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 A B S T R A C T

Accurately interpreting cardiac auscultation signals is essential for diagnosing and managing cardiovascular 
diseases. However, the paucity of labelled data inhibits classification models’ training. Researchers have turned 
to generative deep learning techniques alongside signal processing to augment existing data and improve 
cardiac auscultation classification models. However, the primary focus of prior studies has been on model 
performance rather than robustness. Robustness, in this case, is defined as both in-distribution and out-of-
distribution performance by measures such as Matthew’s correlation coefficient. One contribution of this work 
is to show that more robust abnormal heart sound classifiers can be trained using an augmented dataset. The 
augmented dataset includes both signal processing techniques and synthetic phonocardiograms conditionally 
generated using the WaveGrad and DiffWave diffusion models an approach that, to the best of our knowledge, 
is the first work of its kind. The efficacy of the proposed data augmentation approach is evaluated on an 
example convolutional neural network, trained on the original and augmented data. It is found that both the 
in-distribution and out-of-distribution performance can be improved over various datasets for neural networks 
trained with this augmented dataset. Results show significant performance improvements. Specifically, in-
distribution accuracy, balanced accuracy, and Matthew’s correlation coefficient (MCC) increased by 2.5%, 
4.1%, and 0.066, respectively. The greatest out-of-distribution improvements were observed on one dataset, 
where accuracy, balanced accuracy, and MCC increased by 43.1%, 20.2%, and 0.297, respectively. These 
improvements across all metrics highlight that augmented datasets significantly address issues of imbalanced 
data, ultimately leading to more generalisable and robust classifiers.
1. Introduction

Cardiovascular disease (CVD) is the primary contributor to mor-
tality worldwide, representing more than 30% of all global deaths in 
2019 [1]. In addition to the human cost, CVD places an immense 
economic burden on healthcare systems and society [1]. To treat CVD 
effectively, it is necessary to diagnose and evaluate the condition of the 
heart accurately.

Cardiac auscultation (CA) is the process of listening to sounds 
generated by the heart [2]. Physicians have traditionally performed 
CA using stethoscopes to detect and monitor heart conditions in a 
non-invasive manner. However, the difficulty of performing CA leads 
to uncertainty in diagnosis and poor patient outcomes. The issue is 
further complicated by the fact that CA is both difficult to teach and a 
specialised skill, with studies noting that primary care physicians often 
lack proficiency in this area [2].

∗ Corresponding author.
E-mail address: milan.marocchi@postgrad.curtin.edu.au (M. Marocchi).

Recently, a wearable multichannel electrophonocardiography
(EPCG) device has been developed [3]. The premise of this device is 
to detect CVD utilising synchroised phonocardiogram (PCG) and elec-
trocardiogram (ECG) data. The combination of these signals can result 
in more accurate and robust classifications. However, there is currently 
limited synchronised multichannel phonocardiogram and electrocar-
diogram (SMPECG) data, which creates a need for a technique to aid 
in creating a larger dataset.

There are current limitations that prevent robust classification re-
sults across multiple datasets. These include a lack of quality data 
and unbalanced datasets, with most data having lots of background 
noise, resulting in a low signal-to-noise ratio. There is also a limited 
amount of synchronised PCG and ECG recordings, which limits the 
effectiveness of algorithms, despite the large amounts of standalone 
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ECG and some PCG data. Traditional augmentation approaches can 
help to overcome these issues, with augmentation being applied to 
existing signals [4]. This is somewhat lacking, however, as it does not 
always increase the out-of-distribution performance, leaving room for 
further approaches to address this issue. With recent advancements 
in conditional waveform generation using diffusion models [5,6], it 
is possible to extend previously ECG-only datasets by generating PCG 
signals conditioned from the ECG in these datasets.

This work explores traditional augmentation approaches alongside 
the generation of synthetic signals, to create more robust classifiers of 
abnormal heart sounds.

The main contributions of this work are summarised below:

• Development of a diffusion model to create PCG signals condi-
tional on existing ECG signals, allowing additional data to be 
used from ECG datasets once the diffusion model has created the 
corresponding PCG signal. To the best of our knowledge, this is 
the first work using diffusion models to generate PCG signals.

• Traditional augmentation methods synchronised over the PCG 
and ECG signals and extensive methods beyond those utilised in 
other studies.

• Augmentation methods were applied to a top-performing model
[7] on the training-a dataset [8], resulting in improvements of 
2.5% in accuracy, 4.1% in balanced accuracy, 1.9% in 𝐹+

1  score, 
and 0.066 in Matthew’s Correlation Coefficient (MCC). Addition-
ally, when tested on the training-e dataset — where the model 
had not been trained on any of the dataset’s data — there were 
notable improvements of 43.1% in accuracy, 20.2% in balanced 
accuracy, 27.1% in 𝐹+

1  score, and 0.297 in MCC.

The remainder of the paper is organised as follows. Background in 
PCG and ECG signals is covered in Section 2. Literature survey on model 
robustness, biomedical signal augmentation and generative models is 
presented in Section 3. Following this, the methods and results are 
presented in Sections 4 and 5 before a discussion of the results in 
Section 6 and the final conclusions and further work are summarised 
in Section 7.

2. Background

2.1. Phonocardiogram and electrocardiogram signals

PCG signals comprise multiple sounds from the opening and closing 
of valves and blood flow inside the heart that cause vibrations, which 
are then recorded from the chest wall [9]. The fundamental heart 
sounds are the first (S1) and second (S2) sounds, which are the most 
prominent. The S1 occurs during the beginning of the systole and is 
caused by isovolumetric ventricular contraction. S2 is caused by the 
closing of the aortic and pulmonic valves during the beginning of 
the diastole. Although the S1 and S2 sounds are the most audible, 
PCG signals consist of many other heart sounds such as the third 
(S3) and fourth (S4) heart sounds, systolic ejection clicks, mid-systolic 
clicks, opening snap and heart murmurs [8]. These heart murmurs 
are produced by turbulent flowing blood, which can indicate the pres-
ence of particular CVDs. These various heart sounds all lie within the 
low frequencies, with S1 from 10Hz–140Hz and the highest energy 
around 25Hz–45Hz. The S2 is from 10Hz–200Hz, with most of the 
energy around 55Hz–75Hz. S3 and S4 sounds are from 20Hz–70Hz, 
although they are much less audible, mainly occurring in children and 
pathological subjects. Murmurs are usually found in slightly higher 
frequencies and range from 25Hz to 400Hz [10], with some being found 
in frequencies higher than 600Hz, but with far less energy [11].

ECG signals represent the heart’s electrical activity [12]. An ECG 
signal consists of the P, QRS complex, and 𝑇  waves, with a U wave 
also occasionally present [13]. These waves can contain information 
to aid in CVD diagnosis. ECG signals are commonly filtered between 
2 
Fig. 1. Confusion matrix.

0.5Hz and 40Hz to remove baseline wander and unwanted noise and 
interference [14]. For example, in the case of coronary artery disease 
patients, studies have documented that symptoms such as T-wave inver-
sion, ST-T abnormalities, left ventricular hypertrophy, and premature 
ventricular contractions can be observed [15].

Combining these two signals has produced superior results com-
pared to classification using a single signal [7], suggesting that relevant 
features for classification exist within both signals. The increase in 
performance suggests that utilising synchronised PCG and ECG data 
will help to create more accurate and robust classifiers.

3. Literature survey

3.1. Model robustness

Tran et al. [16] presented a state-of-the-art framework for en-
hancing model reliability, focusing on robust generalisation. Robust 
generalisation allows a model to perform well on data outside the train-
ing set [16], encompassing in-distribution (ID) and out-of-distribution 
(OOD) generalisation [16].

ID generalisation pertains to a model’s performance on data within 
the training distribution but outside the training set, addressing un-
derfitting and overfitting issues [16,17]. OOD generalisation, on the 
other hand, concerns a model’s ability to handle data distributions 
different from the training set, addressing distribution shifts such as 
subpopulation shifts, covariate shifts, and domain shifts [16,18].

Perturbation resilience is the ability of a model to handle atypical 
and significantly different data, including corruption, distortion, arti-
facts, missing data, gaps, spectral masking, extreme noise, and defective 
inputs, which is critical in clinical settings.

3.1.1. Measuring model robustness
Table  1 shows formulas for traditional binary classification perfor-

mance measures derived from the confusion matrix in Fig.  1[19–21]. 
Sensitivity (recall/true positive rate) and specificity (true negative 
rate) measure correct classifications of positive and negative cases, 
respectively [19]. Precision (positive predictive value) and negative 
predictive value measures correctly classified positive and negative 
cases among classified cases, respectively [19]. Accuracy measures 
overall correct classifications [19]. Ideally, all these measures are unity, 
indicating no false predictions.

While having one target metric is ideal, it is impractical as each 
metric contains different information and no single measure captures 
all the information from a confusion matrix [20]. Summary metrics 
can be biased under certain conditions; for instance, accuracy can 
be misleading for imbalanced datasets. Matthew’s correlation coeffi-
cient (MCC) is a better single metric for classifier performance than 
F scores [22].

This work focuses on ID and OOD performance as the metric for 
model robustness, focusing on balanced accuracy and MCC in addition 
to accuracy to present an overall indicator of the performance of the 
classification model.
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Table 1
Traditional measures.
 Metric Formula

 Sensitivity TPR = TP
TP+FN  

 Specificity TNR = TN
TN+FP  

 Precision PPV = TP
TP+FP  

 Negative Predictive Value NPV = TN
TN+FN  

 Accuracy acc = TP+TN
TP+TN+FP+FN  

 Balanced Accuracy acc𝜇 = TPR+TNR2
 

 F1-Positive-Score F+1  = 2⋅PPV⋅TPR
PPV+TPR  

 F1-Negative-Score F−1  = 2⋅NPV⋅TNR
PNV+TNR  

 Matthew’s Correlation Coefficient MCC = TP⋅TN−FP⋅FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

3.1.2. Model robustness and augmentation
Data augmentation creates new data from existing data to in-

crease the training set’s size and variety, typically improving model
performance. To improve ID generalisation, providing more training 
data from the same distribution as the original data helps the model 
generalise to similar examples [16]. To enhance OOD generalisation, 
extending the training data distribution beyond the original dataset, 
such as by balancing labels or adding scarce feature combinations, 
helps the model handle distribution shifts more effectively [23].

3.2. Generative models

Generative models are trained to learn the underlying distribution 
of the data to generate new samples. As such, the goal is to train 
a mapping between the latent space and the data space so that the 
resulting samples are similar to the original data. One of the important 
properties of the latent space is that it can enable the creation of new 
data through the manipulation of semantic representations of features 
and labels. In recent history, three classes of models have advanced the 
field of generative learning in waves.

These classes are Autoencoders (AEs), Generative Adversarial Net-
works (GANs) and Diffusion models (DMs). The first class of models, 
AEs, encode input data to a lower-dimensional latent space and then 
decode it back to the data space, often used in denoising models due to 
their ability to reconstruct the input from the latent space [24]. Varia-
tional Autoencoders (VAEs), an extension of AEs, regularise the latent 
distribution, enabling meaningful sampling from the latent space and 
removing discontinuities, thus facilitating generative capabilities [25]. 
GANs, the second class, consist of a generator and a discriminator net-
work; the generator creates realistic samples from random noise, while 
the discriminator attempts to distinguish between real and synthetic 
samples, engaging in a zero-sum game to improve both networks [26]. 
DMs, the third class, add random noise to input data and then train the 
model to reverse this process, learning to denoise data in a structured 
manner, with models like Latent Diffusion Models (LDMs) performing 
diffusion in the latent space for computational efficiency [27–29].

The ‘‘generative learning trilemma’’ may guide the trade-offs in 
choosing a generative learning model. As Fig.  2 (adapted from [30]) 
shows, models often excel at only two of three desired goals: high 
sample quality, fast sample speed, and large sample variety. However, 
as mentioned earlier, performing the diffusion process in latent space 
allows LDMs to generate samples much faster, such that some argue it 
bypasses the trilemma in practice [29,30]. For this reason, LDMs have 
seen recent use in expanding datasets in biomedical projects, where 
data collection is prohibitively costly [31]. As such, this work aims to 
use both the WaveGrad and DiffWave diffusion models for the creation 
of PCG from ECG signals.
3 
Fig. 2. The generative learning trilemma.

3.3. Biomedical signal augmentation

In [4], data augmentation was employed to expand a PCG dataset 
from 3153 recordings to 53 601 recordings, an increase by a factor of 
17.  The augmentation included a random combination of effects such 
as changes to pitch, speed, tempo, dither, volume, and mixing with 
audio [4]. Despite achieving a sensitivity of 96% and a specificity of 
83%, the authors concluded that their approach did not generalise 
well, with performance varying from 99% on the dataset with the 
most recordings to 50% on the dataset with the fewest recordings [4]. 
Consequently, Thomae and Dominik [4] suggested that more training 
data and further augmentation is necessary to enhance performance on 
unseen data.

In a subsequent study by Zhou et al. [32], models trained with 
various augmentations were compared against a baseline. Augmenta-
tions were applied to both the original and image-transformed data 
and were categorised by a ‘‘physiological constraint’’ (whether the 
transform alters or violates physiological possibilities) and/or a ‘‘spec-
trogram constraint’’ (whether the transform alters the meaning of the 
spectrogram output) [32]. Augmentations that violated the ‘‘spectro-
gram constraint’’ were linked to decreased model performance, while 
adherence to physiological possibilities was associated with improved 
performance [32]. Notably, no single augmentation improved perfor-
mance across all metrics, though some offered a more favourable 
trade-off than others [32].

VAEs have been explored for the generation of synthetic lung 
auscultation sounds [33], where it was found that the use of VAE-
generated signals in the training of classifiers were often improved, but 
not always, over training on just the original data.

GANs have also found lots of use within biomedical applications
[34–36]. The introduction of synthetic data helps to overcome data 
imbalances as well as improve model performance. In particular, GANs 
have been used to generate synthetic heart signals [36]. This work 
found that during early training, the waveform generated resembled 
a real signal with added noise [36]. Using the Empirical Wavelet 
Transform (EWT) to reduce this noise, the resulting signal at 2000
epochs was more realistic than the resulting signal at 12 000 epochs, 
allowing for a sixfold reduction in training time [36]. Further work 
was performed to show that the generative model had not simply 
learned the training dataset [36]. As a result, the classifiers were able 
to classify the synthetic heart sounds correctly with accuracy greater 
than 90% [36].

In [37], the general problem of generating synthetic
one-dimensional biosignals are explored. Both an autoencoder and 
GAN-based approach were explored. To evaluate their models, the 
synthetic and real datasets are each used as either the training or test 
set for a classifier model that had previously achieved an accuracy 
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of 99% [37]. The results from this work showed that the synthetic 
data captured the underlying features and distributions of the real data 
and the synthetic data could be used to train classifiers such that they 
perform well on real data [37]. In addition to this, it was noted that the 
generative models were readily able to capture the noise of the input 
data [37].

It was found that although GANs have found lots of use tradition-
ally, the number of papers in medical imaging that utilise VAEs and 
DMs has increased in recent years. For DMs in particular, there has 
been a substantial increase in papers, which authors attributed to their 
ability to generate high-quality images with good mode coverage [38]. 
Despite the abundance of diffusion models in medical imaging, we 
could not find, to the best of our knowledge, any use in biomedical 
audio signals, leaving room for exploration.

3.4. Conditional Denoising Diffusion Probabilistic models

Denoising Diffusion Probabilistic models (DDPM) are a type of diffu-
sion model that follows a Markov process that continuously noises the 
input, with the network learning to reverse this process by estimating 
the noise that was added. Further details on the mechanisms of these 
models are found in Appendix  A. Conditional diffusion models for 
conditional audio generation can be adapted from the diffusion model 
setup in [39].

3.4.1. WaveGrad
WaveGrad is a DDPM for audio synthesis using conditional genera-

tion. The model utilises the architecture consisting of multiple upsam-
pling blocks (UBlocks) and downsampling blocks (DBlocks), with the 
input signal and the conditioning signal as inputs into the network. The 
conditioning signal is converted to a mel-spectrogram representation 
before being input to the model [6]. These UBlocks and DBlocks 
follow the architecture of the upsampling and downsampling blocks 
utilised in the Generative Adversarial Network text-to-speech (GAN-
TTS) model [40]. The feature-wise linear modulation (FilM) modules 
combine information from the noisy waveform and the conditioning 
mel-spectrogram [6]. The UBlock, DBlock and feature-wise linear mod-
ulation (FiLM) modules are shown in Fig.  3, with Fig.  4 showing 
the entire WaveGrad architecture. The loss function is based on the 
difference between the noise added in each step of the forward diffusion 
process and the noise predicted during the reverse process [6] as 
described in Eq. (1), with the Markov process being conditioned on 
the continuous noise level instead of the time-step. Also, note that the 
L1 norm was used over the L2 norm as it was found to provide better 
training stability [6]. WaveGrad only includes a local conditioner in the 
form of a conditioning signal.
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3.4.2. DiffWave
DiffWave is another DDPM for raw audio synthesis with conditional 

and unconditional generation. The loss function utilises a single ELBO-
based training objective without auxiliary losses [5], as described in 
Eq. (2). One-dimensional convolutions are used on the input and con-
ditioning signals that go through multiple fully connected layers. The 
model contains a WaveNet [41] backbone, consisting of bi-directional 
dilated convolutions and residual layers and connections. The archi-
tecture is shown in Fig.  5. DiffWave can be used for both conditional 
and unconditional generation. For conditional generation, it uses a local 
conditioning signal and a global conditioner (discrete labels) [5].
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Table 2
Summary of challenge data.
 Database information Proportion of recordings (%)
 Challenge use Dataset Source database Abnormal Normal Unsure

 

Training

training-a MITHSDB 67.5 28.4 4.2
 training-b AADHSDB 14.9 60.2 24.9
 training-c AUTHHSDB 64.5 22.6 12.9
 training-d UHAHSDB 47.3 47.3 5.5
 training-e DLUTHSDB 7.1 86.7 6.2
 training-f SUAHSDB 27.2 68.4 4.4
 Average 18.1 73.0 8.8

 

Test

test-b AADHSDB 15.6 48.8 35.6
 test-c AUTHHSDB 64.3 28.6 7.1
 test-d UHAHSDB 45.8 45.8 8.3
 test-e DLUTHSDB 6.7 86.4 6.9
 test-g TUTHSDB 18.1 81.9 0.0
 test-i SSHHSDB 60 34.3 5.7
 Average 12.0 77.1 10.9

4. Materials and methods

To achieve a more robust model, the augmented training dataset 
must first be created. Fig.  6 depicts the dataset creation process. Once 
this dataset is created, various classification models can be trained and 
evaluated to measure the increase in ID and OOD performance.

4.1. Datasets

4.1.1. PhysioNet and computing in cardiology challenge 2016 dataset
The PhysioNet and Computing in Cardiology Challenge 2016 (CinC) 

was an international competition that aimed to encourage the develop-
ment of heart sound classification algorithms [8]. The data was sourced 
from nine independent databases but excluded a database focused 
on fetal and maternal heart sounds [8]. Across the nine databases, 
there are 2435 recordings sourced from 1297 patients [8]. Excluding the 
aforementioned database and splitting longer recordings into smaller 
samples, there were in total 4430 samples from 1072 patients, equating 
to 233 512 heart sounds, 116 865 heart beats, and nearly 30 hours of 
recordings used in the competition [42]. At the time of (their) pub-
lication, this amounted to the largest open-access heart sound database 
in the world [42].

The recordings were resampled to 2000Hz for the competition and 
only one PCG lead was used, with the exception of training-set a, which 
includes ECG [42].

Recordings were divided into either normal (healthy), abnormal
(diagnosed with CVD or other cardiac problems), or unsure (low quality 
signals) [8]. A summary of the data, shown in Table  2, was adapted 
from [8,42]. These datasets also include additional information, such as 
individual disease diagnoses and annotations of the heart cycles. These 
can be used to assist with the data augmentation.

4.1.2. Synchronised multichannel PCG and ECG dataset
Recently, synchronised multichannel PCG and ECG (SMPECG) data 

has been collected from an EPCG device that consists of seven PCG and 
one lead-I ECG sensors [43]. Using this device, data was collected from 
105 subjects, of which 46 were diagnosed with coronary artery disease. 
Ten seconds of audio were recorded for each subject, during which the 
subjects were instructed not to breathe to eliminate lung sounds from 
the recording. This data was collected in a clinical environment with 
background noise and non-optimal sensor placement as it is designed 
for ease of use, making it a challenging dataset for classification, which 
is representative of a real-world dataset. As only single channel PCG is 
available in the other datasets, only a single channel (channel 2) was 
used for this dataset.
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Fig. 3. WaveGrad module architectures.
Fig. 4. WaveGrad architecture.

4.1.3. Incentia dataset
Along with the training-a dataset used for the inputs for training the 

generative models, the incentive dataset [44] was utilised to provide 
unique unseen ECG to generate an accompanying PCG signal. This data 
set contains 11,000 patients and 2,774,054,987 labelled heartbeats at a 
sample rate of 250Hz with 541,794 segments. Each beat was classified 
with a type from normal, premature atrial contraction, premature 
ventricular contraction and rhythm from normal sinusal rhythm, atrial 
fibrillation and atrial flutter.

4.1.4. Further datasets
To improve the model’s robustness against noise, one of the stages of 

augmentation introduces noise from other PCG and ECG datasets. These 
are the electro-phono-cardiogram (EPHNOGRAM) dataset [45] for PCG 
and the Massachusetts Institute of Technology - Beth Israel Hospital 
5 
(MIT-BIH) dataset [46] for ECG. The EPHNOGRAM dataset comprises 
24 healthy adults and contains recordings taken during stress tests and 
at rest [45]. The MIT-BIH dataset contains 12 half-hour ECG recordings 
and three half-hour recordings of noise typical in ambulatory ECG 
recordings, where this noise is used for augmentation [46].

4.2. Signal augmentation

The augmentation procedure of the PCG and ECG signals is shown 
in Fig.  7. The time stretching augmentation is synchronised to ensure 
that they are both stretched the same amount, with the black lines 
representing the flow of the ECG data and the white lines representing 
the flow of PCG data. Augmentation stages have different percentage 
chances of occurring, where the chances chosen were determined to 
provide the widest variety of augmented signals after every stage has 
been completed whilst also resulting in the best performance. The 
augmentations vary slightly between PCG and ECG to best meet the 
physiological constraints.

The PCG signals are augmented in various ways: harmonic per-
cussive source separation (HPSS) for emphasis on certain parts of the 
signal, time stretching, emphasis on certain bands of the signal using 
a parametric equalisation (EQ) filter and introducing noise from the 
EPHNOGRAM dataset [45]. Before these operations are applied, the 
signals are normalised to have a zero mean and be between −1 and 
1. Shown in Fig.  7 is the augmentation procedure applied to PCG data, 
noted with the white lines.

The HPSS has a 75% chance of occurring and works by extracting 
harmonic and percussive components of the signal with varying thresh-
olds to extract different parts of the signal. The HPSS implementation 
is from the librosa v0.1.0 Python library [47,48]. X(𝑡, 𝑘) denotes the 
short-time Fourier transform (STFT) of the signal x(𝑡), defined as 

X(𝑡, 𝑘) =
𝑁−1
∑

𝑛=0
w(𝑛)x(𝑛 + 𝑡𝐻) exp (−2𝜋𝑗𝑘𝑛∕𝑁) (3)

where w is a sine-window, 𝐻 represents the hop size and 𝑁 is the 
window length and the length of the discrete Fourier transform.

Firstly, the STFT of the signal is calculated, with the parameters 
chosen randomly from a window length of 512, 1024 and 2048 with 
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Fig. 5. DiffWave architecture.
Fig. 6. Data augmentation architecture.

equal probability. A hop length was randomly chosen from 16, 32, 64, 
and 128 with uniform distribution.

Following this, the harmonic and percussive components are then 
extracted from the following, 

Ỹℎ(𝑡, 𝑘) = 𝑚𝑒𝑑𝑖𝑎𝑛(X(𝑡 − 𝓁ℎ, 𝑘),… ,X(𝑡 + 𝓁ℎ, 𝑘)) (4)

Ỹ (𝑡, 𝑘) = 𝑚𝑒𝑑𝑖𝑎𝑛(X(𝑡, 𝑘 − 𝓁 ),… ,X(𝑡, 𝑘 + 𝓁 )) (5)
𝑝 𝑝 𝑝

6 
Fig. 7. PCG and ECG traditional augmentation procedure.
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Mℎ(𝑡, 𝑘) =

⎧

⎪

⎨

⎪

⎩

1, if Ỹℎ(𝑡,𝑘)
Ỹ𝑝(𝑡,𝑘)+𝜂

> 𝜆ℎ

0, otherwise
(6)

M𝑝(𝑡, 𝑘) =

⎧

⎪

⎨

⎪

⎩

1, if Ỹ𝑝(𝑡,𝑘)
Ỹℎ(𝑡,𝑘)+𝜂

≥ 𝜆𝑝
0, otherwise

(7)

Xℎ(𝑡, 𝑘) = X(𝑡, 𝑘) ⋅Mℎ(𝑡, 𝑘) (8)

X𝑝(𝑡, 𝑘) = X(𝑡, 𝑘) ⋅M𝑝(𝑡, 𝑘) (9)

where Xℎ(𝑡, 𝑘) is the harmonic component, X𝑝(𝑡, 𝑘) is the percussive 
component 𝜂 is a small number added to avoid a divide by 0 error [48]. 
xℎ(𝑡) and x𝑝(𝑡) are the inverse STFT (ISTFT) of Xℎ(𝑡, 𝑘) and X𝑝(𝑡, 𝑘). 
If the thresholds, 𝜆ℎ > 1 or 𝜆𝑝 > 1, there will be some part of 
the spectrum that is not a harmonic or percussive component of the 
signal but a residual component that appears as textured noise. As 
the abnormalities to be detected are from diseases that produce more 
percussive or harmonic sounds, these residuals can be ignored without 
important information loss that would negatively impact the ability of 
a classifier to classify these sounds.

The first set have parameters 𝜆ℎ = 𝑟𝑎𝑛𝑑(1, 2), 𝜆𝑝 = 𝑟𝑎𝑛𝑑(1, 2), 𝓁ℎ =
𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30), and 𝓁𝑝 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30). 𝑟𝑎𝑛𝑑 denotes a random floating 
point number chosen uniformly between the two bounds, and 𝑟𝑎𝑛𝑑𝑖𝑛𝑡
is an integer uniformly chosen between those bounds. The second 
set are then extracted from Xℎ(𝑡, 𝑘) and X𝑝(𝑡, 𝑘). Xℎℎ(𝑡, 𝑘) and Xℎ𝑝(𝑡, 𝑘)
are the harmonic and percussive components of Xℎ(𝑡, 𝑘) and X𝑝ℎ(𝑡, 𝑘)
and X𝑝𝑝(𝑡, 𝑘) the harmonic and percussive components of X𝑝(𝑡, 𝑘). The 
second stage of decomposition uses parameters of 𝜆ℎℎ = 𝑟𝑎𝑛𝑑(1, 4), 
𝜆ℎ𝑝 = 𝑟𝑎𝑛𝑑(1, 4), 𝜆𝑝ℎ = 𝑟𝑎𝑛𝑑(1, 4), 𝜆𝑝𝑝 = 𝑟𝑎𝑛𝑑(1, 4), 𝓁ℎℎ = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30), 
𝓁ℎ𝑝 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30), and 𝓁𝑝ℎ = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30), 𝓁𝑝𝑝 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(5, 30).

The ISTFT is then applied to each component before reconstructing 
the signal as, 

s𝐻𝑃𝑆𝑆 (𝑡) = 𝑎ℎℎxℎℎ(𝑡) + 𝑎ℎ𝑝xℎ𝑝(𝑡) + 𝑎𝑝ℎx𝑝ℎ(𝑡) + 𝑎𝑝𝑝x𝑝𝑝(𝑡) (10)

where 𝑎ℎℎ = 𝑟𝑎𝑛𝑑(0.01, 10), 𝑎ℎ𝑝 = 𝑟𝑎𝑛𝑑(0.01, 10), 𝑎𝑝ℎ = 𝑟𝑎𝑛𝑑(0.01, 10), 
𝑎𝑝𝑝 = 𝑟𝑎𝑛𝑑(0.01, 10).

This two stage decomposition and reconstruction described in
Eq. (10) is done twice to create s𝐻𝑃𝑆𝑆1

(𝑡) and s𝐻𝑃𝑆𝑆2
(𝑡), which are 

then combined to get the final augmented signal s𝐻𝑃𝑆𝑆𝑓𝑖𝑛𝑎𝑙
(𝑡), 

s𝐻𝑃𝑆𝑆𝑓𝑖𝑛𝑎𝑙
(𝑡) = s𝐻𝑃𝑆𝑆1

(𝑡) + 𝑎𝐻𝑃𝑆𝑆s𝐻𝑃𝑆𝑆2
(𝑡) (11)

where 𝑎𝐻𝑃𝑆𝑆 = 𝑟𝑎𝑛𝑑(0.01, 0.05). The use of these parameters was 
determined by inspection to ensure the signals remain realistic.

Next, there is a 7.5% chance of introducing noise to the signal, as 
defined in the equation below, where s𝐻𝑃𝑆𝑆 (𝑡) is the signal after the 
HPSS augmentation stage, s𝑆𝑁 (𝑡) is the augmented signal and r(𝑡) ∼
 (𝜇, 𝜎𝐼), 𝜎 = 𝑟𝑎𝑛𝑑_𝑐ℎ𝑜𝑖𝑐𝑒(0.01, 0.001, 0.0001) and 𝜇 = 𝑟𝑎𝑛𝑑(0, 0.1). Note 
that s𝐻𝑃𝑆𝑆 (𝑡) may not have had the HPSS augmentation applied as it 
depends on the random chance. 𝑟𝑎𝑛𝑑_𝑐ℎ𝑜𝑖𝑐𝑒() denotes a random choice 
from those numbers with equal probability. 

s𝑆𝑁 (𝑡) = s𝐻𝑃𝑆𝑆 (𝑡) + r(𝑡) (12)

Following this, there is a 25% chance of adding in a time warp. 
This time warp will stretch the signal randomly to either 1.004 times 
the length or 1.006 times the length of the original signal. It is noted 
that a time warp with the same factor will be applied to both the PCG 
and ECG.

There is then a 75% chance of adding in amplitude modulation. 
The modulation is done as described in Eq. (13), where 𝑏𝐴𝑀1

=
𝑟𝑎𝑛𝑑(0.01, 0.25), 𝑏𝐴𝑀2

= 𝑟𝑎𝑛𝑑(0.01, 0.25), 𝑐𝐴𝑀1
= 𝑟𝑎𝑛𝑑(0.05, 0.5), 𝑐𝐴𝑀2

=
𝑟𝑎𝑛𝑑(0.001, 0.05), 𝑑 = 𝑟𝑎𝑛𝑑(0, 1), 𝑑 = 𝑟𝑎𝑛𝑑(0, 1) and 𝑠 (𝑡) is 
𝐴𝑀1 𝐴𝑀2 𝑇𝑆

7 
signal after the time stretch augmentation stage, which depending on 
the random chance may have been time-stretched. 

s𝐴𝑀 = s𝑇𝑆 (𝑡) ⋅
(

1 + 𝑏𝐴𝑀1
sin

(

2𝜋𝑐𝐴𝑀1
𝑡 + 𝑑𝐴𝑀1

)

+ 𝑏𝐴𝑀2
sin

(

2𝜋𝑐𝐴𝑀2
𝑡 + 𝑑𝐴𝑀2

))

(13)

Next, there is another 7.5% chance of introducing the same noise 
as done in Eq. (12). Following this, there is a 25% chance of applying 
parametric equalisation to boost frequency bands. Given the frequency 
range of 2Hz–500Hz, the bandwidth is randomly selected between 5% 
and 20% of this range, and the signal is attenuated using a bandpass 
filter. After repeating this process 5 times, the filtered signal and 
original signal are summed and normalised.

Lastly, real noise from the EPHNOGRAM dataset is introduced. The 
introduced noise from the EPHNOGRAM is clinical noise extracted from 
some of the recordings in this dataset. This augmentation occurs 50% 
of the time.

The ECG signals are also augmented in numerous ways; these in-
clude introducing random noise, adding baseline wander, time stretch-
ing, adding noise from the MIT-BIH dataset, and emphasising certain 
signal bands. Fig.  7 shows the order of processing on the ECG, indicated 
with the black lines.

Random noise is applied the same way as the PCG noise, as defined 
in Eq. (12), with this augmentation occurring with a probability of 
7.5%. Next, a baseline wander is added 30% of this time. This is 
done as described in Eq. (14), where 𝑏𝐵𝑊1

= 𝑟𝑎𝑛𝑑(0.01, 0.2), 𝑏𝐵𝑊2
=

𝑟𝑎𝑛𝑑(0.01, 0.2), 𝑐𝐵𝑊1
= 𝑟𝑎𝑛𝑑(0.05, 0.5), 𝑐𝐵𝑊2

= 𝑟𝑎𝑛𝑑(0.001, 0.05), 𝑑𝐵𝑊1
=

𝑟𝑎𝑛𝑑(0, 1), 𝑑𝐵𝑊2
= 𝑟𝑎𝑛𝑑(0, 1). s𝑆𝑁𝐸

(𝑡) is the ECG signal after the random 
noise augmentation stage, which may include the random noise as per 
the random chance. 
s𝐵𝑊 (𝑡) = s𝑆𝑁𝐸

(𝑡)+𝑏𝐵𝑊1
sin

(

2𝜋𝑐𝐵𝑊1
𝑡 + 𝑑𝐵𝑊1

)

+𝑏𝐵𝑊2
sin

(

2𝜋𝑐𝐵𝑊2
𝑡 + 𝑑𝐵𝑊2

)

(14)

Following this, there is a 25% chance of a timewarp between 1 and 
1.06 times the original signal. It is noted that a timewarp with the 
same factor will be applied to both the PCG and ECG. Then, the same 
parametric equalisation, as with the PCG, is applied between 0.25Hz
and 100Hz.

Lastly, noise from the MIT-BIH database is added, occuring 50% of 
the time. This is noise from the ECG sensors taken from recordings in 
the MIT-BIH database.

4.3. Synthetic audio generation

Synthetic signals were generated using the mel-spectrogram of the 
ECG signal as a conditioner for both the WaveGrad [6] and Dif-
fWave [5] diffusion models. They are trained before data is generated 
for use. These diffusion models generated data for 3200 patients, 800 
abnormal and 2400 normal, with three segments used to train the 
classification models. This is done to reduce the effect of overfitting to 
the synthetic signals. The ECG signals for conditioning were taken from 
the icentia database [44] to introduce new data, with abnormal ECG 
used for abnormal PCG. The generative models were trained to create 
individual conditions and make them more realistic using additional 
labels from the dataset. To get around the lack of training data, the 
order of heart cycles was rearranged to increase training diversity. 
DiffWave and WaveGrad models were trained on an Nvidia RTX 4090 
for 24 h. The parameters for the DiffWave model that differ from the 
default are shown below in Table  3. Parameters used for the WaveGrad 
model that differ from the default are shown in Table Table  4. Both 
models differ slightly from their base implementations as they use a 
custom global conditioner. Additional global conditioners were added 
for specific abnormalities or lack of abnormalities, such as mitral valve 
prolapse, innocent or benign murmurs, aortic disease, miscellaneous 
conditions, and normal.

To ensure a diversity of training examples, various heart cycles were 
occasionally rearranged for each patient for each minibatch during 
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Table 3
DiffWave parameters.
 Parameter Value  
 Residual layers 30  
 Residual channels 64  
 Dilation cycle length 10  
 Embedding dimension 32  
 Batch size 8  
 Learning rate 2e−4  
 Noise schedule T=50, linearly spaced [1e−4, 5e−2]  
 Inference noise schedule {1e−4, 1e−3, 1e−2, 5e−2, 2e−1, 5e−1} 

Table 4
WaveGrad parameters.
 Parameter Value  
 Embedding dimension 32  
 Batch size 8  
 Learning rate 2e−4  
 Noise schedule T=1000, linearly spaced [1e−6, 1e−2] 

training. This was done inside a custom collator, with a 75% chance 
of rearranging the heart cycles. Heart cycles could be rearranged in 
three ways with equal probability. The first will take groupings of 
many cycles and then randomly rearrange these large groups. These 
first groups would have a size of half of the total number of heart 
cycles within that signal. Secondly, groupings of 1 to 4 heart cycles 
were chosen randomly and used to rearrange the signal. Finally, the 
third way involved rearranging each heart cycle.

Although this rearranging can violate physiological constraints, it 
was found that this helped the model learn a better representation 
of the data and improved classification results when trained on the 
synthetic data.

The signals were then bandpass filtered between 2Hz to 500Hz for 
PCG and 0.25Hz to 100Hz for ECG, the conditioning signal. A mel-
spectrogram of the ECG was created as the local conditioning signal. 
The mel-spectrogram was created using a sample rate of 4 kHz, window 
length 1024, hop length 256, and 80 mel bins. Crossfading was used to 
ensure minimal audio artifacts when rearranging heart cycles. As the 
signals are joined when they are both in the same state, the end of the 
cycle in the diastole phase, they are assumed to be roughly correlated. 
The crossfade occurs between the last 40 samples of the first signal, 
−1 ≤ 𝑡 ≤ 0, and the first 40 samples from the second signal, 0 ≤ 𝑡 ≤ 1. If 
one of the signals has a low variance, then a simple linear crossfade is 
used between the two. A linear crossfade can be described from Eq. (15) 
and (16) below, 

f(𝑡) = 1∕2 + 𝑡∕2, −1 < 𝑡 < 1 (15)

v(𝑡) = f(𝑡)y(𝑡) + f(−𝑡)x(𝑡) (16)

where 𝑓 is the crossfade function, 𝑣 is the final spliced signal, 𝑥 is the 
last 40 samples from the first signal, and 𝑦 is the first 40 samples from 
the second signal.

Otherwise, the following crossfade function will be used to ensure 
a crossfade is applied that represents how correlated the two signals 
are. For two fully uncorrelated signals, a constant power crossfade 
would be desired, and for two fully correlated signals, a constant 
voltage crossfade would be desired and something in between if not 
fully correlated or uncorrelated. Assuming that the crossfade function 
is deterministic, the two signals are a random process. Along with the 
assumption, the mean power of the signals at the point of crossfading is 
equal as they are being crossfaded when in the same phase of the heart 
cycle. This allows the following generalised crossfade function [49] to 
be used to satisfy a crossfade related to the signals’ correlation. The 
8 
Table 5
Adam optimiser parameters.
 Parameter Value  
 initial learning rate 0.001  
 betas (0.9, 0.999) 
 epsilon 10−8  
 weight decay 10−3  
 learning rate step size up 2  
 learning rate step size down 2  
 max learning rate 10−3  

crossfade is defined in Eq. (17)–(19), 

o(𝑡) = 9
16

sin
(𝜋
2
𝑡
)

+ 1
16

sin
( 3𝜋

2
𝑡
)

, −1 < 𝑡 < 1 (17)

e(𝑡) =
√

1
2(1 + 𝑟)

−
( 1 − 𝑟
1 + 𝑟

)

o(𝑡)2 (18)

f(𝑡) = o(𝑡) + e(𝑡) (19)

where 𝑒 is the even component of the crossfade function, and 𝑜 is the 
odd component, and 𝑟 is the correlation coefficient of the two signals at 
zero lag and 0 ≤ 𝑟 ≤ 1. The crossfade is then interpolated to double the 
length using a univariate spline, with a degree of 3 and a smoothing 
factor equal to the length of the signal. The implementation is the 
scipy implementation of the univariate spline [50]. The final signal 
consists of the first signal before the last 40 samples, the crossfaded and 
interpolated signal, and the second signal after the first 40 samples. Fig. 
8 demonstrates the effect that this crossfade has on reducing artifacts. 
Rearranging of the heart cycles can be seen through the rearranging of 
the chirp in the last row. The first column shows the original signal, the 
second shows the rearranging of all heart cycles, the third shows the 
rearranging of a few heart cycles, and the final shows the rearranging 
of larger groups of heart cycles.

4.4. Classification model

The model used to test the augmented dataset is a convolutional 
neural network-based model finetuned from ResNet trained on Im-
ageNet [7]. The purpose of choosing this model is not to show its 
better performance in classification but to demonstrate the capability 
of the proposed data augmentation methods. Before the signals are 
passed into the convolutional neural network (CNN), the PCG signal is 
bandpass filtered between 45Hz and 400Hz. The ECG signal is bandpass 
filtered between 25 Hz and 100 Hz. The signals also then undergo 
normalisation. A spectrogram is created from the signal before being 
passed to the model, with a window length of 100 and a hop length 
of 50. This spectrogram is created based on 1.5 s of audio, with each 
being referred to as a fragment, with the training objective to maximise 
accuracy on the fragment level. From the synthetic data, only three 
fragments of 1.5 s audio are taken to ensure reduced overfitting to the 
synthetic data. These 1.5 s fragments differ from the original model [7] 
which took in a single heart cycle. This change has been done to 
reduce the need for accurate segmentation. For testing the subject level, 
the outputs from the classification are averaged between all fragments 
before the classification is made, as was done previously. The Adam 
optimiser is used for training along with a cyclic triangular learning 
rate scheduler with parameters below in Table  5.

During the model’s training on the original dataset, as a CNN is 
being finetuned, only 10 epochs are used in which the best weights 
are chosen from the highest MCC value from the validation set to 
reduce overfitting. The model is only updated for each dataset if it 
performed better on the validation set than previously. A schedule is 
used to reduce the overfitting of the synthetic data for training on 
the augmented dataset. This schedule can be found below in Table  6 
and was experimentally determined to provide the best results, where 
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Fig. 8. Rearranged heart cycles with crossfade.
Table 6
Training schedule.
 Data Epochs

 max-mix 8
 max-aug 8
 max-mix 8
 max-aug 8
 max-mix 8
 max-aug 8
 max-mix 16
 max-aug 16
 max-mix 16
 max-aug 16
 max-mix 16
 max-aug 16

max-mix is all of the data with no augmentations being applied to 
the original dataset and 3 augmentations applied to the DiffWave and 
WaveGrad data. From the synthetic data, only three random segments 
were taken to ensure the model does not overfit to the synthetic data. 
The max-aug data is the original data with 30 augmentations being 
applied and no synthetic data.

As only the training-a dataset contains synchronised PCG and ECG 
for measuring the OOD performance, a PCG-only model will also be 
trained and used to be evaluated on training-b-f datasets whilst the PCG 
and ECG input model will be evaluated on the SMPECG dataset.

5. Results

These results are to demonstrate the performance improvement 
observed in deep learning models when training is conducted on the 
augmented dataset. We do not aim to evaluate the performance of the 
convolutional neural network.

5.1. In-distribution performance

The ID results are for the datasets on which the models were 
trained. This shows the increase in performance when training on the 
augmented dataset compared to the original dataset. As the only dataset 
being trained on was training-a, these are the only models presented for 
in-distribution performance. Table  7 displays the ID performance when 
the models are trained on the original dataset, with Table  8 displaying 
the ID performance for models trained on the augmented dataset.
9 
5.2. Out-of-distribution performance

The out-of-distribution results are for the datasets the models were 
not trained on. Hence, this shows an increase in the generalisation of 
the models to other datasets that were not trained on. As the dataset 
being trained on was training-a, all other datasets are presented for the 
out-of-distribution performance. Table  9 shows the OOD performance 
on the original dataset, with Table  10 showing the OOD performance 
when trained on the augmented dataset.

5.3. Synthetic generation output

Fig.  9 shows the generation output of the DiffWave diffusion model, 
with the other diffusion models, WaveGrad, output in Fig.  10. The 
reference signal is from patient ‘a0040‘ from the training-a dataset. 
It is noted that this generation is done from random noise and the 
conditioning signal, so it will not be reconstructed to look identical 
to the reference signal. However, it should be time-aligned with the 
conditioning signal. To better demonstrate the improved generation of 
the proposed diffusion model, Fig.  11 and Fig.  12 show the outputs 
from a conditional 𝛽 variational autoencoder (c𝛽-VAE) and a condi-
tional deep convolutional generative adversarial network (cDCGAN). 
Appendices B and C contain the architectures and training used for 
the c𝛽-VAE and cDCGAN models, respectively. It was found that the 
cDCGAN could not be trained to generate realistic PCG signals as it 
suffered from mode collapse and struggled with generation. The c𝛽-VAE 
resulted in a noisier generated PCG signal than the diffusion model. 
For this reason, only diffusion models were utilised for the synthetic 
data generation. These results are inline with the generative trilemma 
as mentioned in Section 3.2. Further synthetic signals of the diffusion 
models can be found in Appendix  D.

6. Discussion

It was found that the ID performance was improved for all models 
tested, with a 2.5% improvement in accuracy for the PECG model and 
a 13.6% improvement in subject-level accuracy for the PCG model. The 
augmented dataset is also shown to improve the balanced accuracy and 
hence help to balance between sensitivity and specificity, with all these 
being improved from the original dataset to the augmented dataset. 
This was observed through a balanced accuracy improvement of 4.1% 
and 24.2% for the PECG and PCG models, respectively. This is further 
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Table 7
Models performance ID trained on the original dataset.
 Dataset Data Acc Acc-mu TPR TNR PPV NPV F1+ F1− MCC  
 training-a PCG+ECG 90.10% 89.40% 91.20% 87.50% 94.50% 80.80% 92.90% 84.0% 0.770 
 training-a PCG 70.40% 56.00% 91.20% 20.80% 73.20% 50.00% 81.20% 29.40% 0.167 
Table 8
Models performance ID trained on the augmented dataset.
 Dataset Data Acc Acc-mu TPR TNR PPV NPV F1+ F1− MCC  
 training-a PCG+ECG 92.60% 93.50% 91.20% 95.80% 98.10% 82.10% 94.50% 88.50% 0.836 
 training-a PCG 84.00% 80.20% 89.50% 70.80% 87.90% 73.90% 88.70% 72.30% 0.611 
Table 9
Models performance in OOD trained on the original dataset.
 Dataset Data Acc Acc-mu TPR TNR PPV NPV F1+ F1− MCC  
 training-b PCG 22.90% 50.7% 99.00% 2.30% 21.5% 90.00% 35.30% 4.5% 0.040  
 training-c PCG 74.20% 47.90% 95.80% 0.00% 76.70% 0.00% 85.20% NaN −0.099 
 training-d PCG 49.10% 48.50% 82.10% 14.80% 50.0% 44.40% 62.20% 22.20% −0.041 
 training-e PCG 40.90% 65.80% 96.20% 35.50% 12.70% 99.00% 22.50% 52.20% 0.192  
 training-f PCG 52.60% 58.60% 73.50% 43.80% 35.70% 79.50% 48.10% 56.50% 0.162  
 SMPECG PCG+ECG 56.20% 50.20% 98.30% 2.20% 56.30% 50.00% 71.60% 4.20% 0.017  
 SMPECG PCG 56.20% 50.20% 98.30% 2.20% 56.30% 50.00 71.60% 4.20% 0.017  
Table 10
Models performance in OOD trained on the augmented dataset.
 Dataset Data Acc Acc-mu TPR TNR PPV NPV F1+ F1− MCC  
 training-b PCG 33.30% 53.10% 87.50% 18.70% 22.50% 84.70% 35.80% 30.60% 0.066 
 training-c PCG 83.90% 74.70% 91.7% 57.10% 88.00% 66.70% 89.80% 61.50% 0.517 
 training-d PCG 52.70% 52.00% 92.90% 11.10% 52.00% 60.00% 66.70% 18.80% 0.069 
 training-e PCG 84.00% 86.00% 88.50% 83.50% 34.50% 98.70% 49.60% 90.50% 0.489 
 training-f PCG 73.70% 60.10% 26.50% 93.80% 64.30% 75.00% 37.50% 83.30% 0.282 
 SMPECG PCG+ECG 61.90% 57.00% 96.60% 17.40% 60.00% 80.00% 71.40% 28.60% 0.237 
 SMPECG PCG 57.10% 51.60% 96.60% 6.50% 57.00% 60.00% 71.70% 11.80% 0.073 
Fig. 9. Generated DiffWave signal.
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Fig. 10. Generated WaveGrad signal.
Fig. 11. Generated c𝛽-VAE signal.
shown by an increase in the MCC value from 0.77 to 0.836 and 0.167 
to 0.611 for the EPCG and PCG models, respectively. This shows that 
by augmenting the original data as well as adding synthetic data, and 
ensuring a balanced dataset, the ID performance can be improved.
11 
The OOD performance was also seen to improve with the augmented 
dataset. Although the models were not trained on these datasets, the 
introduction of augmented data improved all model’s accuracy and 
overall robustness, as seen by the increase in MCC values across all 
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Fig. 12. Generated cDCGAN signal.
datasets. In particular, in the CinC datasets, there was an improvement 
in accuracy of at most 43.1% in training-e and of at least 3.6% in 
training-d, with the improvement in accuracy in all other CinC datasets 
are between these values. Further, the balanced accuracy in all of these 
datasets was improved. With the greatest increase in balanced accuracy 
of 26.8% from training-c and the smallest being 1.5% from training-
f. The MCC was also seen to increase in all cases, with the greatest 
increase of 0.616 occurring in training-c and the smallest increase of 
0.026 in training-b. With all performance metrics increasing, the OOD 
performance was improved by the use of this augmented dataset, which 
shows that these augmentations help to improve the robustness of 
models when used on unseen OOD data.

In the SMPECG dataset, there was a much smaller improvement 
in accuracy, with an increase of 5.7% with the EPCG model and an 
increase of 0.9% with the PCG model. Also, balanced accuracy for both 
models increases, with 6.8% and 1.4% for the EPCG and PCG models, 
respectively. However, there was a much greater improvement in MCC 
and overall balancing the performance with an increase to the MCC 
value of 0.22 for the EPCG model and 0.056 for the PCG model. This 
shows that although a small improvement, this augmentation helps 
not only improve classification accuracy but also helps to balance the 
classifier, improving its balanced accuracy and MCC values.

As shown, both the ID and OOD performance have been increased 
by utilising the augmented data, achieving the objective of improving 
the robustness of the classifier. Better results are found for PCG-only 
models. This, however, is due to more data to test with than synchro-
nised PCG and ECG data. However, the OOD for some datasets is still 
low, showing that there is still room for improvement in making a 
truly robust and general abnormal heart sound classifier. Utilising a 
larger dataset and applying these methods, the classifier is expected 
to become much more general, as seen with classifiers trained on this 
smaller dataset. The training datasets and the CinC testing datasets are 
also not as representative of real-world datasets as compared to the 
SMPECG dataset; however, with the improvement seen on this dataset, 
it suggests that when used entirely on real-world datasets, this method 
will still result in improvement.
12 
7. Conclusion and further work

Increasing training data through augmentation has improved ID and 
OOD performance in classifying abnormal heart sounds. The use of 
diffusion models to generate synthetic heart sounds conditioned on ECG 
signals has successfully enabled the generation of synchronised PCG 
from ECG data, expanding the data distribution and enhancing classifier 
robustness. This is not limited to classifiers that utilise multimodal PCG 
and ECG data but also for single-mode classifiers that utilise only PCG, 
as found from the increase in performance and robustness of PCG-only 
models. Future work should scale this approach to multichannel PCG 
signals for use with classifiers that utilise such data.

This study provides evidence that data augmentation, specifically 
through DDPMs, can significantly enhance the robustness and generali-
sation of classifiers for abnormal heart sound detection. By conditioning 
synthetic PCG signals on ECG data, we generated augmented datasets 
that improved performance in both ID and OOD scenarios, consistently 
observed across key metrics such as accuracy, balanced accuracy, and 
MCC.

Our approach increases the size of training datasets and enriches 
data diversity, which is crucial for developing models resilient to 
variations in real-world clinical settings. The augmentation process 
effectively addresses data imbalance and noise, providing a stronger 
foundation for training machine learning models.

However, while the introduced augmentation techniques have
shown promise, certain limitations remain, particularly in generalising 
models to new datasets. The OOD performance, though improved, 
suggests that further refinement of these methods is necessary. This 
could involve optimising diffusion model parameters or exploring alter-
native generative approaches that better capture the complex patterns 
in biomedical signals.

Future work should focus on scaling these methods to accommodate 
multichannel PCG data, enabling more comprehensive heart sound 
analysis and potentially improving classification accuracy. This will 
allow the training and test datasets to use data from the SMPECG 
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dataset, demonstrating the effectiveness of this methodology on a real-
world dataset. This study demonstrates a viable strategy for enhancing 
classifier performance through synthetic data generation, contributing 
to more reliable cardiovascular disease diagnosis.
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Appendix A. Conditional denoising diffusion probabilistic model 
equations

DDPMs considers the conditional distribution 𝑝𝜃(y0|x), with y0 be-
ing the original waveform and x the conditioning features that corre-
spond with y0, 

𝑝𝜃
(

y0|x
)

= ∫ 𝑝𝜃
(

y0∶𝑁 |x
)

𝑑y1∶𝑇 (A.1)

 where y1,… ,y𝑇  is a series of latent variables. The posterior 𝑞
(

y1∶𝑇 |y0
)

is the forward diffusion process, which is defined through the Markov 
chain: 

𝑞
(

y1∶𝑇 |y0
)

=
𝑇
∏

𝑡=1
𝑞
(

y𝑡|y𝑡−1
)

(A.2)

Gaussian noise being added in each iteration is defined as, 
𝑞
(

y𝑡|y𝑡−1
)

= 
(

y𝑡;
√

1 − 𝛽𝑡y𝑡−1, 𝛽𝑡𝐼
)

(A.3)

 with the noise being defined with a fixed noise schedule for 𝛽1,… , 𝛽𝑇 . 
Hence, the diffusion process can be computed for any 𝑡 as 

y𝑡 =
√

𝛼𝑡y0 +
√

1 − 𝛼𝑡𝜖𝑡 (A.4)

 where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖. As the likelihood in Eq. (A.1) is 
intractable, training these models is done by maximising its variational 
lower bound (ELBO). Ho et al. [39] found that using a loss as defined 
in Eq. (A.5) leads to higher quality generation. 

E𝑡,𝜖

[

‖

‖

‖

𝜖𝜃
(

y𝑡, x, 𝑡
)

− 𝜖𝑡
‖

‖

‖

2

2

]

(A.5)

The model estimates the noise added in the forward process, which 
is written as 𝜖𝜃 and the actual noise added is written as 𝜖𝑡, where 
𝜖 ∼  0, 𝐼 .
𝑡 ( )
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Table B.11
Training hyperparameters for the c𝛽-VAE model.
 Hyperparameter Value  
 Initial learning rate 2 × 10−4  
 Batch size 8  
 Latent dimension size 32  
 Label embedding dimension size 32  
 ResBlock feature sizes (blocks 1–3) 32, 64, 128 
 ResBlock strides (blocks 1–3) 2, 2, 2  
 𝛼 (reconstruction loss weight) 1.0  
 𝜃 (STFT loss weight) 0.5  

Generation is then done by first sampling y𝑇 ∼  (0, 𝐼) and z ∼
 (0, 𝐼), before following the below equation until for 𝑡 = 𝑇 ,… , 1, 0, 

y𝑡−1 =
1

√

𝛼𝑡

(

y𝑡 −
1 − 𝛼𝑡
√

1 − 𝛼𝑡
𝜖𝜃

(

y𝑡, x, 𝑡
)

)

+ 𝜎𝑡z (A.6)

 where 𝜎𝑡 = 𝛽𝑡 and 𝛽𝑡 = 1−𝛼𝑡−1
1−𝛼𝑡

𝛽𝑡 is the variance at step 𝑡 for 𝑡 > 1 and 
𝛽1 = 𝛽1.

Appendix B. C𝜷-VAE architecture and training

The c𝛽-VAE architecture is shown in Fig.  B.13. The label and 
conditioner encoders are single 1D convolutional layers designed to 
align the label embedding and conditioning features with the feature 
dimensions of the layers to which they are added.

Each residual block (ResBlock) consists of two 1D convolutional 
layers, each followed by batch normalisation. In the encoder, the first 
convolution in a ResBlock downsamples the signal via striding, while 
the second maintains the same number of input and output channels. 
Both layers use a kernel size of 3; the first layer has a variable stride 
for downsampling, while the second has a fixed stride of 1.

The ResBlocks in the decoder do not perform any upsampling or 
downsampling. They use the same number of input and output chan-
nels for both layers, with all other parameters mirroring those in the 
encoder. The dimensions and sizes of layers are in Table  B.11.

The model was trained for 24 h on an RTX 3090 GPU using the same 
preprocessing steps and collator as the diffusion models. Training used 
the AdamW optimiser with a learning rate scheduler that reduces the 
learning rate on loss plateau.

The total loss function, shown in Eq.  (B.1), combines signal recon-
struction loss, KL divergence, and multiscale STFT loss. Here, 𝑍𝜇 and 
𝑍𝜎 are the encoder’s outputs representing the latent mean and standard 
deviation, respectively: 

 = 𝛽𝐷KL
(

 (𝑍𝜇 , 𝑍𝜎)| (0, 1)
)

+ 𝛼recon + 𝜃mSTFT (B.1)

The reconstruction loss, recon, is defined as the mean squared error 
(MSE) between the reference signal 𝐬ref and the generated signal 𝐬gen: 

recon = ‖

‖

‖

𝐬ref − 𝐬gen
‖

‖

‖

2

2
(B.2)

The multiscale STFT loss, mSTFT, is computed by comparing the 
STFTs of the reference and generated signals using four different win-
dow sizes: 𝑤 ∈ {256, 512, 1024, 2048}. Each comparison uses L1 loss, and 
the results are averaged: 

mSTFT = 1
|𝑤|

∑

𝑤

‖

‖

‖

𝐒ref,𝑤 − 𝐒gen,𝑤
‖

‖

‖1
(B.3)

The KL divergence weight 𝛽 was scheduled to increase during 
training, starting at 0.1 and linearly ramping up to 1.0 over 20,000 
steps.

The training hyperparameters are summarised in Table  B.11.

Appendix C. cDCGAN architecture and training
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Fig. B.13. c𝛽-VAE architecture diagram.
Fig. C.14. cDCGAN architecture diagram.
The cDCGAN architecture is shown in Fig.  C.14. The label and 
conditioner encoders are single 1D convolutional layers designed to 
align the label embedding and conditioning features with the feature 
dimensions of the layers to which they are added. The size of the layers 
and number of layers are shown in Table  C.12. The model was trained 
for 24 h on an RTX 3090 GPU using the same preprocessing steps and 
collator as the diffusion models. Training used the AdamW optimiser 
14 
with a learning rate scheduler that reduces the learning rate on loss 
plateau.

The total loss function shown in Eq.  (C.1), combines the adversarial 
loss with signal reconstruction loss, multiscale STFT loss and feature 
matching loss. 

 = 𝛽Adv + 𝛼recon + 𝜃mSTFT + 𝜆𝐹𝑀 (C.1)
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Fig. D.15. Generated DiffWave signals for three different patients.
Table C.12
Training hyperparameters for the cDCGAN model.
 Hyperparameter Value  
 Initial learning rate 2 × 10−4  
 Batch size 8  
 Latent dimension (random input) dimension 32  
 Generator/Discriminator feature dimension size 64  
 Upsample/Downsample scales 4, 2, 2, 6 
 𝛼 (reconstruction loss weight) 1.0  
 𝛽 (adversarial loss weight) 1.0  
 𝜃 (STFT loss weight) 5.0  
 𝜆 (feature matching loss weight) 5.0  

The adversarial loss is defined as the sum of the discriminator and 
generator losses as in Eq.  (C.2). 

𝐴𝑑𝑣 = 𝐷 + 𝐺 (C.2)

The discriminator loss is described as follows, 

𝐷 = −E𝑥∼𝑝data(𝑥)
[

log𝐷(𝑥, 𝑦)
]

− E𝑧∼𝑝𝑧(𝑧)
[

log (1 −𝐷(𝐺(𝑧, 𝑦), 𝑦))
]

(C.3)

The generator loss is found in Eq.  (C.4). 

𝐺 = −E𝑧∼𝑝𝑧(𝑧)
[

log𝐷(𝐺(𝑧, 𝑦), 𝑦)
]

(C.4)

 where:

• 𝑥 ∼ 𝑝 (𝑥): Real data sampled from the true data distribution.
data

15 
• 𝑧 ∼ 𝑝𝑧(𝑧): Latent vector sampled from Gaussian noise (random 
input).

• 𝑦: Conditional input (ECG mel spectrogram).
• 𝐺(𝑧, 𝑦): Generator output conditioned on random input 𝑧 and 
conditional input 𝑦.

• 𝐷(𝑥, 𝑦): Discriminator’s estimate of the probability that 𝑥 is real, 
given condition 𝑦.

• 𝐷: Discriminator loss—maximised to distinguish real from fake 
samples.

• 𝐺: Generator loss—minimised to fool the discriminator.

The reconstruction loss and multiscale STFT loss are the same that 
were utilised within the c𝛽-VAE model in Eq.  (B.2) and Eq.  (B.3).

Lastly, the feature matching loss is defined as the L1 loss between 
the features, embedding taken from the last downsample block, of the 
discriminator for the reference signal and the generated signal, where 
𝐹𝑟𝑒𝑓  are the features of the reference signal 𝐹𝑔𝑒𝑛 are the features of the 
generated signal. 

𝐹𝑀 = ‖

‖

‖

𝐹𝑟𝑒𝑓 − 𝐹𝑔𝑒𝑛
‖

‖

‖1
(C.5)

The training hyperparameters are summarised in Table  C.12.

Appendix D. Diffusion model generation examples

See Figs.  D.15 and D.16.
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Fig. D.16. Generated WaveGrad signals for three different patients.
Data availability

Data will be made available on request.
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