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Abstract—The uplink and downlink sum mean-squared error
(MSE) duality for multi-hop amplify-and-forward (AF) multiple-
input multiple-output (MIMO) relay channels is established,
which is a generalization of several sum-MSE duality results.
Unlike the previous results that prove the duality by computing
the MSEs for each stream directly, we introduce an interesting
perspective to the relation of the uplink-downlink duality based
on the Karush-Kuhn-Tucker (KKT) conditions associated with
uplink and downlink transceiver design optimization problems.

Index Terms—Amplify-and-forward, duality, MIMO relay.

I. INTRODUCTION

One of the key techniques to solve the downlink optimiza-
tion problems is to transform the downlink problem into an
uplink problem via uplink-downlink duality relationship, and
solve it in the uplink domain since the uplink channel has a
simpler mathematical structure, and less coupling of variables.

The MSE duality for a single-hop was established under a
sum-power constraint when perfect channel state information
(CSI) is available at all the nodes in the system in [1]-[2],
and for imperfect CSI in [3]-[5]. It has been shown that any
MSE point achievable in the uplink can also be achieved in
the downlink under the sum-power constraint. Recently, the
uplink-downlink sum-MSE duality for single-hop systems [1]-
[5] has been extended to two-hop and multi-hop AF MIMO
relay systems in [6] and [7], respectively.!

Due to the multi-hop topology, MSE is a complicated
function of the source, relay and receiver matrices, which
makes both the proof of duality and the optimization problems
associated with multi-hop MIMO relay networks much more
challenging than the existing works with simpler network
topology. As a direct application of the duality results, the
complicated downlink MIMO multi-hop transceiver (source
precoding, relay amplifying and receiver matrices) design
problems can be carried out efficiently by focusing on an
equivalent uplink MIMO multi-hop relay system [7], [8].

A. Contributions of This Work

1) MSE duality in [1]-[4] and [7] is established by calculat-
ing the MSE of each stream of all users directly. Here,
we establish the uplink-downlink duality based on the

"Note that signal-to-interference-noise ratio (SINR) duality for multi-hop
AF MIMO relay systems has been established in [8].
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Fig. 1.

Uplink multi-hop AF MIMO relay system.

KKT conditions of the uplink and downlink transceiver
optimization problems, which is an interesting perspec-
tive to the relation of the uplink-downlink duality.

2) The duality result established in this paper generalizes
the results in [5] and [6], which also use KKT conditions
to prove the sum-MSE duality for single-hop and two-
hop MIMO channels, respectively.

3) The sum-MSE duality for multi-hop AF MIMO relay
systems in [7] is established under the assumption
that receivers employ linear minimum MSE (MMSE)
receivers, the sum-MSE duality result in this paper is
applicable to any kind of linear receiver.

The notations used in this paper are as follows. (-)7
and (-)¥ denote transpose and conjugate transpose, respec-
tively. E[-], Iy and tr(-) denote the statistical expectation,
N x N identity matrix and trace, respectively. For matrices
A, @7, (A) £ Aj...Ay. For example, ®°_, (A;) £
A;A5A3 and ®3:3 (Az) £ AzAsA,. Hf:l (Al) £
A;.. Ay for [ <k and is equal to identity matrix for [ > k.

II. SYSTEM MODEL

Similar to the system model in [7]-[8], we consider a
wireless communication system with K users, L — 1 (L > 2)
half-duplex AF relay nodes, and one base station (BS) node,
where each node is equipped with multiple antennas. The
number of antennas at the /th relay node of the uplink system
is N, I = 1,...,L — 1 and the BS is equipped with N,
antennas. Due to the path-loss in the wireless channels, we
assume that the signal transmitted by the [th node can only
be received by the (I + 1)th node, so the signal transmitted
from the source node travel through L hops to reach to its
destination. The +th user is equipped with M; antennas, and
transmits (receives) M; independent data streams.
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A. Uplink MIMO Relay System

The uplink MIMO multi-hop relay system is shown in
Fig. 1. The data streams sY € CMi*1 s linearly precoded by
the 4th user with the source precoding matrix B; € CMi*M:
and the sth user transmits the precoded signal vector u; =
B;sVL to the first relay node. We assume complex, zero mean,
independent and identically distributed (i.i.d.) data streams
with E [SZU L(sY L)H} = I,,. The received signal at the first

relay node is given by
K
y/=> GiBis!t +v (1)
i=1

where G; € CVM1*xMi j — 1 .. K, is the channel between
the first relay node and the 7th user and v is the Ny x 1 i.i.d.
additive white Gaussian noise (AWGN) vector at the first relay.

The Ith relay node, I = 1,...,L — 1, applies F;1; €
CNixNi to amplify and forward the received signals, which is
given by

x(h =Feayh,  1=1,...,L-1 )

where yUL € C™Ni*1 s the signal that /th relay node receives,
l=1,...,L—1. From (1) and (2), the received signal vector
at the relay nodes, [ = 1,..., L — 1, and the received signal
vector at the BS (I = L) can be written as

K
vt =AY GBis!t 4+,
i=1

l=1,....L (3

where A; is the equivalent channel matrix between the first
relay node and the Ith relay node, and Vv; is the equivalent
noise vector given by

2
> (H,F,), [=2,....L
Al {®1l( )

4
Iy, =1, @)

9= {22_2 ( ‘Z:l (HZFl) Vj_l) +vy, [=2,..., L(S)
vla l - 1
Here H; € CNv*Nin | =2 ... L, is the channel matrix at
the Ith hop, and v; is the i.i.d. AWGN at the (I + 1)-th node
of the uplink system, / = 1,..., L. We assume that all noises
are complex signals with zero mean and unit variance.
From (5), the covariance matrix of v; can be written as,

25‘:2 ( f:l (HzFZ) ®é:j (FzHHzH))

C =E[vww/] = +1In,, l=2,...,L,
In,, l=1.
(6)
To estimate the data streams transmitted, the BS applies a
linear receiver, i.e., §§]L = ij[L]L , which is given by

K
VL = W; [ALZGiBis?LJrVL , J=L LK)

i=1

where W is the weight matrix of the linear receiver of size
M x Ny, From (3) and (7), the MSE matrix of the jth user,

Fig. 2. Downlink multi-hop AF MIMO relay system.
UL _ UL _ UL\ (UL _ gUL\H| . _
ES —E[(sj UL (st siL) },]-1,...,Kcan

be written as
EV" =1y, - W,;A.G,;B; - B/GI AW
+ W, [ALAYFAT + C W] (®)

where AUL = % G,B,BIGF.
The transmission power consumed at the /th relay node is

tr(E [ngfl (xgﬁ)ﬂ):tr (Frir (A AUAT +C)FE ) 9)

The uplink transceiver optimization problem is formulated as:

K
: UL
Fl,%;%j;tr(Ej ) (10)
K
st. Y (B;BY) < P/, (11)

j=1

tr (Fy (A AYPA +C ) FYT) < PV vi(12)

where (11) and (12) are the total transmit power at the
users and transmission power constraints at each relay node,
respectively, and PVL, 1 =1,..., L, are the power limit.

B. Downlink MIMO Relay System

The downlink communication system is shown in Fig. 2.
The BS linearly precodes the data streams of user i, sPL €
CMix1 with the matrix T; € CNe*Mi and transmits the
Np x 1 precoded signal vector .5 T;sPL. We assume
complex data streams with zero mean, i.i.d data streams with
E [sPL (SZDL)H = Ips,. The signal vector received of size
Nr_1 x 1 at the first relay node of the downlink system can
be written as

K
yrr =HI Y TPt +m (13)
1=1

where n; € CVe-1>*1 is the AWGN vector at the first relay.

The [th relay node in the downlink system, [ =1,..., L —
1 applies Z;,; € CNe—1*Ni—t to amplify and forward the
received signals, ie., x05 = ZiyPr, 1 =1,...,L — 1,
where yPL € CNe—X1 | = 1,...,L — 1, is the received
signal vector at the /th relay node in the downlink channel
and is expressed as

K
yI" = KH ZTz‘SlDL + 1y,
i=1

I=1,...,L —1(14)
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Here K; is the equivalent channel matrix between the first
relay node and the [th relay node in the downlink channel and
n; is the equivalent noise vector given by

L-1
HEZ, ., l=2,...,L—1
K, = Q-1 H—l( L— +1) (15)
INL b =1,
Z m= L 141 (R ZL i) 1
n; = + ny, l=2,...,L—-1 (16)
np, =1

where n; is the i.i.d. AWGN vector at the /th relay node,
l=1,...,L — 1. The received signal vector at the ith user
i=1,..., K can be expressed as

y(l) GHZLyL 1 + 1’1(1)
K
=Gz, K, HI Y TP’ + )

i=1

(17)

where ﬁ(Ll) =GHZin; +n(£) is the equivalent noise vector
at the ith user.

From (16), the covariance matrix of n;, CPL, at the Ith
relay node, [ = 2,...,L — 1 and the covariance matrix of
ﬁ(Ll), C(Ll), at the ith user can be written as

-1
crt=>%" (

L—k

® (HEZ, 1)

m=L—I1+1
+ INL,za

=GHZ,CPL 28 G, + IMi.

L—1+4+1

(Zf m+1Hm)>

k

L—1, (18)
(19)

L_ jth user applies a linear
= Dy, j =

k=1 =L—

l=2,.

c

To estimate the data streams s

receiver matrix D; € COM;xM;

1,..., K, which is written as

i, le., sj

K
sPL =D;GHZ, K HE Y TPl +Djnf). (20)
=1

The MSE matrix of the jth user, j=1,...,K, ie, EPY =

E {(S?L — 8P (sPL — éfL)H} can be written as
EPL
=Iy, - D;GIZ, K, H]'T, - TVH, K] ,Z]G,DV

D, [GI'Z, K, 1 APPKE 2G| DI @)

where APL = Hf Zszl TZ—TZHHL.
The transmission power consumed at the /th relay node

r (E xB5 (x25) "] ) = tr(Ze (K APPK [+ CPR) 2L, )

The downlink transceiver optimization problem is formulated:

Zlmln Ztr EDL)

(22)

Ztr (T,TH) < PP*, (23)
j=1

tr (Z; (Ki APPK + CPh) z[') < PP, vi(24)

where (23) and (24) are the total transmit power at the
users and transmission power constraints at each relay node,
respectively, and PPL, 1 =1,..., L, are the power limit.

III. UPLINK-DOWNLINK DUALITY

The optimization problems (10)-(12) and (22)-(24) are both
non-convex, but the objective functions and constraints of them
are continuously differentiable. Thus the uplink-downlink du-
ality can be established based on their KKT conditions [5].

A. The KKT Conditions of the Uplink Problem
The Lagrangian function of (10)-(12) can be written as

K K
L:Ztr (EVE) + Ztr (B,BY) — PI'* (25)

- Z)\l (tr (F; (A1 AVEA | + Cy) Ff) — PUE)
1=2
where \; and \;, [ = 2,..., L, are the Lagrange multipliers of
the power constraints in (11) and (12). The gradient function
of (25) with respect to By, F;, Wy, is given by

L
GHAIWH = </\11Mk +Y NGIA! FIFA Gy
=2

K
+ > GYATWIW,ALGy | By, (26)
Jj=1
L k—1
ZHH [I Fomn) WiBiGH [ (FLHy) =
m=k+1 m=2
L k—1
ZHH [ ®FZED)WIW,ALAY ] (FAHE)
m=k+1 m=2
K k L m
+ H [[ F/H)WIW,; ) (HF)
j=1m=2 I=k+1 I=L
k—1

x || (FH) + \eFr (A1 AVPAT |+ Cry)

-1
710 ®EED)FIFA AT

I=k+1 m= k+1
k—1 -1
< [ (®imk) +ZHH I (FIHE)F!F,
m=2 m=k+1
7 k—1
« @ ®@F) ] FHH,I,{)>, @7
i=l—1 m=j
B/G/AT =W, (ALAYFAT +CL), (28
H
where we have used the identities from [9] that L(aj;é ) _
ow(BZ) ou(AZ) ;ou(BZ) _
A 2R = BT T - A B — BT ang
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4 = 3% + %] Here i = /=T, The other KKT
conditions associated with (10)-(12) are given below

itr (B,B) - P’ | =0 (29)
=1
A (trJ(Fl (A AYFAT + C) B = PYF) =0 (30)
AL >0, itr (B,;B) < P* 31)
N >0, tjr:(;‘l (Al AYEAT +C) ) < PVR(32)

Lemma 1. [Relation between the Lagrange multipliers, and
the relay amplifying and receive matrices.]

For any solutions satisfying the KKT conditions (26)-(32),
the Lagrange multipliers are

i r (WHW))
AL = - (33)
Pr
tr (Ff (H{f yE wH WjHL+ALINL71)FL)
AL*l = PLU_L (34)
1 L—1 K
A= pULY Fiiy ® H F, HY ZWijHL
l m=I+1 j=1
I+1
® Fm+1Hm + Z )\k ® Hm m-+1
m=L—1 k=142 m=Il+1
41
®Fm+1Hm+)\l+11Nl> Fl+1> , l=1,...,L—-2.(35)
m=k—1
Proof: See Appendix A in [10]. ]

B. The KKT Conditions of the Downlink Problem

The Lagrangian function of (22)-(24) can be written as

K
LPL tr(EPY) +on | Yt (T,T)) - PP*

J=1

(36)

<
Il
-

|
.MN

+) oy (tr (2 (K APPKE + CF

Mh

) ZH) PlDL)

l

||
N

where oy and vy, [ = 2,. .., L, are the Lagrange multipliers of
the power constraints in (23) and (24). The gradient function
of (36) with respect to Ty, Z;, Dy, is given by

H KY 727G, Df

L
= <0411Mk + ZQZHLKlH_lszZlKZ—ng
=2

K
+Y H, K} Z2]G,DD;GZ, K, _H} |T,(37)
j=1

K
S xtPa,pitin, Y
j=1

K
=Y x{"G,DI'D,GIz, K APLY(V

j*l
k—1 L—c
+ ZX(L)G DD Gz, <Z | L sp
j=1 c=1m=2
< Y(7) + anZ (K APPY (D - CPS )
L
+ alX,Qzl(K APEy (M
I=k+1
1

(38)

k L—n
Y@ iz

n=1m=L—142
THH KY 728G,
-D, (ngLKL,lADLKf,leGk + cg’“) .(39)
The other KKT conditions associated with the problem (22)-

(24) for [ = 2,..., L are given below
K
Ztr (T,T) - PP =0 (40)
(tr (Z (zl 1APPZ L+ ePhYzf) - PPy =0 (41)
a1 >0, Ztr (T,T) < PP* (42)
o >0, tr(Z (2 APPZ + CPh) Zf') < PPh.(43)

In (38), X,(CC) and Y,(CC) are defined as

L—c+2 .
x(©) _ ®m:L+_k+1 (H,Z{_, .,), otherwise (44)
v =
IN]? k=c
Y(C) _ ®1Ln;k;r_20 (Zg m+1H ) ’ otherwise (45)
k IN, oirs k=c+1’

Lemma 2. For any solutions satisfying the KKT condi-
tions (37)-(43), the Lagrange multipliers are

. Zszl tr (DkaH)
= PEL
tr (zg (Zfil G,DYD,GY + aLIMI.) zL)
PP

1 2

= PT (ZflJrZ ( ® Hizf—zﬂrz
L—I1+1 i=l—1
-1

X ZG DX D; GH®ZL o HY

1=1 1=2

ZaL —i+2 ® H,Z]_ z+2®ZL i+2H

i=l—1

(46)

(47)

arp—-1 =

AL —1+1

+ aL—l+2INL,1) Zi142), = 37 ., L. (48)
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Proof: Similar to the proof of Lemma 1, Lemma 2 can
also be proved easily. [ |

C. Sum-MSE Uplink-Downlink Duality

Theorem 1. Assume that the uplink transceiver matrices,
{Fi}l, . {B;}<,, {Wj}f( , satisty the uplink KKT condi-

tions (26)-(32). Let T V1/ALWH D, VaBY,
= \/)\L—l+2/)\L—l+1FL,l+2, | = 2, . ,L. Then, when

the power constraint of the /th node of the downlink channel
is swapped with the power constraint of the (L — I + 1)-
th node of the uplink channel, i.e., PPL = PYL
1,..., L, sum-MSE achieved by {Fl}l 5.{B; }J 11 {WJ}
can also be achieved by the downlink transceiver matrlces
{Zi} 5, {T;}<,, {D;}< ., which satisfy the downlink KKT
conditions (37)-(43). Conversely, assume that the downlink
transceiver matrices {Z;}% 2,{TJ}J 17{Dj} — satlsfy the
KKT conditions (37)-(43). Let B; = /1 /aL

\/_1T§{ and FL,ZJFQ = \/Ozl/Oél, Zl ) = 2,...,L.
Then, when the power constraint of the lth node of the
uplink channel is swapped with the power constraint of
the (L — | 4+ 1)-th node of the downlink channel, i.e.,
pVL = pPL. 1 =1,...,L, the sum-MSE achieved by
{Zi} 5, {T;};<,,{D;}, can also be achieved by the up-
link transceiver matrices {F;}/,, {B;}1<,,{W;}I,, which
satisfy the uplink KKT conditions (26)-(32).

Proof: See Appendix B in [10]. [ |
Theorem 1 shows that sum-MSE achieved by a transceiver
design that satisfies the KKT conditions of an uplink optimiza-
tion problem, can also be achieved by a transceiver design that
satisfies the KKT conditions of a downlink optimization prob-
lem, and vice versa. Therefore, the downlink transceiver opti-
mization problems can be solved through solving an equivalent
uplink problem, and vice versa. Since the uplink and downlink
optimization problems are non-convex, the KKT conditions
are only necessary for local minimums in both channels. And
by Theorem 1, every possible local minimum (satisfying the
KKT conditions) of the uplink sum-MSE corresponds to a
same local minimum in the downlink. In other words, if the
uplink transceiver matrices achieve a local optimum of the
uplink system, they are also locally optimal for the downlink.

17l_

IV. NUMERICAL EXAMPLES

In this section, we simulate five-hop multiuser MIMO
relay systems. For simplicity, we assume all users have the
same number of antennas (ie., M; = M, i+ = 1,--- , K)
and all relay nodes and the destination node in the uplink

have the same number of antennas (i.e., N; = N, [ =
1,---,L). We set P/t PPE = 20dB and assume
that pPPL = PUL w1 = Plo= , L. All simu-

lation results are averaged over 1000 channel realizations.
We use the iterative algorithm in [11] to design the opti-
mal uplink transceivers {F;}{,, {B;}/<,, {W;}/<, and use
the proposed duality result to obtain the optimal downlink
transceivers {Z;}/_,, {T;}/<,,{D;}/<,. Fig. 3 shows the
MSE performance of the uplink and downlink systems versus

—— Uplink
—+= Downlink

P (dB)

Fig. 3. MSE versus P. K =3, M =2, N = 10, PYL = PPL = 20dB,

pPL=pP/L =P 1=2,--- L

P with K =3, M = 2, and N = 10. It can be seen from
Figs. 3 that the curves overlap, indicating that both the uplink
and downlink systems achieve the same sum-MSE.

V. CONCLUSION

We have established the uplink-downlink sum-MSE duality
in a multi-hop AF MIMO relay system, which is a general-
ization of several sum-MSE duality results. By analyzing the
KKT conditions of the uplink and downlink minimum sum-
MSE transceiver optimization problems, it is shown that both
the uplink and the downlink systems share the same achievable
sum-MSE region.
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