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Abstract—Backscatter communication (BackCom) technology
that takes advantage of the radio frequency signals to facilitate
the communications of passive devices has attracted much atten-
tion in recent years. To enhance its communication performance,
the multiple-input and multiple-output (MIMO) technology has
been introduced to BackCom. Channel estimation is crucial for
the MIMO BackCom system. However, the optimization for the
pilot training sequences has not been studied. In this paper, we
propose a pilot sequence design algorithm for MIMO BackCom
systems with spatially correlated antennas, which can estimate
both the direct link and the backscatter link channel information.
We derive the optimal structure of the source and the tag
pilot sequences which achieves the minimum mean-squared error
(MSE) of channel estimation. Then, we optimize the power
allocation between the source pilot sequences. Simulation results
show that our proposed algorithm can estimate channel efficiently
and achieve better sum MSE performance than the benchmark
without power allocation.

Index Terms—Backscatter communications, pilot design, chan-
nel estimation, MIMO

I. INTRODUCTION

Backscatter communication (BackCom) is a newly emerg-
ing paradigm, which utilizes the radio frequency signal as
the carrier to reduce the power consumption. In BackCom
systems, battery-free tags communicate with a reader by
reflecting radio frequency (RF) signals. Due to its passive
and low-cost tag, BackCom has been seen as an attractive
technology for the Internet of Things (IoT) [1]–[5]. However,
the strength of the backscattered signal in BackCom is weak
due to a large path loss and tag’s low reflection efficiency
[6]–[9].

The multi-antenna technology is efficient in improving
the weak signal in BackCom. The papers [10]–[16] studied
the BackCom system with a multi-antenna tag or reader to
facilitate the signal detection. The dual-antenna receiver is
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efficient in eliminating the interference from unknown sources
[10], [11]. For example, the receiver uses the received signals
at two antennas to detect the backscattered symbols by simply
using the received signal of one antenna to divide that of
another antenna. This method can detect binary modulated
symbols without channel state information (CSI).

To further increase the communication rate or decrease
communication errors, the multiple-input and multiple-output
(MIMO) technology has been introduced to BackCom [17]–
[26]. In [17], the authors designed the tag’s signalling matrix
to obtain the gain from a multi-antenna source. The work
[18] presented a unified generalized space-time shift keying
(GSTSK)-backscatter architecture for BackCom. The work
[19], [20] studied spatial modulation-based backscatter com-
munication. Generalized quadrature space-time modulation for
backscatter communication was proposed in [21]. Further-
more, the work [23] maximized the sum capacity of primary
and secondary transmissions by designing the beamforming.
Most modulation/detection and beamforming schemes for
MIMO BackCom require CSI. Thus, obtaining accurate CSI,
i.e., channel estimation, is imperative for a MIMO BackCom
system.

However, MIMO BackCom channel estimation received
little attention. In [27], the authors design a channel estimation
method that can estimate both the direct link channel and the
backscatter link channel simultaneously with multiple sources
and tags. However, the optimization for channel training
sequences for MIMO BackCom has not been explored. In
this paper, we extend [27] by considering spatially correlated
antennas and study the optimal pilot sequence design and
channel estimation algorithm for a general MIMO BackCom
system. We consider a general system setup that three nodes
(source, tag, reader) in a BackCom system are all equipped
with multiple antennas. Furthermore, antennas on the source,
the tag and the reader have correlations. Training sequences
are sent by both the source and the tag, and the reader
estimates both the source-tag-reader channel and the source-
reader channel simultaneously. We aim at deriving the optimal
pilot sequences structure and power resource allocation for
both the source and the tag. We would like to note that
it is not easy to obtain optimal training sequences jointly,
because different to relay or reconfigurable intelligent surface
(RIS)-aided communication systems, the source and the tag
signals are independent of each other in BackCom systems.
Moreover, the signal received at the reader is not a simple
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multiplication of the source and tag training sequences. To
tackle this challenge, we rewrite the received signal expression
which combines the source and the tag signals together. But
this expression has a complicated channel matrix, which brings
new challenges to our channel training algorithm design.

The main contributions of this paper are summarized as
follows.

• We derive the structure of the optimal pilot sequences for
both the tag and the source that minimizes the sum mean-
squared error (MSE) of channel estimation. Specifically,
we reveal that the eigenvector matrix of the correlation
matrix of the MIMO channel is matched with the optimal
source pilot matrix. Moreover, in the proposed algorithm,
the power resource allocation optimization for the source
pilot sequences is investigated.

• Interestingly, we show that the optimal pilot sequence at
the tag is an orthogonal sequence, which does not depend
on the channel statistics. This makes the implementation
of the tag sequence feasible in practice. The optimization
of the source pilot sequence can be run at either the source
or the reader, which has a higher computation capability
than the tag.

• Simulation results show that our channel training algo-
rithm can achieve a much better MSE performance com-
pared to the traditional equal power allocation scheme in
which the training sequences at the source are orthogonal.

Notations: Scalars are denoted by lowercase letters, while
vectors and matrices are represented by bold lowercase letters
and uppercase letters, respectively. I𝑁 denotes the identity
matrix of size 𝑁 . CN(𝜇, 𝜎2) denotes the complex Gaussian
distribution with mean 𝜇 and variance 𝜎2. ⊗ stands for the
matrix Kronecker product [28]. (·)∗, (·)𝑇 and (·)𝐻 denote
matrix conjugate, transpose and Hermitian transpose, respec-
tively. 𝐵𝑑𝑖𝑎𝑔[·] denotes a block diagonal matrix. 𝑡𝑟 (·) stands
for matrix trace, and 𝐸 [·] denotes statistical expectation. [·]𝑚
stands for the 𝑚-th column of a matrix and {·}𝑚 stands for
the 𝑚-th row of a matrix. [·]𝑖, 𝑗 stands for the (𝑖, 𝑗)-th element
of a matrix. (·)−1 denotes matrix inversion. 𝑣𝑒𝑐(·) denotes
the vectorization operator which is realized by stacking all
column vectors of a matrix on top of each other. ⌈𝑥⌉ stands
for the ceiling function for 𝑥. O( 𝑓 (𝑛)) means computational
complexity order as a function of 𝑛.

The structure of this paper is listed as follows. Section II
describes the channel and signal model for MIMO BackCom.
In Section III, we propose a channel estimation algorithm for
MIMO BackCom. We provide simulation results in Section
IV. Finally, conclusions are given in Section V.

II. MIMO SYSTEM FOR BACKCOM

In this section, we introduce the system model for MIMO
BackCom.

A. System Model

Consider a MIMO BackCom system consisting of a tag,
a reader and a RF source as illustrated in Fig. 1. There
are 𝑁𝑠 , 𝑁𝑡 and 𝑁𝑟 antennas in the source, the tag and the
reader respectively. By adjusting its impedance, the tag can
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Fig. 1. System model of MIMO BackCom. The signal broadcasted by the
source can be received by both the tag and the reader. The tag modulates the
incident signal by varying its load impedance, and backscatters the modulated
signal to the reader.

harvest energy powering its circuit and backscatter symbols.
For example, the RF signal is reflected as the load impedance
is mismatched, while the RF signal is harvested when the load
impedance is matched.

The source and the tag need to send designed training
sequences to the reader to facilitate the channel estimation.
Thus, during our channel training phase, the cooperation from
the source is required1. Then, in the data transmission phase,
the source transmits modulated symbols to its users normally.
In this phase, the reader can detect backscattered symbols
without cooperation of the source.

B. Channel Model and Signal Model

We consider the channel from the source to the reader as
a direct channel H ∈ C𝑁𝑟×𝑁𝑠 , the channel from the source
to the tag as a forward channel F ∈ C𝑁𝑡×𝑁𝑠 , and the channel
from the tag to the reader as a backward channel G ∈ C𝑁𝑟×𝑁𝑡 ,
respectively. The multiplicative channel of F and G is referred
to as the backscatter channel. In this paper, we assume that
H,F and G satisfy the Gaussian-kronecker model [29], which
is also adopted in [30], [31]2, where H,F and G are complex-
valued Gaussian random matrices following

H ∼ CN (0,T𝐻𝐹 ⊗ R𝐻 ) ,
F ∼ CN (0,T𝐻𝐹 ⊗ R𝐹) ,
G ∼ CN (0,T𝐺 ⊗ R𝐺) .

(1)

Matrices T𝐻𝐹 and T𝐺 denote the 𝑁𝑠 × 𝑁𝑠 and 𝑁𝑡 × 𝑁𝑡 covari-
ance matrix at the transmit side of H(F) and G, respectively.
Matrices R𝐻 ,R𝐹 and R𝐺 denote the 𝑁𝑟 × 𝑁𝑟 , 𝑁𝑡 × 𝑁𝑡 and
𝑁𝑟 × 𝑁𝑟 covariance matrix at the receive side of H,F and G,
respectively. These matrices are fixed for a given setup and
can, thus, be assumed to be known [30], [31]. In practice,
given the setup of antennas, the channel covariance matrices
can be calculated with high accuracy as shown in [29], if the

1The synchronization between the RF source signal and tag signal can be
achieved similar to the approaches in [6], [40]–[42].

2Different to [30], [31], we consider a general MIMO setup for all nodes
and the direct link channel is not blocked.
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number of scatters is large. Then, we can equivalently rewrite
the channel matrices as

H = B𝐻H𝑤A𝐻 ,
F = B𝐹F𝑤A𝐻 ,

G = B𝐺G𝑤A𝐻𝐺 ,
(2)

where AA𝐻 = T𝑇
𝐻𝐹
,B𝐻B𝐻

𝐻
= R𝐻 ,B𝐹B𝐻

𝐹
= R𝐹 ,A𝐺A𝐻

𝐺
=

T𝑇
𝐺
,B𝐺B𝐻

𝐺
= R𝐺 . Matrices H𝑤 ,F𝑤 and G𝑤 are 𝑁𝑟 × 𝑁𝑠 ,

𝑁𝑡 × 𝑁𝑠 and 𝑁𝑟 × 𝑁𝑡 Gaussian random matrices with inde-
pendent and identically distributed (𝑖.𝑖.𝑑.) zero mean and unit
variance entries. Assume that H𝑤 ,F𝑤 and G𝑤 are statistically
independent of each other. We assume that covariance matrices
of channels to be estimated are known at the reader and these
channels are block flat fading.

The reader receives both source signals and backscattered
signals. Then, the received signals at the reader is 3

y = (H + G𝛼X′F)s + n, (3)

where 𝛼 is a coefficient representing the scattering efficiency
and antenna gain, X′ ∈ C𝑁𝑡×𝑁𝑡 is the diagonal matrix
representing the signals conveyed by the tag, s ∈ C𝑁𝑠×1 is the
source signal vector and n ∈ C𝑁𝑟×1 is the zero-mean additive
white Gaussian noise (AWGN) with variance 𝜎2

𝑛 . The diagonal
elements in X′ satisfy |𝑥𝑖 | ≤ 1, 𝑖 = 1, 2, · · · , 𝑁𝑡 , where 𝑥𝑖 is
a complex number [17], [33], [34]. Let X = 𝛼X′. Then, the
received signals can be expressed as

y = (H + GXF)s + n. (4)

We would like to note that the system model (4) is different
to that of the RIS system. In BackCom systems, X carries
information transmitted by the tag to the reader, while in RIS
systems, X acts as a precoding matrix to aid the transmission
of the source information s.

III. PILOT DESIGN ALGORITHM

In this section, we propose a channel estimation algorithm
designing training sequences for both the tag and the source
to estimate the direct channel and the backscatter channel
simultaneously.

A. Optimal Training Sequences Structure

The expression in (4) is inconvenient to be used to jointly
estimate both channels. To solve this problem, we change the
received signal form to

y = Qt + n, (5)

3Here are some differences between the channel estimation of backscatter
communications and RIS-aided communications. First, in RIS-aided commu-
nications, the direct link (source-receiver) is usually assumed to be blocked
while this is not the case in backscatter communications. Second, the RIS
has its unique array geometry and this knowledge can be exploited during
the channel estimation phase while is not considered in backscatter com-
munications. Third, due to the close distance between the RIS and source,
the channel between them is a line-of-sight channel. Since the knowledge of
array geometry is not exploited, our method can be seen as a general channel
estimation method for RIS-based communications.

where t =

[
s

x ⊗ s

]
∈ C(𝑁𝑡+1)𝑁𝑠×1, x ∈ C𝑁𝑡×1 contains the

diagonal elements of X, and

Q =
[

H, g1f1, . . . , g𝑁𝑡
f𝑁𝑡

]
∈ C𝑁𝑟×(𝑁𝑡+1)𝑁𝑠 ,

(6)

where f𝑖 ∈ C1×𝑁𝑠 , g𝑖 ∈ C𝑁𝑟×1, 𝑖 = 1, 2, · · · , 𝑁𝑡 are the rows
of F and the columns of G, respectively. Thus, we have F =[

f𝑇1 , f𝑇2 , . . . , f𝑇
𝑁𝑡

]𝑇
and G = [g1, g2, . . . , g𝑁𝑡

]. Note
that the transformation from (4) to (5) is equivalent.

The number of unknowns in Q is much larger than the
number of entries in t. Thus, more than one time slot is
required to estimate the channels. First, the 𝑁𝑟 × 1 received
signal vector at the reader at the 𝑙-th time slot is expressed as

y𝑙 = (H + GX𝑙F)s𝑙 + n𝑙 .
= Qt𝑙 + n𝑙 ,

(7)

where s𝑙 , t𝑙 , and n𝑙 are the corresponding s, t, and n in (5) at
the 𝑙-th time slot. Assume that the source transmits an 𝑁𝑠 × 𝐿
training signals matrix S where 𝐿 is the length of the training
time slots. Second, the received signal in total 𝐿 time slots
can be expressed as

Y = QT + N, (8)

where N = [n1, n2, · · · , n𝐿] is the noise matrix at the reader
and T = [t1, t2, · · · , t𝐿].

Denoting x𝑙 =
[
𝑥𝑙,1, 𝑥𝑙,2, · · · , 𝑥𝑙,𝑁𝑡

]𝑇 , then T can be written
as

T =


s1 s2 · · · s𝐿

𝑥1,1s1 𝑥2,1s2 · · · 𝑥𝐿,1s𝐿
...

...
. . .

...

𝑥1,𝑁𝑡
s1 𝑥2,𝑁𝑡

s2 · · · 𝑥𝐿,𝑁𝑡
s𝐿


. (9)

Consider the following eigenvalue decomposition (EVD)

T𝑇𝐻𝐹 = U′𝚲′U′𝐻 ,

T𝑇𝐺 = U′
𝐺𝚲

′
𝐺U′𝐻

𝐺 .
(10)

Then we have A𝐻 = 𝚷′𝚲′ 1
2 U′𝐻 , A𝐻

𝐺
= 𝚷′

𝐺𝚲′
1
2
𝐺

U′𝐻
𝐺 , where

𝚷′ and 𝚷′
𝐺 are arbitrary 𝑁𝑠 ×𝑁𝑠 and 𝑁𝑡 ×𝑁𝑡 unitary matrix,

respectively.
By utilizing U′U′𝐻 = I𝑁𝑠

, we rewrite (8) as

Y = Q′T′ + N, (11)

where

Q′=
[

HU′, (g1f1)U′, . . . , (g𝑁𝑡
f𝑁𝑡

)U′] ,
T′=


U′𝐻s1 U′𝐻s2 · · · U′𝐻s𝐿

U′𝐻 (𝑥1,1s1) U′𝐻 (𝑥2,1s2) · · · U′𝐻 (𝑥𝐿,1s𝐿)

U′𝐻 (𝑥1,𝑁𝑡
s1) U′𝐻 (𝑥2,𝑁𝑡

s2) · · · U′𝐻 (𝑥𝐿,𝑁𝑡
s𝐿)

 .
(12)

According to ADB = (B𝑇 ⊗ A)𝑣𝑒𝑐(D) [28], we obtain

𝑣𝑒𝑐(Y) = (T′𝑇 ⊗ I𝑁𝑟
)𝑣𝑒𝑐(Q′) + 𝑣𝑒𝑐(N). (13)

Then, we rewrite (13) as

𝑣𝑒𝑐(Y) = Mq + n′, (14)
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where M = T′𝑇 ⊗ I𝑁𝑟
, q = 𝑣𝑒𝑐(Q′), n′ = 𝑣𝑒𝑐(N).

Due to its simplicity, we apply a linear minimum mean-
squared error (MMSE) estimator [35] at the reader to estimate
q. Then, we obtain

q̂ = W𝐻𝑣𝑒𝑐(Y), (15)

where W is the weight matrix of the MMSE estimator and q̂ is
the estimation of q. Since a linear estimator is used in (15), the
length of channel training time slots satisfies 𝐿 ≥ (𝑁𝑡 + 1)𝑁𝑠 .
Then, the MSE of estimating q̂ can be written as

𝑀𝑆𝐸 = 𝐸

[
𝑡𝑟

( (
q̂ − q

) (
q̂ − q

)𝐻 )]
= 𝑡𝑟

((
W𝐻M−I𝑁𝑟×(𝑁𝑡+1)𝑁𝑠

)
R𝑞

(
W𝐻M−I𝑁𝑟×(𝑁𝑡+1)𝑁𝑠

)𝐻
+W𝐻R𝑛W

)
,

(16)

where R𝑞 = 𝐸 [qq𝐻 ] = 𝐸 [𝑣𝑒𝑐(Q′)𝑣𝑒𝑐(Q′)𝐻 ], and R𝑛 =

𝐸 [nn𝐻 ] = 𝐸 [𝑣𝑒𝑐(N)𝑣𝑒𝑐(N)𝐻 ]. Next, we are going to obtain
R𝑞 , R𝑛 and W.

Theorem 1: The covariance matrix R𝑞 is given by

R𝑞 = 𝐵𝑑𝑖𝑎𝑔
[
𝚲′ ⊗ R𝐻 ,𝚲′

1 ⊗ R𝐺 , · · · ,𝚲′
𝑁𝑡

⊗ R𝐺
]
, (17)

where the 𝑚-th element of 𝚲′
𝑛𝑡

is 𝜆′𝑚𝑏𝑛𝑡 , 𝑏𝑛𝑡 =

𝑡𝑟

( [
A𝐻
𝐺

]
𝑛𝑡
{B𝐹 }𝑛𝑡 {B𝐹 }

𝐻
𝑛𝑡

[
A𝐻
𝐺

]𝐻
𝑛𝑡

)
, 𝑛𝑡 = 1, 2, · · · , 𝑁𝑡 .

Proof: Please see Appendix A.

Meanwhile, the covariance matrix of n′ is

R′
𝑛 = 𝐸 [n′n′𝐻 ] = 𝜎2

𝑛I𝐿𝑁𝑟
, (18)

and the matrix W with the minimized MSE in (16) is given
by

W =

(
MR𝑞M𝐻 + R𝑛

)−1
MR𝑞 . (19)

We substitute (19) back into (16), and utilize the
matrix inversion equality of (D+BCA)−1 = D−1 −
D−1B

(
AD−1B + C−1) AD−1 [36], and then the MSE of es-

timating of q̂ is given by

𝑀𝑆𝐸 = 𝑡𝑟

((
R−1
𝑞 + M𝐻R−1

𝑛 M
)−1

)
. (20)

To optimize the MSE, the power constraint should be
considered. From (20) and the constraint on the passive tag
and the source, the optimal training sequences can be derived
by solving the following optimization problem

min
𝑥𝑖, 𝑗 ,s𝑖

𝑡𝑟

((
R−1
𝑞 + M𝐻R−1

𝑛 M
)−1

)
(21)

s.t. 𝑡𝑟

(
𝐸 [s𝑖s𝐻𝑖 ]

)
≤ 𝑃𝑠 , 𝑖 = 1, 2, · · · , 𝐿, (22)

|𝑥𝑖, 𝑗 | ≤ 1, 𝑖 = 1, 2, · · · , 𝐿, 𝑗 = 1, 2, · · · 𝑁𝑡 , (23)

where 𝑃𝑠 is the average source transmission power available.

Let us introduce the training matrices for the source and the

tag as

S = [s1, s2, · · · , s𝐿]

=


𝑠1,1 𝑠2,1 · · · 𝑠𝐿,1
𝑠1,2 𝑠2,2 · · · 𝑠𝐿,2
...

...
. . .

...

𝑠1,𝑁𝑠
𝑠2,𝑁𝑠

· · · 𝑠𝐿,𝑁𝑠


,

(24)

X =

[
1
x1

1
x2

1
· · ·

1
x𝐿

]
=


1 1 · · · 1
𝑥1,1 𝑥2,1 · · · 𝑥𝐿,1
...

...
. . .

...

𝑥1,𝑁𝑡
𝑥2,𝑁𝑡

· · · 𝑥𝐿,𝑁𝑡


. (25)

The optimal structure of T for both the tag and the source is
given by the following theorem.

Theorem 2: The optimal T can be constructed by partition
the 𝐿 time slots in the channel training phase into 𝑁𝑡 + 1
groups with equal length of 𝑁𝑠 . For clarity, we introduce
s(𝑖−1)𝑁𝑠+ 𝑗 and x(𝑖−1)𝑁𝑠+ 𝑗 as the source and tag training
sequences, respectively, where 𝑖 = 1, · · · , 𝑁𝑡 + 1 is the
group index, and 𝑗 = 1, · · · , 𝑁𝑠 is the index of the training
sequence in each group. For each group, the source sequences
satisfy Σ

𝑁𝑠

𝑗=1s(𝑖−1)𝑁𝑠+ 𝑗s𝐻(𝑖−1)𝑁𝑠+ 𝑗 = 1/(𝑁𝑡 + 1)U′𝚺U′𝐻 , 𝑖 =

1, 2, · · · , 𝑁𝑡 + 1, where 𝚺 is a diagonal matrix. The tag
training sequences satisfy x(𝑖−1)𝑁𝑠+ 𝑗 = x̄𝑖 , 𝑗 = 1, · · · , 𝑁𝑠 ,

and X̄X̄𝐻 = (𝑁𝑡 + 1)I𝑁𝑡+1, where X̄ =

[
1, · · · , 1
x̄1, · · · , x̄𝑁𝑡+1

]
.

That is, the tag training sequences remain the same within one
group and are orthogonal between groups.

Proof: Let us introduce the EVD of R𝐻 = U𝐻𝚲𝐻U𝐻
𝐻

and
R𝐺 = U𝐺𝚲𝐺U𝐻

𝐺
. Then, we can rewrite (17) as

R𝑞 = U𝑞𝐵𝑑𝑖𝑎𝑔
[
𝚲′ ⊗ 𝚲𝐻 ,𝚲

′
1 ⊗ 𝚲𝐺 , · · · ,𝚲′

𝑁𝑡
⊗ 𝚲𝐺

]
U𝐻𝑞 ,

(26)
where U𝑞 = 𝐵𝑑𝑖𝑎𝑔

[
I𝑁𝑠

⊗ U𝐻 , I𝑁𝑠
⊗ U𝐺 , · · · , I𝑁𝑠

⊗ U𝐺
]
.

Meanwhile, we have

M𝐻M =

(
T′𝑇 ⊗ I𝑁𝑟

)𝐻 (
T′𝑇 ⊗ I𝑁𝑟

)
=

(
T′∗T′𝑇

)
⊗ I𝑁𝑟

=

(
T′T′𝐻

)𝑇
⊗ I𝑁𝑟

.

(27)

Substituting (18), (26) and (27) into (20), the MSE can be
equivalently rewritten as (28) shown at the top of the next
page, where the second and third rows are obtained because
U𝑞 is a block diagonal unitary matrix. Then, by denoting D𝐻 =

𝚲′−1 ⊗ 𝚲−1
𝐻
,D𝐺,𝑛𝑡 = 𝚲′

𝑛𝑡
−1 ⊗ 𝚲−1

𝐺
, 𝑛𝑡 = 1, 2, · · · , 𝑁𝑡 , (28)

can be equivalently rewritten as (29) shown at the top of the

next page. To minimize the MSE in (29),
(
T′T′𝐻

)𝑇
⊗ I𝑁𝑟

is

required to be a diagonal matrix [37], which means T′T′𝐻

needs to be diagonal. Substituting (12) into T′T′𝐻 , we obtain
(30) shown at the top of the next page.

To make T′T′𝐻 a diagonal matrix, the off-diagonal matrices
in (30) should be all-zero matrix. Moreover, the diagonal sub-
matrices should be diagonal. This indicates that the training
sequences S and X should satisfy the following conditions
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([(
U𝑞𝐵𝑑𝑖𝑎𝑔

[
𝚲′ ⊗ 𝚲𝐻 ,𝚲

′
1 ⊗ 𝚲𝐺 , · · · ,𝚲′

𝑁𝑡
⊗ 𝚲𝐺

]
U𝐻𝑞

)−1
+

(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1
((

T′T′𝐻
)𝑇

⊗ I𝑁𝑟

)]−1
)

= 𝑡𝑟

(
U𝐻𝑞

[(
U𝑞𝐵𝑑𝑖𝑎𝑔

[
𝚲′ ⊗ 𝚲𝐻 ,𝚲

′
1 ⊗ 𝚲𝐺 , · · · ,𝚲′

𝑁𝑡
⊗ 𝚲𝐺

]
U𝐻𝑞

)−1
+

(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1
((

T′T′𝐻
)𝑇

⊗ I𝑁𝑟

)]−1
U𝑞

)
= 𝑡𝑟

([(
𝐵𝑑𝑖𝑎𝑔

[
𝚲′ ⊗ 𝚲𝐻 ,𝚲

′
1 ⊗ 𝚲𝐺 , · · · ,𝚲′

𝑁𝑡
⊗ 𝚲𝐺

] )−1
+ U𝐻𝑞

(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1
((

T′T′𝐻
)𝑇

⊗ I𝑁𝑟

)
U𝑞

]−1
)

(28)

𝑀𝑆𝐸 = 𝑡𝑟

©­­­­­«



D𝐻 0 · · · 0
0 D𝐺,1 · · · 0
...

...
. . .

...

0 0 · · · D𝐺,𝑁𝑡


+

(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1
((

T′T′𝐻
)𝑇

⊗ I𝑁𝑟

)
−1ª®®®®®¬

(29)

T′T′𝐻 =


U′𝐻s1 U′𝐻s2 · · · U′𝐻s𝐿

U′𝐻 (𝑥1,1s1) U′𝐻 (𝑥2,1s2) · · · U′𝐻 (𝑥𝐿,1s𝐿)
...

...
. . .

...

U′𝐻 (𝑥1,𝑁𝑡
s1) U′𝐻 (𝑥2,𝑁𝑡

s2) · · · U′𝐻 (𝑥𝐿,𝑁𝑡
s𝐿)




U′𝐻s1 U′𝐻s2 · · · U′𝐻s𝐿
U′𝐻 (𝑥1,1s1) U′𝐻 (𝑥2,1s2) · · · U′𝐻 (𝑥𝐿,1s𝐿)

...
...

. . .
...

U′𝐻 (𝑥1,𝑁𝑡
s1) U′𝐻 (𝑥2,𝑁𝑡

s2) · · · U′𝐻 (𝑥𝐿,𝑁𝑡
s𝐿)


𝐻

=



[
U′𝐻 (

s1s𝐻1 + · · · + s𝐿s𝐻
𝐿

)
U′] · · · · · ·

[
U′𝐻 (

𝑥1,𝑁𝑡
s1s𝐻1 +· · · +𝑥𝐿,𝑁𝑡

s𝐿s𝐻
𝐿

)
U′][

U′𝐻 (
𝑥1,1s1s𝐻1 + · · · + 𝑥𝐿,1s𝐿s𝐻

𝐿

)
U′] . . . · · ·

[
U′𝐻

(
𝑥1,1𝑥

∗
1,𝑁𝑡

s1s𝐻1 + · · · + 𝑥𝐿,1𝑥∗𝐿,𝑁𝑡
s𝐿s𝐻

𝐿

)
U′

]
... · · · . . .

...[
U′𝐻 (

𝑥1,𝑁𝑡
s1s𝐻1 + · · · + 𝑥𝐿,𝑁𝑡

s𝐿s𝐻
𝐿

)
U′] · · · · · ·

[
U′𝐻

(
𝑥1,𝑁𝑡

𝑥∗1,𝑁𝑡
s1s𝐻1 + · · · + 𝑥𝐿,𝑁𝑡

𝑥∗
𝐿,𝑁𝑡

s𝐿s𝐻
𝐿

)
U′

]


(30)

U′𝐻
(
s1s𝐻1 + s2s𝐻2 + · · · + s𝐿s𝐻𝐿

)
U′ = 𝚺, (31)

U′𝐻
(
𝑥1,𝑛𝑡 𝑥

∗
1,𝑛𝑡 s1s𝐻1 + · · · + 𝑥𝐿,𝑛𝑡 𝑥∗𝐿,𝑛𝑡 s𝐿s𝐻𝐿

)
U′ = 𝚺𝑛𝑡 ,

𝑛𝑡 = 1, 2, · · · , 𝑁𝑡 ,
(32)

U′𝐻
(
𝑥1,𝑛𝑡 s1s𝐻1 + · · · + 𝑥𝐿,𝑛𝑡 s𝐿s𝐻𝐿

)
U′ = 0,

𝑛𝑡 = 1, 2, · · · , 𝑁𝑡 ,
(33)

U′𝐻
(
𝑥1,𝑛𝑡 𝑥

∗
1,𝑛′𝑡

s1s𝐻1 + · · · + 𝑥𝐿,𝑛𝑡 𝑥∗𝐿,𝑛′𝑡 s𝐿s𝐻𝐿
)

U′ = 0,

𝑛𝑡 = 1, 2, · · · , 𝑁𝑡 , 𝑛′𝑡 ≠ 𝑛𝑡 , 𝑛′𝑡 = 1, 2, · · · , 𝑁𝑡 .
(34)

Since the increase of |𝑥𝑙,𝑛𝑡 |, 𝑙 = 1, 2, · · · , 𝐿, 𝑛𝑡 =

1, 2, · · · 𝑁𝑡 , leads to the decrease in MSE, we can de-
duce that |𝑥𝑙,𝑛𝑡 | = 1, 𝑙 = 1, 2, · · · , 𝐿, 𝑛𝑡 = 1, 2, · · · 𝑁𝑡 .
Thus, we have 𝑥1,𝑛𝑡 𝑥

𝐻
1,𝑛𝑡 s1s𝐻1 + · · · + 𝑥𝐿,𝑛𝑡 𝑥𝐻𝐿,𝑛𝑡 s𝐿s𝐻

𝐿
=

s1s𝐻1 + s2s𝐻2 + · · · + s𝐿s𝐻
𝐿

= U′𝚺U′𝐻 = U′𝚺𝑛𝑡 U′𝐻 . That is
𝚺 = 𝚺𝑛𝑡 .

Conditions (33) and (34) can be satisfied as follows. First,
we partition the training interval 𝐿 into 𝑊 groups of equal
length 𝑁𝑔. We will show the optimality of equal partition
and determine the optimal 𝑊 and 𝑁𝑔. Let s(𝑖−1)𝑁𝑔+ 𝑗 and
x(𝑖−1)𝑁𝑔+ 𝑗 denote the 𝑗-th source and tag training sequence
within the 𝑖-th group, respectively, 𝑖 = 1, . . . ,𝑊 , 𝑗 =

1, . . . , 𝑁𝑔. By setting x(𝑖−1)𝑁𝑔+ 𝑗 = x̄𝑖 , 𝑗 = 1, . . . , 𝑁𝑔, and

𝑁𝑔∑︁
𝑗=1

s(𝑖−1)𝑁𝑔+ 𝑗s
𝐻
(𝑖−1)𝑁𝑔+ 𝑗 =

𝑁𝑔

𝐿
U′𝚺U′𝐻 , 𝑖 = 1, . . . ,𝑊,

(35)
the left-hand side of (33) and (34) can be written as

U′𝐻

(
𝐿∑︁
𝑙=1

𝑥𝑙,𝑛𝑡 s𝑙s
𝐻
𝑙

)
U′

= U′𝐻 ©­«
𝑊∑︁
𝑖=1

𝑥𝑖,𝑛𝑡

𝑁𝑔∑︁
𝑗=1

s(𝑖−1)𝑁𝑔+ 𝑗s
𝐻
(𝑖−1)𝑁𝑔+ 𝑗

ª®¬ U′

=
𝑁𝑔

𝐿
𝚺

𝑊∑︁
𝑖=1

𝑥𝑖,𝑛𝑡 ,

(36)

U′𝐻

(
𝐿∑︁
𝑙=1

𝑥𝑙,𝑛𝑡 𝑥
∗
𝑙,𝑛′𝑡

s𝑙s𝐻𝑙

)
U′

= U′𝐻 ©­«
𝑊∑︁
𝑖=1

𝑥𝑖,𝑛𝑡 𝑥
∗
𝑖,𝑛′𝑡

𝑁𝑔∑︁
𝑗=1

s(𝑖−1)𝑁𝑔+ 𝑗s
𝐻
(𝑖−1)𝑁𝑔+ 𝑗

ª®¬ U′

=
𝑁𝑔

𝐿
𝚺

𝑊∑︁
𝑖=1

𝑥𝑖,𝑛𝑡 𝑥
∗
𝑖,𝑛′𝑡
.

(37)

From (36) and (37), we can see that (33) and (34) hold if
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©­­­­­«



D𝐻 0 · · · 0
0 D𝐺,1 · · · 0
...

...
. . .

...

0 0 · · · D𝐺,𝑁𝑡


+

(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1
((

T′T′𝐻
)𝑇

⊗ I𝑁𝑟

)
−1ª®®®®®¬

=

𝑡𝑟

©­­­­­«


𝚲′−1 ⊗ 𝚲−1

𝐻
0 · · · 0

0 𝚲′
1
−1 ⊗ 𝚲𝐺

−1 · · · 0
...

...
. . .

...

0 0 · · · 𝚲′
𝑁𝑡

−1 ⊗ 𝚲𝐺
−1


+
(
𝜎2
𝑛I𝑁𝑟 (𝑁𝑡+1)𝑁𝑠

)−1


𝚺 ⊗ I𝑁𝑟

0 · · · 0
0 𝚺 ⊗ I𝑁𝑟

· · · 0
...

...
. . .

...

0 0 · · · 𝚺 ⊗ I𝑁𝑟


𝑇 

−1ª®®®®®¬
(38)

X̄ =

[
1, . . . , 1
x̄1, . . . , x̄𝑊

]
has orthogonal rows. Together with

|𝑥𝑙,𝑛𝑡 | = 1, this leads to X̄X̄𝐻 = (𝑁𝑡 + 1)I𝑁𝑡+1, which requires
𝑊 ≥ 𝑁𝑡 + 1. To minimize the training overhead, we choose
𝑊 = 𝑁𝑡 + 1.

To make 𝚺 a general diagonal matrix with full rank of
𝑁𝑠 , we can see from (35) that there should be 𝑁𝑔 ≥ 𝑁𝑠 .
To minimize the training overhead, we choose 𝑁𝑔 = 𝑁𝑠 for
each training group. □

With the designed training sequences, the MSE is equiva-
lently changed to (38) shown on the next page.

B. Optimal Power Allocation
Based on Theorem 2, the optimal training sequence design

problem (21)-(23) can be equivalently converted to the prob-
lem of optimizing �̃� as below

min
�̃�

(38) (39)

s.t. 𝑡𝑟 (�̃�) ≤ 𝑃𝑠 , (40)

�̃� ≥ 0, (41)

where for the matrix �̃� = U′𝐻
(

1
𝑁𝑠

Σ
𝑁𝑠

𝑖=1s𝑖s𝐻𝑖
)

U′, �̃� ≥ 0 means
it is a positive semi-definite (PSD) matrix. Note that based on
Theorem 2, �̃� is a diagonal matrix.

To facilitate solving the problem (39)-(41), we convert the
matrix variable to scalar variables. Denote 𝜎𝑛𝑠 as the 𝑛𝑠-th
diagonal element in �̃�. Then we get

min
𝜎𝑛𝑠

𝑁𝑠∑
𝑛𝑠=1

𝑁𝑟∑
𝑛𝑟=1

(
1

𝜆′𝑛𝑠𝜆𝐻,𝑛𝑟
+ 𝐿𝜎𝑛𝑠

𝜎2
𝑛

)−1
+

𝑁𝑡∑
𝑛𝑡=1

𝑁𝑠∑
𝑛𝑠=1

𝑁𝑟∑
𝑛𝑟=1

(
1

𝜆′𝑛𝑠 ,𝑛𝑡 𝜆𝐺,𝑛𝑟
+ 𝐿𝜎𝑛𝑠

𝜎2
𝑛

)−1

,

(42)

s.t.
𝑁𝑠∑
𝑛𝑠=1

𝜎𝑛𝑠 ≤ 𝑃𝑠 , (43)

𝜎𝑛𝑠 ≥ 0, 𝑛𝑠 = 1, 2, · · · , 𝑁𝑠 . (44)

where 𝜆′𝑛𝑠 is the 𝑛𝑠-th diagonal element of 𝚲′, 𝜆′𝑛𝑠 ,𝑛𝑡 is the
𝑛𝑠-th diagonal element of 𝚲′

𝑛𝑡
, 𝜆𝐻,𝑛𝑟 is the 𝑛𝑟 -th diagonal

element of 𝚲𝐻 and 𝜆𝐺,𝑛𝑟 is the 𝑛𝑟 -th diagonal element of
𝚲𝐺 .

The optimal 𝜎𝑛𝑠 can be efficiently obtained through the
Karush-Kuhn-Tucker (KKT) optimality conditions of the prob-

lem (42)-(44) [38]. The Lagrangian function is derived as
(45) shown at the top of this page, where 𝜇 and 𝜂𝑛𝑠 are the
Lagrange multipliers and satisfy 𝜇 ≥ 0 and 𝜂𝑛𝑠 ≥ 0, 𝑛𝑠 =

1, 2, · · · , 𝑁𝑠 . Then, the gradient conditions are given by (46)
shown at the top of this page. Meanwhile, the complementary
slackness conditions are given by

𝜇

(
𝑃𝑠 −

𝑁𝑠∑︁
𝑛𝑠=1

𝜎𝑛𝑠

)
= 0, (47)

𝜂𝑛𝑠𝜎𝑛𝑠 = 0, 𝑛𝑠 = 1, 2, · · · , 𝑁𝑠 . (48)

Since the object function in (42) is a monotonically decreasing
function of 𝜎𝑛𝑠 , the bi-section search can be applied to obtain
𝜇 and 𝜎𝑛𝑠 .

C. Training Sequences

Based on Theorem 2, the optimal training sequences at
different antennas of the tag (i.e., X̄) should be orthogonal to
each other. Orthogonal training sequences including Hadamard
matrix, modified Zadoff–Chu (ZC) sequences and discrete
Fourier transform (DFT) matrix provided in [27] can be
applied in our pilot training algorithm. In the following, we
introduce Hadamard matrix and DFT matrix for constructing
the training sequences for the tag. The details about ZC
sequences are neglected here since it has similar advantages
and disadvantages for tags [27].

Denote 𝐿𝐻 as the number of rows or columns of a
Hadamard matrix. Taking 𝐿𝐻 = 4 as an example, a 4 × 4
Hadamard matrix C𝐻 is given by

C𝐻 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 −1 1

 . (49)

The all-1 row in Hadamard matrix is excluded since it is
considered as the inherent training sequences for the source
as can be seen from (25) and (30). Since the row size of
Hadamard matrix is the integer power of two and one-row
cannot be used, the number of training time slots of our
system is usually designed to be larger than the shortest length
(𝑁𝑡 + 1)𝑁𝑠 to match the size of the Hadamard matrix. The
number 𝐿𝐻 can be determined by 𝐿𝐻 = 2⌈log2 (𝑁𝑡+1) ⌉ .
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L =

𝑁𝑠∑︁
𝑛𝑠=1

𝑁𝑟∑︁
𝑛𝑟=1

(
1

𝜆′𝑛𝑠𝜆𝐻,𝑛𝑟
+
𝐿𝜎𝑛𝑠

𝜎2
𝑛

)−1
+

𝑁𝑡∑︁
𝑛𝑡=1

𝑁𝑠∑︁
𝑛𝑠=1

𝑁𝑟∑︁
𝑛𝑟=1

(
1

𝜆′𝑛𝑠 ,𝑛𝑡𝜆𝐺,𝑛𝑟
+
𝐿𝜎𝑛𝑠

𝜎2
𝑛

)−1

+ 𝜇
(
𝑁𝑠∑︁
𝑛𝑠=1

𝜎𝑛𝑠 − 𝑃𝑠

)
−

𝑁𝑠∑︁
𝑛𝑠=1

𝜂𝑛𝑠𝜎𝑛𝑠 (45)

−
𝑁𝑟∑︁
𝑛𝑟=1

𝐿

𝜎2
𝑛(

1
𝜆′𝑛𝑠𝜆𝐻,𝑛𝑟

+ 𝐿𝜎𝑛𝑠

𝜎2
𝑛

)2 −
𝑁𝑡∑︁
𝑛𝑡=1

𝑁𝑟∑︁
𝑛𝑟=1

𝐿

𝜎2
𝑛(

1
𝜆′𝑛𝑠 ,𝑛𝑡 𝜆𝐺,𝑛𝑟

+ 𝐿𝜎𝑛𝑠

𝜎2
𝑛

)2 + 𝜇 − 𝜂𝑛𝑠 = 0, 𝑛𝑠 = 1, 2, · · · , 𝑁𝑠 (46)

Meanwhile, we consider that a DFT matrix is used at the
tag. For example,

C𝐷 =


1 1 · · · 1
1 𝑊𝜏 · · · 𝑊 𝜏−1

𝜏

...
...

. . .
...

1 𝑊𝐾
𝜏 · · · 𝑊

(𝜏−1)𝐾
𝜏


, (50)

where 𝑊𝜏 = 𝑒− 𝑗2𝜋/𝜏 . The number of rows equals 𝐾 = 𝑁𝑡 + 1 
and the number of columns is 𝜏 = 𝐿.

In summary, the DFT matrix based sequences can achieve 
the shortest estimation duration, but it increases the complexity 
for tags. Hadamard matrix based sequences employ only two 
values simplifying the hardware but may increase the shortest 
estimation duration.

Remarks: Practical implementation: For the tag, only two 
impedance is required if Hadamard matrix is adopted, which 
is easy to implement. The DFT matrix is more suitable for 
semi-passive or active tags [27]. There is no optimization for 
the tag’s training symbols. It means that the tag does not need 
to receive any optimization information from other nodes. This 
keeps the tag simple. As for the source symbol optimization, 
it is affordable for the source or the reader since it is usually 
a plug-in device.

Time slot overhead: The time slot overhead is minimum. 
Similar to [27], our channel estimation method is one-shot. 
The one-shot method means that we estimate the channels for 
all tag’s antenna simultaneously because we treat the source 
as a hidden tag and the training symbols are orthogonal. It has 
the minimum overhead.

Computational complexity: The solution of the problem 
(21)-(23) is calculated by the source or the reader. Thus, the 
tag has no additional burden. To obtain the optimal training 
sequence, U′ and 𝚺 are necessary as shown in Theorem 2. The 
matrix U′ is obtained by the EVD of T𝐻𝐹 . The computational 
complexity is O(𝑁𝑠3). As for 𝚺, it is calculated by solving 
the problem (42)-(44) and the corresponding complexity is 
O(𝑁𝑠).

Algorithm optimality: The proposed solution is globally 
optimal as Theorem 2 shows the optimal structure of S and X 
minimizing the MSE. In the case of calculating 𝚺 by solving 
the problem (42)-(44), the KKT optimality conditions assure 
the globally optimality of the proposed solution.

Characteristics of estimator: The proposed channel esti-
mation method is based on the MMSE estimator. First, this 
estimator is a long-term solution, which requires the statistical 
information of the channel and the noise. If the MIMO channel 
or noise is highly dynamic or complex, e.g., in mmWave RIS

systems, an artificial intelligence (AI) enabled method is more 
efficient for estimation [43]. Second, the estimator is linear. If 
the signal form of the multi-antenna system is non-linear, e. g., 
squared amplitude, neural network can be applied to improve 
channel estimation [44]. Finally, the computational complexity 
of the MMSE estimator increases significantly with a large 
number of antennas. For backscatter communications, the 
number of antennas of the system node, especially the tag, is 
usually small. When the receiver and the source are equipped 
with a large number of antennas, and extend the scenario to 
RIS channel estimations, an AI-enabled method can help to 
reduce computational complexity [45].

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to evaluate 
the performance of the proposed pilot sequence design and 
channel estimation algorithm.

We set matrices H𝑤 , F𝑤 and G𝑤 as 𝑁𝑟 × 𝑁𝑠 , 𝑁𝑡 × 𝑁𝑠 
and 𝑁𝑟 × 𝑁𝑡 Gaussian random matrices with 𝑖.𝑖.𝑑. CN (0, 1) 
entries. The coefficient 𝛼 is set as 0.5. The signal-to-noise ratio
(SNR) is defined a s 𝑃 𝑠/𝜎𝑛2 a nd i s s et a s 2  𝑑 𝐵 u nless stated 
otherwise. The commonly used exponential Toeplitz structure 
[29] is adopted as the channel covariance matrices and there is
[T𝐻𝐹]𝑚,𝑛 = 𝜌

|𝑚−𝑛 |
𝑠 , [R𝐻 ]𝑚,𝑛 = 𝜌

|𝑚−𝑛 |
𝑟 , [R𝐹]𝑚,𝑛 = 𝜌

|𝑚−𝑛 |
𝑡 ,

[T𝐺]𝑚,𝑛 = 𝜌
|𝑚−𝑛 |
𝑡 ,[R𝐺]𝑚,𝑛 = 𝜌

|𝑚−𝑛 |
𝑟 . We set 𝜌𝑠 = 0.9,

𝜌𝑡 = 0.8 and 𝜌𝑟 = 0.7, unless stated otherwise. The tag
uses a DFT matrix as its training sequences. The average
source power 𝑃𝑠 is set to 1. The length 𝐿 is determined by
𝐿 = (𝑁𝑡 + 1)𝑁𝑠 . The number of antennas 𝑁𝑠 , 𝑁𝑡 and 𝑁𝑟
are set as 2, 3 and 6, respectively, unless stated otherwise.
The final MSE is normalized by multiplying 1/(𝑁𝑠𝑁𝑟 ). We
set the equal power scheme as the benchmark in which
𝜎𝑛𝑠 , 𝑛𝑠 = 1, 2, · · · , 𝑁𝑠 are equal to each other and their
sum is 𝑃𝑠 . The other channel estimation methods, such as
compressed sensing or deep learning-based approaches [39]
have their limitations. For example, comprseed sensing is not
applicable since the channels in our model are not sparse.
Also, deep learning-based approaches may not guarantee the
global optimality. We also simulate [27] with the setting that
a DFT matrix based sequences are assigned to the source and
the tag. The method in [27] is abbreviated as ‘ortho’ in the
legend.

We first evaluate the MSE of the channel training algorithm
versus the SNR in Fig. 2. With the increase of the SNR,
the MSE decreases. The optimal power allocation scheme
has a lower MSE than the equal power allocation scheme
especially in the low SNR level, validating the advantage of
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Fig. 2. MSE versus SNR

our proposed scheme. They have almost the same MSE in the
high SNR region. This is because the allocated power of the
optimal scheme is almost equal in this situation. The proposed
method in [27] has the same MSE performance compared to
the equal power scheme because 𝚺 for [27] is also a scaled
identity matrix. This scaled identity matrix is derived from the
orthogonal training sequences of the source. The simulation
curves are consistent with the theoretical results, showing our
analysis is correct.
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Fig. 3. MSE versus 𝜌𝑠

The MSE of the channel training algorithm versus the
correlation coefficient 𝜌𝑠 is illustrated in Fig. 3. With the
increase of 𝜌𝑠 , the MSE decreases. This phenomenon indicates
that dependent antennas have a better estimation performance.
With the increase of 𝜌𝑠 , the MSE gap between two algorithms
widens.

The MSE of the channel training algorithm versus the
number of the source antennas is presented in Fig. 4. With the
increase in the number of source antennas, the MSE decreases.
This is because more pilot signals are backscattered with the
increase of 𝑁𝑠 .
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Fig. 4. MSE versus 𝑁𝑠
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Fig. 5. MSE versus 𝑁𝑡

The impact of the number of tag antennas on the MSE
of the channel training algorithm is illustrated in Fig. 5.
With the increase in the number of tag antennas, the MSE
increases. With the increase of 𝑁𝑡 , the interference between
tags increases and then the estimation performance gets worse.

The MSE of the channel training algorithm versus the
number of reader antennas is presented in Fig. 6. With the
increase of 𝑁𝑟 , the MSE decreases. With more signals received
at the reader, the estimation performance is improved. It
informs us that we can increase the number of reader antennas
to enhance the estimation accuracy.

V. CONCLUSION

In this paper, we have proposed and investigated the per-
formance of the pilot sequence design and channel estimation
algorithm for MIMO BackCom systems. The proposed algo-
rithm can efficiently estimate the direct link and the backscat-
ter link CSI for MIMO BackCom systems and outperforms
the channel training algorithm without power allocation. The
optimal training sequences can be efficiently implemented in
practice.



9

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Nr

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

M
S

E

equal simu

equal theo

opt simu

opt theo

Fig. 6. MSE versus 𝑁𝑟

APPENDIX A
PROOF OF THEOREM 1

The following lemma will be used in the sequel.
Lemma 1 [32]: For H ∼ CN (0,𝚯 ⊗ 𝚽), we have

𝐸 [HAH𝐻 ] = 𝑡𝑟 (A𝚯𝑇 )𝚽 and 𝐸 [H𝐻AH] = 𝑡𝑟 (𝚽A)𝚯𝑇 .
Let H̃ = HU′, g̃1f1 = (g1f1)U′, · · · , �g𝑁𝑡

f𝑁𝑡
= (g𝑁𝑡

f𝑁𝑡
)U′.

First, the 𝑚-th column of H̃ is given by

[H̃]𝑚 = [B𝐻H𝑤A𝐻U′]𝑚 = [B𝐻H𝑤𝚷
′𝚲′ 1

2 U′𝐻U′]𝑚

= 𝜆′
1
2
𝑚B𝐻H𝑤 [𝚷′]𝑚,

(51)

and 𝜆′𝑚 is the 𝑚-th diagonal element in 𝚲′. Based on Lemma
1, we get

𝐸

[
[H̃]𝑚 [H̃]𝑚

𝐻
]

= 𝐸

[
𝜆′

1
2
𝑚B𝐻H𝑤 [𝚷′]𝑚

(
𝜆′

1
2
𝑚B𝐻H𝑤 [𝚷′]𝑚

)𝐻 ]
= 𝜆′𝑚𝐸

[
B𝐻H𝑤 [𝚷′]𝑚 [𝚷′]𝑚𝐻H𝑤

𝐻B𝐻𝐻
]

= 𝜆′𝑚𝑡𝑟 ( [𝚷′]𝑚 [𝚷′]𝑚𝐻 )B𝐻B𝐻𝐻
= 𝜆′𝑚R𝐻 .

(52)

Next, the 𝑚-th column of �g𝑛𝑡 f𝑛𝑡 is calculated by

g𝑛𝑡 f𝑛𝑡 U′

= [G]𝑛𝑡 {F}𝑛𝑡 U′

=
[
B𝐺G𝑤A𝐻

𝐺

]
𝑛𝑡
{B𝐹F𝑤A𝐻 }𝑛𝑡 U′

=
[
B𝐺G𝑤A𝐻

𝐺

]
𝑛𝑡
{B𝐹F𝑤𝚷′𝚲′ 1

2 U′𝐻 }𝑛𝑡 U′

= B𝐺G𝑤

[
A𝐻
𝐺

]
𝑛𝑡
{B𝐹 }𝑛𝑡 F𝑤𝚷′𝚲′ 1

2 ,

(53)

and [
g𝑛𝑡 f𝑛𝑡 U

′]
𝑚
=

[
B𝐺G𝑤

[
A𝐻𝐺

]
𝑛𝑡
{B𝐹 }𝑛𝑡 F𝑤𝚷

′𝚲′ 1
2
]
𝑚

= 𝜆′
1
2
𝑚B𝐺G𝑤

[
A𝐻𝐺

]
𝑛𝑡
{B𝐹 }𝑛𝑡 F𝑤 [𝚷′]𝑚.

(54)

Thus, based on Lemma 1, 𝐸
[ [ �g𝑛𝑡 f𝑛𝑡 ]

𝑚

[ �g𝑛𝑡 f𝑛𝑡 ]
𝑚

𝐻
]

can be

derived as (55) shown at the top of next page, where 𝑏𝑛𝑡 =

𝑡𝑟

( [
A𝐻
𝐺

]
𝑛𝑡
{B𝐹 }𝑛𝑡 {B𝐹 }𝑛𝑡

𝐻
[
A𝐻
𝐺

]
𝑛𝑡

𝐻
)
.

The off-diagonal entries in this matrix are zeros because
Matrices H𝑤 ,F𝑤 and G𝑤 are Gaussian random matrices with
(𝑖.𝑖.𝑑.) zero mean entries. With (52) and (55), R𝑞 is derived
in (17). □
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