in time to the accuracy of a small fraction

of one chip duration. Therefore, the discrete-time baseband-equivalent data model can be

written as

Y(n) =
M∑

m=1

amsm(n)cm + V(n). (2.1)

13
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Y(n) ∈ CK×L is the received mixed signal at the base station. L is the number of

chips, i.e. the length of Walsh code in one symbol duration. n = 1, . . . , N is the sym-

bol duration. N is the total number of snapshots. am ∈ CK×1 is the SS of m-th user.

am = [1, e−jφ1m , . . . , e−jφ(K−1)m ]T , where φkm is the phase offset of m-th signal arriving at

the (k + 1)-th antenna with respect to the first antenna (without loss of generality, we take

the first antenna to be the reference antenna). m = 1, . . . , M , M is the number of active

users. sm(n) is the n-th signal snapshot from the m-th user. cm ∈ {+1,−1}1×L is the

Walsh spreading sequence of the m-th user. V ∈ CK×L is the AWG noise at base station

antenna array. Note this model is very general without any assumption of array geometry.

It’s useful to recast the data model in matrix form by

Y(n) =
(

a1 a2 . . . aM

)




s1(n)c1

s2(n)c2

...

sM (n)cM




+ V(n) (2.2)

=
(

a1 . . . aM

)



s1(n) 0 0

0
. . . 0

0 0 sM (n)







c1

...

cM


 + V(n)

= AS(n)C + V(n), (2.3)

where A = [a1, . . . ,aM ] is the SS matrix. We assume that the elements of A are constant

over the N-sample observation window. S(n) = diag(s1, s2, . . . , sM ) and C = (cT
1 , cT

2 , . . . , cT
M )T .

Our task now is to estimate A with a blind method.

Assume signals have zero mean and signals from different users are independent. Noises

are i.i.d. Gaussian noise and are uncorrelated with user signals. Covariance matrix of the
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received signal y can be calculated as

Ry = E{Y(n)Y(n)H}

= E{(AS(n)C + V(n))(AS(n)C + V(n))H}

= AE{S(n)CCHS(n)H}AH + E{VVH}. (2.4)

Walsh spreading sequences are orthogonal sequences. We further normalize CCH = I. So

now equation(2.4) can be further simplified to

Ry = ARsAH + σ2
vI, (2.5)

where Rs = E{S(n)S(n)H}. σ2
v is the noise power.

2.2 Main Idea

Let’s first ignore the contribution of noise, then equation (2.5) can be written as

Ry = ARsAH . (2.6)

Note that both A and Rs are unknown at the base station. With the only known Ry, it

is impossible to estimate A. Even though we assume that each signal has the same power

and the signal power is already known at the base station, then

Ry = σ2
sAAH . (2.7)

It’s well known that A can only be estimated up to some unitary ambiguity [20]. Suppose

that there’s a matrix Ã = AU, with U an unitary matrix. We can find Ry = σ2
sÃÃH .

Without further structure or additional information, this unitary ambiguity can not be

removed.

But the situation will change if we add one “additional” dimension to the covariance

matrix. Fist we assume that users move not very fast and the channel state varies slowly,
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so that during N snapshots the SS of signals keeps unchanged. Next, we uniformly divide

the whole N snapshots into P sub-slabs (sub-blocks), so that each slab contains Ns = bN
P c

snapshots (bxc denotes the largest integer less than x). We fix the transmit power of signals

inside each slab and change the transmit power between slabs. This can be implemented

easily in practise. One interesting things here is that the flat fading effects of the channel

will “help” us to estimate signal spatial signatures, because it also changes the amplitude

of signals. With the changing power of signals, we now form P different signal covariance

matrices. Let’s denote Ry(p), p = 1, . . . , P as the covariance matrix for the received mixture

signals of the p-th slab, Rs(p), p = 1, . . . , P as the covariance matrix for the source signals

of the p-th slab 1. According to (2.5), we get

Ry(1) = ARs(1)A
H + σ2

vI

Ry(2) = ARs(2)A
H + σ2

vI

...

Ry(P) = ARs(P)A
H + σ2

vI. (2.8)

Our idea is enlightened by the promising low rank decomposition of multi dimensional

array model—PARAFAC, as introduced in section 1.2. If we stack the P covariance matrices

from the front to the back, we will get a three way array Ry (Refer to Figure 1.3 for this

operation). In PARAFAC model it states that under a certain sufficient condition, this

three way array can be uniquely decomposed to M rank one three way arrays. Therefore

the SS matrix A can be blindly estimated.
1In multi-way analysis choices of notations and symbols play an important role to avoid confusing [14].
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2.3 PARAFAC Model

2.3.1 Fit Our Model to PARAFAC

Let’s denote ry(i, j, k) as the (i, j, k)-th element from the three way array Ry. It holds that

ry(i, j, k) =
M∑

m=1

a(i, m)rs(k, m)a∗(m, j), (2.9)

where a(i,m) is the (i,m)-th element of A, rs(k, m) is the (k, m)-th element of Rs and

a∗(m, j) is the (m, j)-th element of AH . (Note that equation (2.9) is a special case of

equation (1.9) in that c = a∗ and b is always positive. We will discuss this kind of “special

case” later in section 3.5.3). We are now interested in under which conditions, this trilinear

decomposition is essentially unique. Before the introduction of the unique decomposition

theorem of PARAFAC, we first introduce the definition of Kruskal rank. The concept of

Kruskal rank was implicit in the seminal work of Kruskal [16] and was later coined by

Harshman.

Definition: The Kruskal rank (K-rank) of a matrix A ∈ CI×J is k, means that any

equal or less than k column vectors from A are linear independent.

To make this concept clear, let’s look at two matrices:

 1 0 a

0 1 0


 ;


 1 0 a

0 1 b




For a, b 6= 0 the rank for both matrices are 2, they are both full rank. However their K-rank

are different. According to the definition above, K-rank for the left matrix is 1 (K-rank

deficient), while K-rank for the right matrix is 2 (full K-rank).

According to the definition, it’s easy to see the following properties of K-rank (We will

use kA to denote K-rank(A) and rA to denote rank(A) (normal rank) in the rest of this

thesis for convenience):

1. kA ≤ rA.
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2. if A is full rank,then it’s also full K-rank.

Proof:

• K-rank stress that any equal or less than k column vectors from A are linear indepen-

dent, while rank only requires that at least one k column vectors from A are linear

independent. This proves kA ≤ rA, which means K-rank is “strong rank”.

• If A is full rank, then all column vectors of A are linear independent. From the

definition above, A is also full K-rank.

Now let’s assume that signal to noise ratio (SNR) is high enough, so that the contribution

of noise powers in (2.8) to the covariance matrices Ry(p) can be neglected (The role of

noise will be discussed in chapter 3). Further on we find from (2.4) that the source signal

covariance matrices Rs(p) in (2.8) are diagonal matrices with each element corresponding to

the source signal power (The diagonal property of Rs(p) is very important as to be discussed

in chapter 3). Now we introduce a new matrix P ∈ RP×M , whose p-th row is taken from

the diagonal elements of Rs(p). We further define Dp(P) as take the p-th row of P and

make it diagonal. We have now Dp(P) = Rs(p). Equation (2.8) now can be rewritten as

Ry(1) = AD1(P)AH

Ry(2) = AD2(P)AH

...

Ry(P) = ADP (P)AH . (2.10)

Following the notation in [14], we denote Ry(a) as cutting Ry from front to end and stack

the resulting slabs to form a tall matrix. We can write (2.10) in closed form

Ry(a) =




Ry(1)

Ry(2)

...

Ry(P)




=




AD1(P)AH

AD2(P)AH

...

ADP (P)AH




=




AD1(P)

AD2(P)
...

ADP (P)




AH = (P¯A)AH . (2.11)
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2.3.2 Identifiability

Our concern is that under which condition, Ry can be uniquely decomposed into equation

(2.11). Kruskal’s pioneering paper in 1977 [16] gave the answer for real three way array.

Sidiropoulos et al. extended it to the complex array [22].

Theorem: Consider a set of P matrices Ry(p) = ADp(P)AH , p = 1, . . . , P , where

A ∈ CK×M ,P ∈ RP×M . If

kA + kP + kA∗ ≥ 2M + 2, (2.12)

then A,P,A∗ are unique up to permutation and scaling of column. That is to say, if there

exist another A,P,A∗ which satisfies equation (2.12), they are related to A,P,A∗ via

A = AΠ∆1,P = PΠ∆2,A∗ = A∗Π∆3, (2.13)

where Π is permutation matrix, ∆1,∆2,∆3 are diagonal matrices and

∆1∆2∆3 = I. (2.14)

Proof

Prove of this theorem is complicated, readers can refer to [16],[22]. ¥

Note that scaling ambiguity is irrelevant in many applications. For example, in MVDR

or LCMP beamformer algorithm, the change of scaling in A doesn’t change the SNR at the

output of antenna array. However if we do want to remove these ambiguities, we can turn

to e.g. some semi-blind method, which capitalizes on periodically inserted pilots [17].

It’s helpful to mention that Sidiropoulos and Bro has extended this theorem to N-way

analysis [20], with the conclusion that moving to higher dimension will improve identifia-

bility. However, the calculation expense will increase with increasing dimensions.

In a straight forward way we can get the following corollaries:

Corollary 1 : In order to satisfy identification, the number of slabs must satisfy P ≥ 2
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Proof

kA = k∗A ≤ rA ≤ min(K, M) ≤ M

2M + kP ≥ kA + k∗A + kP ≥ 2M + 2

kP ≥ 2 (2.15)

¥

Which means we must collect at least 2 covariance matrices to form a “covariance array”.

In chapter 3 we will show that 2 matrices are enough to carry out the estimation. With

increasing number of matrices, the performance of estimation doesn’t improve.

Corollary 2 : In order to satisfy identification, the number of antennas at the base station

must satisfy K ≥ M+2
2 .

Proof

kA = k∗A ≤ min(K, M) ≤ K

kP ≤ min(P,M) ≤ M

2K + M ≥ kA + kP + k∗A ≥ 2M + 2

K ≥ M + 2
2

(2.16)

¥

Compared to some conventional subspace methods like MUSIC, given a certain number

of antennas, PARAFAC model nearly doubles the number of identifiable signals. However,

M+2
2 is only the theoretical lower bound for identification. With increasing number of

antennas, estimation results will improve a lot. We will discuss it in detail in chapter 3.

(For the knowledge of number of signals, we can use some algorithms like [27] and the

references therein to give a estimation).
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2.3.3 Advantage of Using Covariance Matrices

In [22], data matrices were used to fit PARAFAC model. In our algorithm, however co-

variance matrices are applied to fit PARAFAC model. Now we analyze the advantage of

using covariance matrices. If data matrices are used, the data model will be the same as

we used to derive the D-CRB in appendix (A.1). In equation (A.1), suppose we collect

P data matrices, there will be altogether PKNs elements in matrices Ya(p), p = 1, . . . , P .

Therefore the number of equations is PKNs. Now let’s look at the unknowns. The total

number of unknowns at the right side of (A.1) equals (K−1)M +PM +PMNs. According

the relation of equations and unknowns, we have the following inequality for identifiability

PKNs > (K − 1)M + PM + PMNs. (2.17)

It’s easy to prove that K > M , which means more antennas than users, is necessary for

identifiability.

Let’s move to the covariance matrices. The number of equations in (2.10) is PK2, while

the number of unknowns is (K−1)M +PM . Therefore, we have the following identifiability

condition:

PK2 > (K − 1)M + PM. (2.18)

Now it’s possible to identify A with K < M (less antennas than users). The interpretation

for this is simple: If we use data matrices, we must estimate the signal data matrix together

with A. Because signal data are different from snapshots to snapshots, we will have more

unknowns. However if we use covariance matrices, the situation will change. We only need

to estimate the signal power, which belongs to the statistical property of the signal and will

stay unchanged in each covariance matrix slab. Therefore we will have less unknowns.

Before finishing this section, we would like to point out another advantage of PARAFAC

besides identifiability potentials. From (2.13) we can see that the signal powers, which is a

very useful information in many scenarios, can also be obtained.
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2.4 Trilinear Alternative Least Square

With the model (2.10) and unique decomposition theorem at hand, now we try to find

some methods to finally carry out the decomposition. Trilinear Alternative Least Square

(TALS) can be applied. TALS is an iterative method. In each iteration, three updates are

carried out. In each update we fix two matrices and get the least square solution of the

third matrix. To put it in detail, in each iteration, we first fix A and P from last iteration

and only update A∗ by solving

A∗ = arg min
A∗ ‖Ry(a)− (P¯A)AH‖2

F . (2.19)

We get the least square solution

AH = (P¯A)†Ry(a). (2.20)

Then we use P from last iteration and A∗ from this iteration to update A by solving

A = arg min
A
‖Ry(b)− (A∗ ¯P)AT ‖2

F . (2.21)

We obtain the solution

AT = (A∗ ¯P)†Ry(b). (2.22)

Finally we use A and A∗ from this iteration and update P by solving

P = arg min
P
‖Ry(c)− (A¯A∗)PT ‖2

F . (2.23)

We obtain

PT = (A¯A∗)†Ry(c). (2.24)

For each iterative algorithm, there is the initialization problem. In TALS we can simply

initialize A,A∗ and P with random numbers. Because in each iteration the update of

three matrices may either improve or maintain but can not worsen the current fit, global

convergence of TALS fitting is almost guaranteed.
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The computation work of TALS are mainly consumed by least square fitting. Therefore

the computational complexity of TALS in one iteration is O(K2MP ). The number of

iterations required till convergence depends on different data and initial values. There are

also some fast algorithms available to carry out three way decomposition. We will discuss

it in chapter 3.

2.5 JADE

Take a further look into equation (2.10). We find that Ry(p)can be diagonalized to Dp(P) by

A. In other words, A is the joint diagonalizer of P matrices Ry(1), . . . ,Ry(P ). We can turn

to some methods which can jointly diagonalize a set of matrices to find A. A similar idea

can be found in [2] and the references therein. In their case, they use a joint approximate

diagonalization (JADE) method to separate a mixture of sources from a set of covariance

matrices at different time delay. Take the idea of JADE in the time domain to our scenario

in the space domain, we develop the following algorithm (for detailed derivations, refer to

[2]).

1. Calculate the EigenValue Decomposition (EVD) of Ry(1). Denote λ1, . . . , λM as the

M largest eigenvalues, h1, . . . ,hM the corresponding eigen vector.

2. Estimate the noise power σ̂2
v by averaging the (K −M) smallest eigenvalues.

3. Form a whitening matrix in the following way

Ŵ = [(λ1 − σ̂2
v)
− 1

2 h1, . . . , (λM − σ̂2
v)
− 1

2 hM ]H . (2.25)

4. Apply Ŵ to prewhite the received mixture signal Y(n). Denote Z(n) = ŴY(n). And

calculate the covariance matrix of the whitened signals to obtain: Rz(1), . . . ,Rz(P ).

5. Obtain an unitary matrix Û as a joint diagonlizer of Rz(1), . . . ,Rz(P ).
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6. The SS matrix A can be estimated as Â = Ŵ†Û.



Chapter 3

Simulation

3.1 Simulation Setup

In our blind estimation algorithm, we don’t exploit the manifold of antenna array. The

manifold of the antenna array can be arbitrary. For the reason of convenience and closer

to practice, we assume a uniform linear array. In all numerical simulations we assume the

antennas are omnidirectional and displaced by half wavelength. User signals are spread by

Walsh code and BPSK modulation scheme is applied.

The so called Sylvester construction can be used to generate Walsh code. That is:

C2 =


 1 1

1 −1


 ;C2n = C2 ⊗Cn.

Based on this construction, C4 for example can be obtained as

C4 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




.

As analyzed in section 2.3, the signal powers should be changed between covariance matrix

slabs. In simulations the powers are changed according to uniform distribution

P = SNR(ones(P, M) + fPCF(rand(P, M)− 0.5))σ2
v, (3.1)

25
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where SNR (signal to noise ratio) is defined as the ratio of single signal power at one receiving

antenna to the power of noise at one receiving antenna, ones(P,M) means a P ×M matrix

with all the elements equal one, rand(P, M) is a P ×M matrix with each elements (0, 1)

uniformly distributed, fPCF is the so called power change factor (PCF), which measures

the extent the power changes, can be adjusted. The larger the fPCF, the larger the power

changes.

As mentioned in section 2.4. TALS can be applied to fit the PARAFAC model. How-

ever it can be shown that with random initial values, TALS needs many iterations to con-

verge. A fast algorithm called COMFAC is applied in the simulation to fit the PARAFAC

model [6]. COMFAC works by first compress the original three way array of dimension

K × K × P to a K ′ × K ′ × P ′ compressed three way array using a Tucker3 model [5].

Normally, after compression K ′ ×K ′ × P ′ is much smaller than K ×K × P . Subsequently

the compressed array is fitted to the PARAFAC model. This process can be initialized with

PARAFAC-TALS or by some better methods such as Complex Generalized Rank Anni-

hilation Method(CGRAM) method or Direct TriLinear Decomposition (DTLD). Then the

solution is decompressed to the original space. Finally a few safeguard PARAFAC-TALS

steps are performed. Detailed information about other three way analysis algorithms men-

tioned above such as CGRAM and DTLD can be found in the webpage of Rasmus Bro at

http://newton.foodsci.kvl.dk/users/rasmus/. N-way analysis toolbox for MATLAB can be

downloaded from http://www.models.kvl.dk/source/.

As pointed out in equation (2.13), the results from PARAFAC analysis carry ambiguities.

In simulations, the scaling ambiguity is removed in the following way. Recall that without

loss of generality, we assumed that the first antenna in the antenna array is the reference

antenna. So the elements in first row of A equal 1. By dividing in each column vector the
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corresponding first element, i.e.

Â(:, m) =
Â(:,m)

Â(1,m)
, (3.2)

for m = 1, . . . , M . Â denotes the estimation of A. The scaling ambiguity is removed.

Regarding to the permutation ambiguity, we applied the so called greedy matching method.

The idea of greedy matching is to calculate the vector distance (Frobenius norm) between

each column vectors in A and Â. Then permute the columns in Â according to the compari-

son result. This algorithm is suboptimum, which is nevertheless robust and computationally

efficient to carry out for any number of users.

We adopt average mean square error (AMSE) for performance evaluation and compar-

ison, which is

AMSE =
‖Â−A‖2

F

KM
. (3.3)

To show the performance of our algorithm, the AMSE is compared with deterministic

CRB (D-CRB). As shown in [8], D-CRB is lower than stochastic CRB (S-CRB) and is not

achievable in the general case. Therefore, the performance of our algorithm is compared to

a more strict criteria. Corresponding to (3.3), the D-CRB is also normalized by diving the

number of elements in A

CRB =
Trace(CRBaa)

KM
. (3.4)

In the following sections we will discuss different numerical simulations.

3.2 Estimation Error against Number of Snapshots

In these simulations, there are two signals arriving from 7◦ and 15◦ from the broad side

of the antenna array. SNR = 10dB. The antenna array contains 10 antennas. We collect

5 covariance matrix slabs for each simulation. Each point is the average result from 100

runs. The abscissa denotes the total number of snapshots N for P matrix slabs (P = 5 in
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Figure 3.1: AMSE versus number of snapshots (10 antennas)

this case). The N snapshots are uniformly divided into P matrix slabs. Figure 3.1 shows

results of the first simulation. We can see that PARAFAC algorithm stays close to D-CRB

(note here that the plot is log-log scale) and performs better than JADE.

In the second simulation the simulation setups are the same as the first simulation except

that the number of antennas are reduced from 10 to 5. We can see from Figure 3.2 that the

estimation by PARAFAC is still better.

In the third simulation we add another two signals arriving from −20◦ and −40◦ re-

spectively. There are 10 antennas in this simulation. The results are shown in Figure

3.3.

3.3 Estimation Error against SNR

In these simulations, we show the performance of estimation against SNR. The total number

of snapshots is fixed to 500. The two impinging signals are from 7◦ and 15◦ from the broad

side of the antenna array. There’re 10 antenna sensors in the array. We collect 10 matrix
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Figure 3.2: AMSE versus number of snapshots (5 antennas)
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Figure 3.3: AMSE versus number of snapshots (4 users)



CHAPTER 3. SIMULATION 30

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR(DB)

A
M

S
E

PARAFAC
JADE
Determ. CRB

Figure 3.4: AMSE versus SNR (10 antennas)

slabs. In Figure 3.4 we can see that PARAFAC algorithm has about 8dB gain over JADE.

Figure 3.5 shows the results of the 5th simulation. The other parameters are the same

as the 4th simulation except that the number of antenna is reduced from 10 to 5. We can

find that PARAFAC still has 5dB gain over JADE.

3.4 Effects of Parameters

As analyzed in section 2.3, parameters that affects the identifiability and performance of

PARAFAC are: the number of antenna elements, power change factor (fPCF), and the

number of covariance matrix slabs. In simulation 6 and 7, we try to find the role of the

number of antennas.

In simulation 6, we fix the number of covariance matrix slabs = 10, fPCF = 12 and

two impinging signals. We vary the number of antennas from 2 to 24. From Figure 3.6 we

can see that PARAFAC performs better with increasing number of antennas. But after a
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Figure 3.5: AMSE versus SNR (5 antennas)

certain threshold (10 antennas in this case) the performance improvement is not so obvious.

In the 7th simulation, there are 8 signals. The number of antennas varies from 3 to 24.

According to corollary 2 in section 2.3, 5 antennas are enough for identification. However

in order to achieve better estimation, the number of antennas should be greater than 10.

See Figure 3.7.

In simulation 8, we illustrate the performance against fPCF. The number of matrix slabs

is 10. The number of antennas is 10. We can see from Figure 3.8 that the larger the power

changes, the better the performance, which proves our analysis in section 2.3.

In the last simulation, we study the estimation performance against number of covari-

ance matrix slabs. We fix the total number of snapshots and divide them into different

number of matrix slabs. The results in Figure 3.9 show that this parameter doesn’t play

an important role in PARAFAC, yet it does affect JADE algorithm. Because the essence

of JADE algorithm is try to diagonalize several matrices jointly to improve performance.

Detailed discussion of JADE see [2].
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3.5 Discussion

3.5.1 Diagonal Property of Covariance Matrices

As we mentioned in equation (2.8), Rs(p) are diagonal matrices. This observation is very im-

portant. If Rs(p) has nonzero off-diagonal elements, the performance of PARAFAC analysis

will degrade dramatically. Let’s rewrite equation (2.6) here for the p-th covariance matrix

for the convenience of analysis

Ry(p) = ARs(p)A
H . (3.5)

Let’s carry out the eigenvalue decomposition [9] of Rs(p)

Rs(p) = Us(p)Λs(p)U
H
s(p), (3.6)

where Us(p) is the eigenvalue matrix of Rs(p). Λs(p) is the eigenvalue matrix of Rs(p) and is

diagonal. Insert (3.6) into (3.5), we obtain

Ry(p) = AUs(p)Λs(p)U
H
s(p)A

H

= Ã(p)Λs(p)Ã
H
(p), (3.7)

where

Ã(p) = AUs(p).

Similarly, the q-th covariance matrix can be written as

Ry(q) = Ã(q)Λs(q)Ã
H
(q). (3.8)

where Λs(q) is diagonal. From (3.7) and (3.8) we find that the equivalent SS matrix Ã(p) is

different for each covariance matrix slab. We can not fit them into PARAFAC model as we

did in section 2.3. Therefore we can not estimate A properly.

As a matter of fact, we found in the simulation that PARAFAC is very sensitive to the

nonzero off-diagonal elements. Even if the variances of off-diagonal elements towards zero
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Figure 3.10: Rs(p) not exactly diagonal (AMSE versus number of snapshots)

are as small as 10−3, there is still a big distance between estimation AMSE and D-CRB.

Figure 3.10 illustrates AMSE versus number of snapshots when Rs(p) is not exactly diagonal.

Figure 3.11 shows AMSE versus SNR. Simulation setups for these two simulations are: two

signals from 7◦ and 15◦ of the broad side of antenna array, 5 covariance matrices, 10 antennas

in antenna array. For AMSE versus number of snapshots, SNR is fixed to 10dB. For AMSE

versus SNR, total number of snapshots is fixed to 500. We can compare Figure 3.1 with

Figure 3.10 and Figure 3.4 with Figure 3.11 to see the importance of diagonal property of

covariance matrices in PARAFAC analysis. Notice in Figure 3.11, AMSE almost doesn’t

improve with increasing SNR. Our interpretation is: non-diagonal of Rs(p) has more serious

effect than the additive noise in PARAFAC analysis.

Thanks for the orthogonal property of Walsh code, Rs(p) is exactly diagonal. However,

there are still some problems left for study. If the synchronization is only roughly achieved,

i.e. there is shift between the Walsh codes of different users. This shift will make Rs(p) no

more diagonal. Or in scenarios where the channel is frequency selective, the superposition
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Figure 3.11: Rs(p) not exactly diagonal (AMSE versus SNR)

of Walsh codes of different delay versions will again lead to the non-diagonal property of

Rs(p). Fortunately, in these cases, anther three way analysis model called PARAFAC2 will

be of help. PARAFAC2 model can be written as

Ry(p) = ADpHDH
p AH , (3.9)

where Dp is diagonal matrix and varies from different covariance matrices. Matrix H here

need not to be diagonal. It is said that as long as H and A remain the same for each

covariance matrix, A,H can be uniquely decomposed given a set of matrices. Further

discussions of PARAFAC2 are beyond the range of this thesis. We can turn to [15] and the

reference therein for reference.

3.5.2 Elimination of Noise

We mentioned in section 2.3 that PARAFAC analysis doesn’t model the noise terms. How-

ever in real applications, we always have noise at the antenna array. Some methods can be



CHAPTER 3. SIMULATION 37

used to estimate the noise power. Once noise power is estimated, we can subtract it from

the covariance matrices before carrying out the PARAFAC analysis.

If the number of antennas is greater than the number of incoming signals, subspace

method can be used to estimate the noise power. Let’s carry out the eigenvalue decompo-

sition of covariance matrices.

Ry(p) = ARs(p)A
H + σ2

vI

= Uy(p)Λy(p)U
H
y(p), (3.10)

where

Λy(p) =




σ2
s1 + σ2

v1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 σ2
sM + σ2

vM 0 0 0

0 0 0 σ2
vM+1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 σ2
vK




(3.11)

is the eigenvalue matrix. σ2
sm,m = 1, . . . ,M are signal powers, σ2

vk, k = 1, . . . ,K are noise

powers. Now for each covariance matrix slab, we carry out the following calculation to

eliminate the noise:

1. Calculate the eigenvalue decomposition. Denote λ1, . . . , λK as the eigenvalues.

2. Average the K −M smallest eigenvalues to get the estimation of noise power

σ̂2
v = ΣK

i=M+1λi.

3. Subtract σ̂2
v from covariance matrices

R̃y(p) = Ry(p) − σ̂2
vI.

Subsequently we apply PARAFAC to R̃y(p), p = 1, . . . , P . From Figure 3.12 we can see

that there is some small improvement where SNR is low. In higher SNR there’s almost no

improvement. The simulation setups are the same as simulation 4.
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Figure 3.12: The effects of noise in PARAFAC analysis

3.5.3 Symmetry of PARAFAC Model

Before we finish the discussion section, we would like to point out that our model is actually

a constrained version of normal PARAFAC model, in that C = A∗ in the model presented

in section 1.2. That is to say, our model is “symmetric”. We can exploit this additional

constraint. For example, we can average the result of Â and Â∗ to get better estimation

results. We can also reduce the computational complexity in PARAFAC model fitting by

simply letting AT = (AH)∗ in equation (2.22). The following table shows the CPU time(in

seconds) consumed by common PARAFAC fitting versus symmetric constrained PARAFAC

fitting. The computer we used for simulation is a PC with Pentium4 2GHz CPU. The

simulation setup is the same as simulation 4. We calculate the CPU time for different SNR.

The data in table 3.1 shows the CPU time that COMFAC needs till convergence. The data

is the average results of 50 runs. The data in table 3.2 shows the CPU time that TALS

needs till convergence. The data is the average results of 50 runs. From these two figures,
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SNR(DB) 0 5 10 15 20 25 30
Common 0.174 0.167 0.168 0.166 0.167 0.167 0.172

Symmetric 0.141 0.150 0.144 0.143 0.142 0.142 0.142

Table 3.1: Comparison of CPU time between common COMFAC and symmetric constrained
COMFAC

SNR(DB) 0 5 10 15 20 25 30
Common 0.562 0.574 0.637 0.615 0.638 0.691 1.533

Symmetric 0.508 0.552 0.500 0.512 0.568 0.574 0.781

Table 3.2: Comparison of CPU time between common TALS and symmetric constrained
TALS

we can also see that COMFAC needs shorter time to converge than TALS.



Conclusion

This thesis has addressed the problem of signal spatial signature (SS) estimation, which

is very important in mobile communications. Based on second order statistics (covariance

matrix) of signals, we proposed a blind algorithm for SS estimation. Because of the unitary

ambiguity, we can not estimate SS correctly using only one covariance matrix. However

if we fix the signal power in a certain number of snapshots (windows) and change them

between different windows, we can obtain several different covariance matrices. Therefore,

we can form a three way covariance “array”. Based on the PARAFAC analysis, we can now

estimate SS correctly from this three way array only up to some scaling and permutation

ambiguities. The identifiability potential of our algorithm is derived. In this thesis, our

algorithm is also compared to JADE—another class of algorithm which can be used to solve

our problem. Numerical simulations demonstrate that our algorithm clearly outperforms

JADE and stays close to what is theoretically best performance-wise.
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Appendix A

Derivation of Deterministic CRB

In this appendix, we derive the deterministic CRB for the estimation of SS matrix A by

following [18]. Let’s first make some simplifications:

1. assume that Walsh spreading sequences are known at the receiver, which means ci(i =

1, . . . , M) in (2.2) is not a parameter to be estimated. To derive CRB, we just take

the unspreaded user symbols.

2. Although user symbols are different between matrix slabs, they do share the same

statistical properties. Therefore we denote them as the same in the following deriva-

tion.

Now we can write the data model with simplification

y(p)(n) = ADp(M)s(n) + v(n), (A.1)

where y(p) is the received signal vector in pth matrix slab. n = 1, . . . , Ns, M is the amplitude

matrix of signals (i.e. M =
√

P), s(n) = [s1(n), s2(n), . . . , sM (n)]T . We stack Ns signal

vectors and cast them into matrix form to obtain

Ya(p) = ADp(M)ST + N1, (A.2)
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where Ya(p) = [y(p)(1), . . . ,y(p)(Ns)], S = [sT (1), . . . , sT (Ns)]T , N1 = [vT (1), . . . ,vT (Ns)]T .

By stacking matrices Ya(1), . . . ,Ya(P ) from front to end together, we get a three-way array

Y. We now unfold Y into a tall matrix Ya

Ya =




Ya(1)

Ya(2)

...

Ya(P)




=




AD1(M)ST + N1

AD2(M)ST + N1

...

ADP (M)ST + N1




=




AD1(M)

AD2(M)
...

ADP (M)




ST +N1 = (M¯A)ST +N1.

(A.3)

By unfolding Y in other two directions and after the same manipulation, we obtain

Yb = (A¯ S)MT + N2

Yc = (S¯M)AT + N3. (A.4)

N2,N3 here denote noise matrix contained in Yb and Yc respectively. Under AWG noise

assumption, the likelihood function of Y can be written as

ÃL(Y) =
1

(πσ2
v)MNsP

exp{− 1
σ2

v

Ns∑

n=1

‖Ya(n)− (M¯A)s(n)‖2}

ÃL(Y) =
1

(πσ2
v)MNsP

exp{− 1
σ2

v

P∑

p=1

‖Yb(p)− (A¯ S)m(p)‖2}

ÃL(Y) =
1

(πσ2
v)MNsP

exp{− 1
σ2

v

K∑

k=1

‖Yc(k)− (S¯M)a(k)‖2}. (A.5)

The unknown parameters which are going to be estimated are

α = [aT
1 , . . . ,aT

K ,mT
1 , . . . ,mT

P , sT
1 , . . . , sT

Ns
,aH

1 , . . . ,aH
K , sH

1 , . . . , sH
N , σ2

v]. (A.6)

The log-likelihood function LL(α) = ln(L(Y)) can be written

LL(α) = −MNsP ln(πσ2
v)−

1
σ2

v

Ns∑

n=1

‖Ya(n)− (M¯A)s(n)‖2

LL(α) = −MNsP ln(πσ2
v)−

1
σ2

v

P∑

p=1

‖Yb(p)− (A¯ S)m(p)‖2

LL(α) = −MNsP ln(πσ2
v)−

1
σ2

v

K∑

k=1

‖Yc(k)− (S¯M)a(k)‖2. (A.7)
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Taking partial derivation of LL(α) with respect to the unknown parameters. We get

∂LL(α)
∂sn,m

=
1
σ2

v

(Ya(n)− (M¯A)s(n))H(M¯A)em (A.8)

∂LL(α)
∂mp,m

=
1
σ2

v

(Yb(p)− (A¯ S)m(p))H(A¯ S)em (A.9)

∂LL(α)
∂ak,m

=
1
σ2

v

(Yc(k)− (S¯M)a(k))H(S¯M)em. (A.10)

Here em is a column vector with the m-th element equals one and other elements zero.

Following the development in [13],[18], we derive the Fisher Information Matrix (FIM) to

calculate CRB. FIM can be formed as

F =




Ψ 0 0

0 Ψ∗ 0

0 0 fσσ


 , (A.11)

where

Ψ =




Ψaa Ψam Ψas

ΨH
am Ψmm Ψms

ΨH
as ΨH

ms Ψss


 (A.12)

and fσσ corresponds to the noise term in FIM. Under AWG noise, the elements in (A.12)

can be derived now

E{∂LL(α)
∂a∗k1,m1

∂LL(α)
∂ak2,m2

} =
1
σ2

v

eH
m1(S¯M)H(S¯M)em2δk1k2

E{∂LL(α)
∂d∗p1,m1

∂LL(α)
∂dp2,m2

} =
1
σ2

v

eH
m1(A¯ S)H(A¯ S)em2δp1p2

E{∂LL(α)
∂s∗n1,m1

∂LL(α)
∂sn2,m2

} =
1
σ2

v

eH
m1(M¯A)H(M¯A)em2δn1n2

E{∂LL(α)
∂a∗k,m1

∂LL(α)
∂dp,m2

} =
1
σ4

v

eH
m1(S¯M)HE{N3(k)N2(p)H}(A¯ S)em2

E{∂LL(α)
∂a∗k,m1

∂LL(α)
∂sn,m2

} =
1
σ4

v

eH
m1(S¯M)HE{N3(k)N1(n)H}(M¯A)em2

E{∂LL(α)
∂d∗p,m1

∂LL(α)
∂sn,m2

} =
1
σ4

v

eH
m1(A¯ S)HE{N2(p)N1(n)H}(M¯A)em2,
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where δ denotes the Kronecker delta. The values of E{N3(k)N2(p)H}, E{N3(k)N1(n)H}
and E{N2(p)N1(n)H} depend on the correlation of corresponding noise term. According

to [13]

Ψ−1 =




CRBaa CRBam CRBas

CRBH
am CRBmm CRBms

CRBH
as CRBH

ms CRBss


 . (A.13)

Let’s denote

Ψ1 =
(

Ψam Ψas

)
(A.14)

and

Ψ2 =


 Ψmm Ψms

ΨH
ms Ψss


 . (A.15)

Apply block matrix inversion rule, we finally obtain

CRBaa = (Ψaa −Ψ1Ψ−1
2 ΨH

1 )−1. (A.16)
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