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polyethylene cling films by
attenuated total reflectance-Fourier transform
infrared spectroscopy and chemometrics†‡

Christopher J. Telford,§a Benjamin A. Burrows,a Georgina Sauzier,ab Wilhelm van
Bronswijk,a Max M. Houck,c Mark Maricd and Simon W. Lewis*ab

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was utilised to analyse

nine differently branded cling films. Principal component analysis (PCA) was used to assess the intra-

sample variability, i.e. the variation within individual cling film rolls; as well as the inter-sample variability,

which explores the variability between different rolls of cling film. Linear discriminant analysis (LDA) was

then employed to develop a predictive classification model which gave 100% correct differentiation

between three brand groupings of cling film, and accurately classified all of the validation samples

obtained from different rolls from the same manufacturers.
Introduction

Cling lm, also known as cling wrap, is a food-grade thin lm
commonly used for wrapping food items in order to keep them
fresh in storage. Traditionally, cling lm has been manufac-
tured from polyvinyl chloride (PVC) spiked with plasticisers
such as di-(ethylhexyl)adipate (DEHA),1 dibutyl phthalate (DBP)2

and di(2-ethylhexyl)phthalate (DEHP).3 However, health
concerns regarding the contamination of food with these plas-
ticisers4 and environmental issues stemming from halogenated
polymers5 has seen manufacturers migrating towards the use of
low-density polyethylene (LDPE). The manufacturing process of
such cling lms utilises a blown lm extrusion process, whereby
a large bubble of molten LDPE is produced and then pressed
between rollers.6,7

Although PVC lms remain popular in the food services
industry due to their superior performing stretch and adher-
ence attributes, LDPE lms are much more commonly available
to average consumers shopping at their local supermarket.
Unfortunately, pure LDPE lms are not as adherent as
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alternatives manufactured from PVC. Consequently, additives
are utilised during manufacture to increase the adhesiveness of
the lm, making them more suitable to use as a food wrap. The
most common additives are small molecular weight polymers8,9

such as polyisobutene (PIB) and poly[ethylene-vinyl acetate]
(EVA) copolymers, as these compounds help to provide a greater
degree of adherence. Other compounds that may be added
include antimicrobial agents10 and hindered amine UV
stabilisers.11,12

Cling lm is of interest in a forensic setting as it is commonly
used as a wrapping for illicit drugs,13–15 due primarily to its
nature, availability and cost. Typically, the forensic analysis of
cling lm has involved both physical and chemical examina-
tions. Although physical analysis of edge markings can prove
challenging due to the stretching and distortion that takes place
when the serrated cutter is used to tear a section from the roll,
the blown lm extrusion manufacturing method can invariably
result in the formation of distinctive striation marks, caused by
inconsistencies when the rollers are pressed onto the lm.
These striation marks can be matched between two samples of
cling lm to show evidence of their common origin.14 Other
forms of physical analysis such as birefringence using polarised
light microscopy can only be employed to discriminate between,
rather than link, samples.16

Chemical differences between lms exist as a result of vari-
ations in the manufacturing method, such as differing ratios of
additives and contaminants, or differing degrees of LDPE
polymerisation caused by environmental factors such as reac-
tion temperature.7 Chemical analysis of cling lm samples has
been utilised to characterise the chemical prole of a lm by
establishing the constituents of the sample. Fourier
transform infrared (FTIR) has been used extensively to deter-
mine different polymers within the lm,17 as has pyrolysis gas
This journal is © The Royal Society of Chemistry 2017
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Table 1 LDPE cling films used in this study

Cling lm Roll length (m)

Glad go-between freezer lm 15
Woolworths homebrand 30
Woolworths select 60
Coles smart buy 30
Coles cling lm 30
Multix 30
OSO 30
Glad 30
IGA black & gold 60
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chromatography-mass spectrometry (Py-GC-MS),18 with FTIR
being the preferred method due to the non-destructive nature of
the process.17 Discrimination between polyethylene lms has
been successfully achieved using thermal methodologies such
as thermal desorption capillary gas chromatography,19 differ-
ential scanning calorimetry (DSC),20,21 and thermogravimetric
analysis (TGA).22

Previous work by Holman, Emmett and Cole suggested that
when analysed using ATR-FTIR, the chemical variation between
samples of food-grade LDPE cling lm from within a roll was
not signicantly different to samples obtained from different
manufacturers.23 However, their study employed only three
brands of cling lm, and the lack of discrimination may thus be
a consequence of the samples selected (as acknowledged by
Holman et al. in their conclusions). Additional factors, such
sampling strategy and spectral acquisition, may have also
contributed to that study's outcomes.

The study conducted by Holman et al. acquired infrared
spectra from randomly selected samples taken from the rst 30
cm of each roll, with ve measurements recorded on a single
side of the lm in a single orientation for each sample. Based on
the manufacturing methods and processes, it should not be
assumed that any given cling lm is homogenous, and so
sampling should be performed across the width and the length
of the whole roll. Due to the nature of the blown lm extrusion
process used in manufacturing, there is also a distinct possi-
bility that contamination may occur to different degrees on
either side of the roll. Analysis should therefore be undertaken
on both sides of the lm. Furthermore, it has been shown that
during the manufacturing process, the LDPE aligns to a degree,
causing polarisation.7 This factor needs to be considered when
analysing the sample, as the polarisation of the lm will cause
variability in the intensity of the spectra acquired.24,25 Spectra
should thus be collected with the sample rotated 90� with
respect to the original alignment.

Their 0.5 cm�1 high resolution spectra also exhibited modest
signal to noise ratios (S/N). The smoothing and deconvolution
with Gaussian functions used may have resulted in a loss of
spectral detail, contributing to the lack of sample discrimina-
tion. Solid state IR peaks oen have a mixed Lorentz/Gaussian
shape, and tting these peaks according to a Gaussian function
may lead to overtting.

The data analysis method used by Holman and co-authors
involved the selection of ten peaks from three samples for their
dataset, processing them using automatic deconvolution and
smoothing functions, and then comparing the normalised peak
areas on a bivariate plot.23 For this they used % transmission
spectra, which follows a logarithmic rather than a linear scale as
a function of concentration. Absorbance would be a more
appropriate measure of intensity (and hence concentration). By
restricting their investigation to two relatively narrow regions of
the spectra, the possibility exists that some observable differ-
ences may have been excluded from the analysis, resulting in
a lack of discrimination between samples.

A potentially more informative solution would be to employ
multivariate data analysis, also known as chemometrics, to
analyse the full FTIR spectra obtained from the sample set.
This journal is © The Royal Society of Chemistry 2017
Chemometric methods provide statistically valid and objective
measurements, rather than a visual comparison of what
appears to be an area of interest within the spectra collected. By
utilising a chemometric approach to the analysis of the data set,
there is also a reduced chance of any conclusions formed from
the data being affected by human error or observer bias, as they
are based on well-established statistical methods.26–28

For the ATR-FTIR analysis of cling lm to have any forensic
and evidentiary value, it must be shown that the chemical
variation between samples within a roll is statistically dissimilar
to the variation between samples from rolls from different
manufacturers. If there is no discernible difference in chemical
variation, it would be impossible to differentiate between
samples or attribute a questioned sample to a source.

This paper describes a study of the chemical variability
within and between several different brands of LDPE cling lm
available in Western Australia analysed using ATR-FTIR spec-
troscopy. This was conducted using a comprehensive sampling
methodology in conjunction with multivariate statistical anal-
ysis, in order to better evaluate the applicability of ATR-FTIR for
the reliable differentiation of cling lms.
Experimental
Sample preparation and identication

Nine different rolls of LDPE lms from ve different brands
were purchased from three supermarket chains in Western
Australia (Table 1). A scalpel was used to cut a 3 cm wide strip at
the beginning of each roll, which was then divided into nine 3�
3 cm squares. Each of these squares was assigned a unique
numeric identier. This process was repeated every 3 m for the
30 m rolls, 6 m for the 60 m rolls and 1.5 m for the 15 m roll.
This resulted in a total of 10 columns (90 samples) per roll.
Caution was taken in the handling of samples to ensure that no
distortion, physical manipulation or contamination occurred.
Samples were stored between two layers of cling lm from
adjacent areas to the sample. A random number generator was
used to select a single sample from each strip for analysis.

Each cling lm sample was characterised using the following
scheme:

A: samples were analysed with an orientation set with respect
to the unfurling of cling lm roll, with a background spectrum
collected for each sample.
Anal. Methods, 2017, 9, 192–197 | 193
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Fig. 1 Infrared spectra obtained from typical cling film samples.
Spectra have been offset for visual clarity.
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B: samples were analysed with an inverted and orthogonal
orientation with respect to the original orientation, with
a background spectrum collected for each sample.

All infrared spectra were acquired using a Thermo Scientic
Nicolet iS50 FT-IR spectrometer equipped with a single-bounce
diamond crystal iS50 ATR sampling accessory. The ATR acces-
sory is equipped with a pressure arm that was used to maintain
a consistent pressure of 267 N on the sample. Prior to analysis,
the crystal sampling window was thoroughly cleaned using
ethanol and lint-free tissue to remove contaminants and
particulates. Spectra were collected over a range of 4000 to 400
cm�1, with a resolution of 2 cm�1 and 64 co-added scans.
Thermo Scientic OMNIC soware (version 9.1.24) was used to
perform an ATR correction on the entire dataset to correct for
the change in absorbance as a function of penetration depth
with wavelength.
Data analysis

Spectra acquired from the two different orientations of each
sample were averaged prior to analysis. All pre-processing and
data analysis was performed using the Unscrambler® X v10.4
soware (Camo AS, Oslo, Norway).

The spectra were rst truncated, omitting the wavelength
ranges 400–700 cm�1, 800–1400 cm�1, and 3000–4000 cm�1, as
minimal variation between samples was observed in these
regions. Additionally, interference from the diamond sampling
crystal was observed from 1800–2600 cm�1, and so this region
was also excluded (Fig. S1‡). The truncated spectra were base-
line corrected to 0% absorbance, then range normalised (such
that the maximum absorbance for each spectrum was scaled to
a value of 1) to remove any variability caused by the sample
surface texture.

The pre-processed spectra were subjected to principal
component analysis (PCA) using the NIPALS algorithm. The
samples were plotted against the rst two principal components
in order to visualise the sample distribution and identify any
outliers. A discriminant model was then developed using linear
discriminant analysis (LDA) with internal validation. The data-
set was arbitrarily split into two distinct sample sets; a calibra-
tion or training set (66 spectra) and a test set (24 spectra). The
discriminant model was constructed from the training samples
using the Mahalanobis distance, employing the rst two PCs
and classes identied in the PCA. The resultant model was used
to predict the classication of the validation spectra, with the
predicted and actual classications compared to determine the
efficacy of the model.
Table 2 Selected CH stretching and deformation absorbance ratios

Absorbance ratios Glad freezer
Coles smart
buy

Black and
gold

A2849/A2916 0.978 0.896 0.803
A1473/A2916 0.344 0.181 0.188
A1464/A2916 0.242 0.157 0.145
A732/A2916 0.096 0.050 0.048
A720/A2916 0.170 0.095 0.092
A1473/A1464 1.421 1.155 1.298
A720/A732 1.766 1.913 1.920
Results and discussion

Examination of the infrared spectra (Fig. 1) revealed some
variability in absorbances relative to the 2916 cm�1 band. In
particular, the Glad freezer lm has a stronger 2849 cm�1 CH2

stretching band, in addition to stronger absorbances in the
1460 cm�1 and 725 cm�1 CH2 deformation regions. The other 8
samples had more subtle absorbance differences in these
194 | Anal. Methods, 2017, 9, 192–197
regions (Table 2). Band assignments are for representative
samples from each class are given in Table 3.

Based on this observation, principal component analysis
(PCA) and linear discriminant analysis (LDA) were conducted to
determine if the lms could be discriminated with condence,
and thus be of forensic use. No bands that might be attributable
to additives such as UV-stabilisers or antimicrobials were
observed.
Classication of the spectral datasets by principal component
analysis

PCA was utilised as a data reduction technique; transforming
the original variable set into a lesser number of orthogonal
variables known as principal components (PCs). These PCs can
be used to re-visualise the dataset, potentially revealing trends
or patterns between samples that would not be readily evident
from the raw spectra. In this instance, the Scree plot (Fig. 2)
showed that 98.2% of total variation in the dataset was
accounted for within the rst two PCs alone. Spectra from the
nine cling lm rolls were therefore plotted using the rst two
PCs as a new coordinate system, resulting in a 2-dimensional
scores plot as shown in Fig. 3. PC3 (accounting for 0.8% of total
variation) was found not to give any further discrimination
between the groups, and was therefore omitted from subse-
quent chemometric analysis. Three main clusters of data were
identied, representing classes of cling lms sharing similar
chemical characteristics. The Glad freezer lm was found to be
This journal is © The Royal Society of Chemistry 2017
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Table 3 LDPE cling film infrared spectra assignment and relative intensities29,30

Band (cm�1) Assignment Glad freezer Coles smart buy Black and gold

2960 CH3 antisymmetric stretch — sha sh
2916 CH2 antisymmetric stretch 1 1 1
2890 CH3 symmetric stretch sh sh sh
2849 CH2 symmetric stretch 0.98 0.90 0.80
2645 Not assigned 0.07 0.02 0.02
1736 C]O stretch — 0.003 0.005
1473 CH2 bending 0.34 0.18 0.19
1464 CH2 bending 0.24 0.16 0.15
1456 CH2 bending sh sh sh
1440 CH2 bending sh sh sh
1378 CH3 symmetric bending sh 0.015 0.012
1368 CH2 wagging 0.01 0.012 0.01
1353 CH2 wagging sh sh sh
1305 CH2 twisting 0.004 0.004 0.004
732 CH2 rocking 0.10 0.05 0.05
720 CH2 rocking 0.17 0.10 0.09

a sh ¼ shoulder.
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uniquely characterised (Class 1), whereas Classes 2 and 3 each
consisted of multiple lms (Table 4).

It should be noted that carrying out the PCA with the full
spectral range of 4000–400 cm�1 resulted in the same clusters,
with a greater level of intra-class variation (Fig. S2‡).

The factor loadings for the rst two PCs (Fig. 4) can be used
to identify the wavelength regions contributing to separation
between the samples. PC1 was found to exhibit signicant
positive loadings at 2910–2885 cm�1 and 2848 cm�1, corre-
sponding to the antisymmetric CH2, symmetric CH3 and CH2

stretching regions. Additionally positive loadings were observed
for the 1470 cm�1 CH2 bending and 1370 cm�1 CH2 wagging
regions. This accounts for the positive score on PC1 for Class 1
samples, whose spectra show the highest relative absorbances
in these regions (Fig. 1).

Classes 2 and 3 were primarily separated along PC2, where
a signicant positive loading was observed at 2923 cm�1 and
strong negative loadings at 2911 and 2852 cm�1, reecting the
1–2 cm�1 shis and band width differences observed in the CH
stretching region. There is also a smaller positive loading by one
of the CH2 bending mode doublet bands (1472 cm�1). The even
smaller positive carbonyl stretch (1736 cm�1) loading and CH2
Fig. 2 Scree plot depicting the cumulative variance in the cling film
infrared spectral dataset retained by each PC.

This journal is © The Royal Society of Chemistry 2017
rocking mode doublet (730 cm�1) loadings also contribute to
the separation.

The differentiation observed is likely due to differences in
the density, crystallinity and short chain branching of the
polyethylene. The splitting of the 1460 cm�1 and 730 cm�1

bands indicates that the LDPE in all three classes is crystalline
and these bands become more intense and resolved with
increasing crystallinity.31,32 It is thus clear that the freezer lm
(Class 1) is discriminated on the basis of its signicantly higher
crystallinity. This lm is further differentiated by the very weak
bands of the CH3 and CH2 deformations in the 1370 cm�1

triplet.
The freezer lm has its strongest band of the triplet at 1368

cm�1 whilst for Classes 2 and 3 it occurs at 1378 cm�1 (Table 3).
According to Usami and Takayama33 this would suggest that
Classes 2 and 3 have of the order of 20 branches per 1000 carbon
atoms and Class 1 less than this.

The antisymmetric CH3 stretch (2960 cm�1) observed for
Classes 2 and 3 was not observed in the freezer lm spectra, nor
was the carbonyl band at 1736 cm�1, the latter indicating that it
Fig. 3 Two-dimensional PCA scores plot showing distribution of cling
film samples into three distinct classes based on their infrared spectral
properties.

Anal. Methods, 2017, 9, 192–197 | 195

http://dx.doi.org/10.1039/c6ay02960d


Table 4 PCA classification of cling film samples

Class Cling lm samples

1 Glad go-between freezer lm
2 Woolworths homebrand, Woolworths select,

Coles smart buy, Coles cling lm
3 Multix, OSO, Glad, IGA black & gold

Fig. 4 Factor loadings plot of the first two PCs for PCA of entire
spectral dataset.

Table 6 Confusion matrix showing results of LDA for the samples
within the validation dataset

Actual/predicted Class 1 Class 2 Class 3 Total % correct

Class 1 4 0 0 4 100
Class 2 0 10 0 10 100
Class 3 0 0 10 10 100
Total 4 10 10 24 100

Table 7 Mean discriminant values and associated standard deviations
obtained from the spectra of each class against all three classes,
derived from the calibration dataset

Class 1 Class 2 Class 3

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Class 1 �1.7 1.2 �1501.7 282.8 �5113.8 1379.3
Class 2 �108.8 5.6 �1.9 2.2 �277.5 114.7
Class 3 �90.5 4.9 �25.2 5.0 �1.9 3.1
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is less oxidised than the other two classes of lm.34 Whilst the
freezer lm could be distinguished from the other two classes
by inspection of the spectra, the differences between Classes 2
and 3 are much more subtle and were only extracted with
condence by PCA of the data. The negative score of Class 3 on
PC2 in the scores plot (Fig. 3) is due to a small shi (�2 cm�1) to
higher frequencies of its antisymmetric and symmetric CH2

stretches, a small change in its crystallinity shown by the
change in relative intensity of the 1473 cm�1 and 1464 cm�1

peaks (Table 2), and a higher degree of oxidation as shown by
the carbonyl band (1736 cm�1).

The lms thus appear to be discriminated on the basis of
function and manufacturer, but not retail brand. The freezer
lm, which is designed as a separation lm rather than a food
wrap lm is distinctly different, whereas the food wrap lms
could possibly come from two manufacturers. The Coles and
Woolworth lms could not be separated, suggesting that these
retail chains source their lms from the same manufacturer.
The IGA black & gold, Multix, Glad and OSO food wrap lms
also appear to be from a common, but different, source.
Restricting the PCA to just Classes 2 and 3 did not lead to
further brand discrimination.
Table 5 Confusion matrix displaying results of LDA for the samples
within the calibration dataset

Actual/predicted Class 1 Class 2 Class 3 Total % correct

Class 1 6 0 0 6 100
Class 2 0 30 0 30 100
Class 3 0 0 30 30 100
Total 6 30 30 66 100

196 | Anal. Methods, 2017, 9, 192–197
Linear discriminant analysis (LDA)

LDA was conducted using the data obtained from the PCA. LDA
is a technique used to establish classication rules for known
groups of samples, in such a manner that maximum discrimi-
nation is achieved between them.34 The discriminant model can
then be employed to classify unknown samples to a corre-
sponding class.34 The model was constructed using a calibra-
tion set of 66 spectra, and tested using an external validation set
of the remaining 24 spectra. The effectiveness of the predictive
model was evaluated based upon the percentage of spectra
assigned to their correct class.

The calibration and validation datasets both produced 100%
efficiency, as shown in Tables 5 and 6, suggesting the three
classes to be well differentiated. This is supported by inspection
of the discriminant values, which act as distance measures
between a sample and the centroid of a given class. When
performing LDA classication, unknown samples are assigned
to the class yielding the smallest magnitude discriminant value,
indicative of the ‘closest t’. Table 7 shows the mean discrim-
inant values and associated standard deviations obtained by
spectra from each class against all three classes. It is evident
that the spectra for any given class exhibit small magnitude
discriminant values for their assigned class in comparison to
their discriminant values against the other classes, signifying
that these classes are well separated.

This result shows that the subtle differences within the
spectra of the LDPE lms are signicant enough to provide
effective discrimination. These differences would enable
unknown samples to be classied with condence.
Conclusions

Nine rolls from ve different brands of LDPE lms were ana-
lysed by ATR-FTIR, and the spectra examined using two che-
mometric techniques; PCA and LDA. PCA resulted in the
This journal is © The Royal Society of Chemistry 2017
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identication of three main classes. Inspection of the factor
loadings showed that the differentiation between these classes
could be attributed to variation in the crystallinity, short chain
branching and oxidation of the LDPE. The presence of additives
and plasticisers added during the manufacturing process was
not observed.

LDA based upon the rst two PCs produced a highly effective
predictive model that yielded 100% classication accuracy of
both the training and validation sets. This demonstrates that
the variations in spectral features are sufficient to provide reli-
able discrimination between the samples of each class.

Whilst we did not observe differences arising from sample
orientation or different sides of the lms, we still recommend
that orthogonal spectra be obtained from both sides of a lm, at
least in the rst instance, as such differences may well be found
for lms in other jurisdictions.

The results presented in this paper show that ATR-FTIR with
subsequent chemometric data analysis is in fact an effective
means for the characterisation and discrimination of some
LDPE food lms, in contrast to the earlier ndings presented by
Holman, Emmett and Cole. This is possibly due to the analysis
of a wider range of samples, a more comprehensive sampling
method, and the assessment of a wider range of the spectrum
using multivariate (chemometric) data analysis techniques.

It would prove very interesting to investigate a population of
LDPE lms in the rest of Australia and even internationally,
especially given the complexity of product strategies and
modern supply chains.
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