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Abstract—We consider a multiple antenna full-duplex (FD) bi-
directional (point-to-point) communication system with a limited
analog domain self-interference cancellation capability. The effect
of the residual self-interference resulting from independent and
identically distributed (i.i.d.) channel estimation errors and lim-

ited dynamic ranges of the transmitters and receivers is studied
in the digital domain. We design transceiver matrices based
on the minimization of sum mean-squared error (MSE) and
the maximum per-node MSE optimization problems subject to
individual power constraints at each node through an iterative
alternating algorithm, which is proven to converge to at least a
local optimal solution.
Index Terms—Full-duplex, limited dynamic range, MIMO,

MSE, self-interference, transceiver designs.

I. INTRODUCTION

Full-duplex bi-directional wireless communication systems,

which perform simultaneous transmission and reception at the

same time and frequency has the capability to double the

system spectral efficiency, compared to that of half-duplex

systems, in which the nodes transmit and receive on orthogonal

channels. The potential advantages of full-duplex radios over

half-duplex radios have recently attracted a great deal of

attention and motivated experimental [1]-[4] and theoretical

research activities [5]-[11].

The main challenge to implement full-duplex radios is the

self-interference signal from the transmitter chain into the

receiver chain, which can saturate the front-end of the receiver,

and must be canceled. A full-duplex radio design using signal

inversion and adaptive cancellation was proposed in [1]. In [2],

self-interference is canceled by generating a canceling signal

and adding it at the receive antenna using radio-frequency (RF)

adder in the analog domain. Analog domain cancellation for

a single antenna and multiple antenna full-duplex system was

studied in [3] and [4], respectively.

The increased spatial diversity with the use of multiple-input

multiple-output (MIMO) systems enables transmit beamform-

ing techniques to mitigate the self-interference [5]-[8]. Null-

space projection and minimum mean-squared error (MMSE)

techniques are used in [5] to mitigate the self-interference

in the spatial domain, which are possible when there are

enough degrees of freedom (d.o.f.). An effective techique

under insufficient number of d.o.f. is proposed in [6] that

maximize the signal-to-interference ratio at the relay input

and output. In [7], a self-interference cancellation algorithm

based on the optimization of the relay processing vectors over

the continuous domain is proposed, which outperforms the

techniques in [5]. In [8], transmit and receive beamforming and

power allocation techniques for MIMO full-duplex/half-duplex

decode-and-forward/amplify-and-forward relays are discussed.

Most of the works on optimization problems related to

full-duplex systems have studied the maximization of the

achievable rate [9]-[11] and to the best of our knowledge, MSE

based transceiver designs have not been studied. MSE is an

important performance measure to approach the information-

theoretic limits of Gaussian channels, and has been widely

considered as an optimization metric in precoding design in

the literature, e.g., [12]-[15]. In this paper, a joint and iterative

transceiver design for the MIMO bi-directional full-duplex

systems is proposed. We assume that the nodes have imperfect

channel state information (CSI) of the MIMO channels, and

we consider the limited dynamic ranges of the transmitters and

receivers. Minimization of both sum-MSE and the maximum

per-node MSE subject to individual power constraints at

each node is studied, and an alternating iterative algorithm

to compute the optimum transmit and receiving matrices is

proposed, which is guaranteed to converge to at least a local

optimal solution.

The notations used in this paper are as follows. (·)T and

(·)H are the transpose and conjugate transpose, respectively.

E {·} denotes the statistical expectation; IN is the N by N

identity matrix; tr(·) and are the trace and determinant of a

matrix; diag (A) is the diagonal matrix with the elements on

the diagonal ofA. vec(·) is a one long column vector obtained
by stacking the elements of a matrix. ⊗, ⊥ and ‖ · ‖2 denote

Kronecker product, the statistical independence, and Euclidean

norm of a vector, respectively. We will also refer to full-duplex

as FD and half-duplex as HD.

II. SYSTEM MODEL

We consider a FD MIMO system between two nodes

exchanging information simultaneously as seen in Fig. 1. We

assume, without loss of generality, that each node has N

physical antennas that can transmit and receive simultaneously

at the same carrier frequency [4].
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Fig. 1. Bi-directional Full-Duplex MIMO System

As illustrated in Fig. 1, since the nodes operate in FD mode,

the receiver i ∈ {1, 2} receives signals from both transmitters

over MIMO channels, the entries of which are assumed to i.i.d.

complex Gaussian variables with zero mean and unit variance.

Hii ∈ CN×N is the channel between ith transmitter-receiver

pair and Hij ∈ C
N×N , j ∈ {1, 2} and j 6= i is the self-

interference channel from the transmitter j to the receiver i.1

The channel matrices are assumed to be constant during a time

slot, but change randomly at each time slot.

We assume that both nodes estimate the channels, and

because of the channel estimation errors, they have imperfect

CSI. We use the channel estimation model in [5], [6], where

the receiver i ∈ {1, 2} applies the MMSE estimation method to

estimate Hij . The MMSE estimation and the estimation error

are denoted as H̃ij and ∆Hij = Hij−H̃ij , respectively. Here

H̃ij and ∆Hij are uncorrelated, and the entries of ∆Hij are

complex Gaussian with zero mean and variance σ2
e .

The data streams at the ith transmitter are denoted as di ∈
CN , i = 1, 2, which are assumed to be complex, zero mean,

i.i.d with E
{

did
H
i

}

= IN , and E
{

did
H
j

}

= 0N , i 6= j.

The transmitted signal by the ith transmitter of size N × 1
is given by

xi = Vidi, i = 1, 2 (1)

where Vi ∈ CN×N is the precoding matrix at the ith

transmitter, and xi is assumed to be Gaussian distributed with

zero mean and covariance matrix E
{

xix
H
i

}

= ViV
H
i .

We consider a FD MIMO bi-directional system, where two

nodes transmit simultaneously. Thus, the receiver i receives

the transmission signals from both transmitters. The received

signal at the ith receiver of size N × 1 is written as

yi =
√
ρiHii (xi + ci) +

√
ηiHij (xj + cj) + ei + ni

=
√
ρiH̃iixi +

√
ρi∆Hiixi +

√
ρiHiici +

√
ηiH̃ijxj

+
√
ηi∆Hijxj +

√
ηiHijcj + ei + ni, i = 1, 2 (2)

where xj = Vjdj is N × 1 the self-interference signal at the

ith receiver, which is Gaussian distributed with zero mean and

covariance matrix E
{

xjx
H
j

}

= VjV
H
j . Note that, the number

of streams is assumed to be equal to the number of antennas,

N . ni ∈ CN is the additive white Gaussian noise (AWGN)

1Before analog domain cancellation, the self-interference channel has a
strong Line-Of-Sight (LOS) component, so can be modeled as Ricean distri-
bution with a large K-factor. After applying an analog domain cancellation, the
strong LOS component is attenuated, resulting in a Ricean distribution with
a small K-factor or in a Rayleigh distribution (under a large suppression) [2].

vector at the ith receiver with zero mean and unit covariance

matrix, E
{

nin
H
i

}

= IN and it is uncorrelated to both xi and

xj . ρi denotes the average power gain of the ith transmitter-

receiver link, and ηi denotes the average power gain of the

self-interference channel.

ck ∈ CN , k = 1, 2 is the transmitter distortion injected at

each transmitter antenna of the kth transmitter that models the

effect of limited dynamic range (DR) by approximating the

effects of power-amplifier noise, non-linearities in the DAC

and phase noise [9]. The covariance matrix of ck is given by

κ (κ ≪ 1) times the energy of the intended signal at each

transmit antenna. In particular ck can be modeled as [9]

ck ∼ CN
(

0, κ diag
(

VkV
H
k

))

, ck ⊥ xk. (3)

ek ∈ CN , k = 1, 2 is the receiver distortion injected

at each receive antenna of the kth receiver that models the

effect of limited receiver DR by approximating the effects of

additive gain-control noise, non-linearities in the ADC and

phase noise [9]. The covariance matrix of ek is given by

β (β ≪ 1) times the energy of the undistorted received signal
at each receive antenna. In particular, ek can be modeled as [9]

ek ∼ CN (0, βdiag (Φk)) , ek ⊥ uk (4)

where Φk = Cov{uk} and uk is the kth receiver’s undistorted

received vector, i.e. uk = yk − ek.

Since the receiver i ∈ {1, 2} has the knowledge of the self-
interference signal xj from transmitter j ∈ {1, 2}, j 6= i, the

self-interference term
√
η
i
H̃ijxj can be canceled [9], and the

resulting received signal can be written as

ỹi = yi −
√
ηiH̃ijxj (5)

=
√
ρiH̃iixi + vi

where vi is the total noise after the self-interference cancel-

lation due to channel estimation errors and limited DR of the

transmitters/receivers, and is given by

vi =
√
ρi∆Hiixi +

√
ρiHiici +

√
ηi∆Hijxj

+
√
ηiHijcj + ei + ni. (6)

Similar to the analysis in [9], under κ ≪ 1 and β ≪ 1, the
covariance matrix of vi can be approximated as

Σ̃i ≈ ρiκH̃iidiag
(

ViV
H
i

)

H̃H
ii + ρiσ

2
e tr

{

ViV
H
i

}

IN (7)

+ ηiκH̃ijdiag
(

VjV
H
j

)

H̃H
ij + ηiσ

2
e tr

{

VjV
H
j

}

IN

+ βρidiag
(

H̃iiViV
H
i H̃H

ii

)

+ IN

+ βηidiag
(

H̃ijVjV
H
j H̃H

ij

)

, i, j ∈ {1, 2} and j 6= i.

To estimate the data streams, node i applies the linear

receiver Ri, i = 1, 2.

d̂i = Riỹi (8)

=
√
ρiRiH̃iiVidi +Rivi.
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Using (8), the MSE matrix at the ith receiver can be

expressed as

MSEi = E

{

(

d̂i − di

)(

d̂i − di

)H
}

=
(√

ρiRiH̃iiVi − IN

)(√
ρiRiH̃iiVi − IN

)H

+RiΣ̃iR
H
i . (9)

III. SUM-MSE MINIMIZATION

Sum-MSE optimization problem can formulated as

min
Vi, Ri

2
∑

i=1

tr{MSEi} (10)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2 (11)

where Pi is the individual power constraint at the ith trans-

mitter.

Note that the sum-MSE optimization problem (10)-(11) is

not jointly convex over transmit precoding matricesVi and re-

ceiving filter matricesRi, so the standard convex optimization

methods can not be applied. But since sum-MSE optimization

problem (10)-(11) is component-wise convex over Vi and

Ri, an iterative alternating algorithm that finds the efficient

solution ofVi, Ri, i = 1, 2 based on the necessary conditions
of the optimization problem (10)-(11) is carried out.

The Lagrange function of the sum-MSE problem (10)-(11)

is written as:

L(Vi, Ri, λi) =

2
∑

i=1

tr{MSEi}+
2

∑

i=1

λi

(

tr
{

ViV
H
i

}

− Pi

)

where λi is the Lagrange multiplier associated with the

individual power constraint at the transmitter i. The Karush-

Kuhn-Tucker (KKT) conditions can be written as

tr
{

ViV
H
i

}

− Pi ≤ 0, i = 1, 2 (12)

λi ≥ 0, i = 1, 2 (13)

λi

(

tr
{

ViV
H
i

}

− Pi

)

= 0, i = 1, 2 (14)

∂L
∂V∗

i

= 0,
∂L

∂R∗

i

= 0, i = 1, 2. (15)

Taking the partial derivative of the Lagrangian function L with

respect to the matrix Vi and Ri, we can obtain

∂L
∂V∗

i

= λiVi −
√
ρiH̃

H
iiR

H
i +XiVi (16)

∂L
∂R∗

i

= −√
ρiV

H
i H̃H

ii + ρiRiH̃iiViV
H
i H̃H

ii +RiΣ̃i (17)

where Xi in (16) is given by

Xi = ρiH̃
H
iiR

H
i RiH̃ii + ρiκdiag

(

H̃H
iiR

H
i RiH̃ii

)

+ ρiσ
2
e tr

{

RiR
H
i

}

IN + ρiβH̃
H
ii diag

(

RH
i Ri

)

H̃ii

+ ηjκdiag
(

H̃H
jiR

H
j RjH̃ji

)

+ ηj σ2
e tr

{

RjR
H
j

}

IN

+ ηjβH̃
H
jidiag

(

RH
j Rj

)

H̃ji, i = 1, 2. (18)

From (16)–(17), the optimal Vi and Ri, i = 1, 2 can be

expressed as

Vi =
√
ρi (λiIN +Xi)

−1
H̃H

iiR
H
i (19)

Ri =
√
ρiV

H
i H̃H

ii

(

ρiH̃iiViV
H
i H̃H

ii + Σ̃i

)

−1

. (20)

As it is seen from (19)–(20) that the optimal transmit

precoding matrix Vi is dependent on the receiving filter

matrices of two nodes, Ri, i = {1, 2} and the optimal

receiving matrix Ri, which is a linear MMSE receiver, is

dependent on the optimal transmit precoding matrices of two

nodes, Vi, i = {1, 2}. Therefore, we obtain the transmit

precoding and receive filtering matrices using an iterative

alternating technique. Particularly, we compute and update

the optimal transmit matrices Vi from (19) when the receive

filters Ri, i = {1, 2} are fixed, and then using the transmit

matrices Vi obtained at the previous step, we compute and

update the receiver filter matrices Ri from (20). The iterations

are repeated until convergence or a pre-defined number of

iterations is reached.

The values of the Lagrange multipliers λi, i = 1, 2 are

calculated by taking the singular value decomposition of

X
[n+1]
i = U

[n+1]
i ∆

[n+1]
i

(

U
[n+1]
i

)H

and writing the update

as V
[λ̃i]
i =

√
ρi

(

λ̃iIN +X
[n+1]
i

)

−1

H̃H
ii

(

R
[n+1]
i

)H

at each

iteration. By plugging V
[λ̃i]
i into the power constraint in (11)

and after simple steps, (11) can be written as

tr

{

V
[λ̃i]
i

(

V
[λ̃i]
i

)H
}

= ρi

N
∑

k=1

g
[n+1]
ik

(

λ̃i +∆
[n+1]
ik

)2

= Pi (21)

where g
[n+1]
ik denotes the kth element of

(

U
[n+1]
i

)H

H̃H
ii

(

R
[n+1]
i

)H

R
[n+1]
i H̃iiU

[n+1]
i and ∆

[n+1]
ik denotes the kth

element of the matrix ∆
[n+1]
i . We can compute λ̃i, i = 1, 2

from (21) numerically using Bisection search. The values of

the Lagrange multipliers λi, i = 1, 2 are equal to λ̃i, i = 1, 2
if λ̃i, i = 1, 2 is non-negative. Otherwise, the Lagrange

multipliers λi, i = 1, 2 are assigned as zeros.

Since the proposed iterative alternating algorithm decreases

the sum-MSE monotonically at each iteration, and the fact

that MSE is bounded below (at least by zero), it is easily

seen that the proposed algorithm is convergent and guaranteed

to converge to at least a local optimal solution. Similar to

the analysis in [15], the update of Ri requires O
(

6N3
)

for

the matrix multiplications inside the inverse, O
(

N3
)

for the

inverse, and O
(

2N3
)

for the matrix multiplications outside of

the inverse. The update ofVi requires O
(

9N3
)

computational

complexity2.

2Note that it is difficult to determine the complexity of the bisection method
to compute the Lagrange multipliers λi, since the speed of convergence is
dependent on the polynomial coefficients and the precision required to stop
the iterations [15].
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IV. MIN-MAX MSE MINIMIZATION

In the sum-MSE transceiver design problem discussed in

Section III, each node can have different MSEs, which may

not be fair. On the other hand, the Min-Max per-node MSE

transceiver design problem ensures that each receiver has the

same MSE so that it introduces fairness among the two FD

nodes. The Min-Max MSE optimization problem is formulated

as:

min
Vi, Ri

max
i=1,2

tr{MSEi} (22)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (23)

Similar to the sum-MSE optimization problem (10)-(11),

the Min-Max MSE optimization problem is not jointly convex

over transmit precoding matrices Vi and receive filtering

matricesRi. Therefore we again apply the iterative alternating

algorithm to compute the optimal Vi or Ri while keeping

the other one fixed. For fixed receiver filtering matrices

Ri, i = 1, 2, the Min-Max optimization problem to compute

the optimal transmit precoding matrix can be written as:

min
Vi

max
i=1,2

tr{MSEi} (24)

s.t tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (25)

By introducing an auxiliary variable l, which is an upper bound

on the square root of tr{MSEi} (i.e.,
√

tr{MSEi} ≤ l), the
optimization problem (24)–(25) can be rewritten as

min
Vi, l

l (26)

s.t
√

tr{MSEi} ≤ l i = 1, 2 (27)

tr
{

ViV
H
i

}

≤ Pi, i = 1, 2. (28)

To solve the optimization problem in (26)-(28), we need

to write tr{MSEi} in vector form. Using ‖vec (A) ‖22=
tr
{

AAH
}

and the identity vec(ABC) =
(

CT ⊗A
)

vec (B),
tr{MSEi} can be written as

tr{MSEi}

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

IN ⊗
(√

ρiRiH̃ii

)]

vec (Vi)− vec (IN )

√
ρiκ

[

IN ⊗
(

(

diag
(

H̃H
iiR

H
i RiH̃ii

))1/2
)]

vec (Vi)

√

ρiσ2
e

√

tr
{

RiR
H
i

}

vec (Vi)
√
βρi

[

IN ⊗
(

(

diag
(

RH
i Ri

))1/2
H̃ii

)]

vec (Vi)

√
ηiκ

[

IN ⊗
(

(

diag
(

H̃H
ijR

H
i RiH̃ij

))1/2
)]

vec (Vj)

√

ηiσ2
e

√

tr
{

RiR
H
i

}

vec (Vj)
√
βηi

[

IN ⊗
(

(

diag
(

RH
i Ri

))1/2
H̃ij

)]

vec (Vj)
√

tr
{

RiR
H
i

}

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

, ‖µi‖22. (29)

After obtaining the vector form of tr{MSEi}, the Min-

Max optimization problem to compute the transmit precoding

matrices (26)-(28) can be written as

min
Vi, l

l (30)

s.t ‖µi‖2 ≤ l, i = 1, 2 (31)

‖vec (Vi)‖2 ≤
√

Pi, i = 1, 2. (32)

Since the objective function (30) is linear and the con-

straints (31)–(32) are second-order cones, we can conclude

that (30)–(32) is a second-order cone programming (SOCP)

problem [16] and can be efficiently solved by standard SOCP

solvers, like SeDuMi [17].

Under the fixed transmit precoding matrices Vi, it is shown

in (20) that the optimal Ri, i = 1, 2 is linear MMSE receiver.

So overall, the iterative alternating Min-Max MSE algorithm

applies linear MMSE receiver, under fixed Vi to obtain the

optimal receive filtering matrices Ri, and solves (30)–(32),

under fixed Ri to obtain the optimal transmit precoding

matrices Vi. Similar to the discussion on the convergence

of the sum-MSE algorithm in Section III, we can also argue

that Min-Max MSE algorithm is guaranteed to converge to

at least a local optimal solution. The computational com-

plexity of the proposed algorithm mainly depends on solving

SOCP problem using SeDuMi. According to [17], the update

of Vi using SeDuMi requires computational complexity of

O
(

(

16N2 + 1
)2

32.5 + 33.5
)

. The computational complexity

of the update of Ri is the same as sum-MSE algorithm

discussed in Section III.

V. SIMULATION RESULTS

We simulate the sum-MSE (denoted as “Total”) and Min-

Max MSE (denoted as “MinMax”) transceiver design prob-

lems for MIMO FD bi-directional system as a function of

channel estimation errors σ2
e and dynamic range parameters

κ and β. For simplicity, we assumed a symmetrical scenario

with ρ1 = ρ2 = ρ and η1 = η2 = η, and the same transmit

power constraint at each transmitter, i.e., Pi = N, i = 1, 2.
Thus, the signal-to-noise ratio (SNR) for the desired chan-

nels is defined as SNRi = SNR = ρN, i = 1, 2 and

the interference-to-noise ratio (INR) for the self-interference
channels INRi = INR = ηN, i = 1, 2. The stopping criteria

(the difference between MSE values of the two iterations) and

the maximum number of iterations of the proposed iterative

alternating algorithm is set to be 10−4 and 1000, respectively.
The results are averaged over 1000 independent channel re-

alizations. As mentioned before, the sum-MSE and Min-Max

MSE optimization problems are non-convex, so initialization

point is important to achieve a suboptimal solution with a good

performance. In [14], several choices for initial point such as

right singular matrices and random matrices initialization have

been discussed. In this paper, we use right singular matrices

initialization.

In our first example, the effect of channel estimation errors

on the MSE of Total and MinMax algorithms is examined. It

can be seen from Fig. 2 that as the channel estimation errors

increases, the MSE of both Total and MinMax algorithms

increases. Also note that channel estimation error produces an
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Fig. 2. MSE comparison of the Total and MinMax algorithms with different
channel estimation errors versus SNR. Here INR = 20dB, N = 2, κ =

β = −40dB.
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= 0.01, κ = β = −40dB,

SNR = 20dB and INR = 10dB.

irreducible error floor, i.e., MSE can not be further reduced

by increasing SNR, since the noise dominates the channel

estimation error at low SNR, but at high SNR, the channel

estimation error dominates the noise, and the performance is

governed by channel estimation error, not noise [18].

In our second example, the MSE of the Total and MinMax

algorithms under limited transmitter and receiver DR is com-

pared. It can be seen from Fig. 3 that as κ and β decrease, the

MSE value also decreases and exhibits an error floor. Also,

the MSE curves almost overlap at low κ and β values.

The last example computes the MSE values for each node

in the system for the Total and MinMax schemes out of one

channel realization. We can see in Fig. 4 that the Total scheme

achieves the minimum sum MSE over two nodes and the

MinMax scheme introduces fairness, by ensuring that the two

nodes have almost the same MSE.

VI. CONCLUSION

In this work, the effects of residual self-interference, due

to the imperfect CSI and limited DR at the transmitters and

receivers, on the sum-MSE and Min-Max MSE transceiver

design problems for FD MIMO bi-directional system is stud-

ied. Since the transceiver design problems are non-convex,

an iterative alternating algorithm is proposed that compute

the transmit precoding or receive filtering matrices in an

alternating fashion while keeping the other one fixed. It is

shown through numerical simulations that MSE at each node

increases as the channel estimation error and the power of

the transmitter/receiver impairments increases. Moreover, in

Min-Max MSE transceiver design the nodes achieve the same

MSE, which is fair, and sum-MSE transceiver design achieves

the minimum total MSE over two FD nodes.
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