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A Control-based Design of Beamforming and
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Bin Li, Senior Member, IEEE, Hongyun Zhang∗, Yue Rong, Senior Member, IEEE, and Zhu Han, Fellow, IEEE

Abstract—We study a control-based design of beamforming
and trajectory that incorporates the dynamic model, focusing on
a scenario where a multi-antenna unmanned aerial vehicle (UAV)
simultaneously performs radar sensing of multiple targets in a
specific region and communication with multiple ground users.
Two optimization problems are formulated for the three-degree-
of-freedom (3-DoF) and six-degree-of-freedom (6-DoF) dynamic
models of UAV, which are often overlooked in existing designs.
These problems aim to maximize the average weighted commu-
nication rate while maintaining the dynamic constraints and the
sensing service requirements by designing the UAV trajectory
and the communication and sensing beamforming vectors. To
deal with the challenges posed by the UAV dynamic constraints,
we decompose the original problem into two subproblems: the
communication and sensing beamforming design subproblem,
and the UAV trajectory optimization subproblem. Given the UAV
trajectory, we employ the sequential convex approximation (SCA)
and semi-definite relaxation (SDR) methods to transform the
beamforming design subproblem into a convex problem. Given
the communication and sensing beamforming vectors, we propose
a control-based approach with piecewise parameterization and
exact penalty function strategies to transform the UAV trajectory
optimization subproblem into a static nonlinear program, which
can be efficiently solved by sequential quadratic programming
(SQP). Numerical simulations indicate that the proposed scheme
is more feasible in terms of the UAV control than the existing
scheme in practical systems, with less performance loss or even
no performance degradation.

Index Terms—UAV-enabled ISAC system, trajectory opti-
mization, beamforming design, alternating optimization, control
parametrization.

I. INTRODUCTION

With the mobile communication gradually moving towards
the era of intelligent connection of everything, the future
mobile communication system should not only achieve high
communication performance such as ultra-fast speed, ultra-
low latency, and ultra-high dependability, but also have the
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sensing ability of millimeter-level accuracy [1] to support
various intelligent applications, such as automatic driving
[2, 3], traffic monitoring [4], human activity recognition,
and smart home [5]. Toward this end, integrated sensing
and communication (ISAC) has garnered tremendous attention
from both academia and industry [6–18], and is one of the
six international telecommunication union (ITU) use scenarios
for 6G. In contrast to conventional fully separated indepen-
dent systems, ISAC has significant potential to reduce both
hardware and signaling costs, while enhancing spectral and
energy utilization efficiencies by sharing wireless devices and
spectrum resources.

Due to the additional spatial information provided by
multiple-input-multiple-output (MIMO) systems, they can sig-
nificantly enhance sensing performance and effectively in-
crease system throughput compared to the information em-
bedding method [19] and the waveform combination scheme
[20]. The high-quality service of multiple users and high-
precision sensing of multiple targets can be ensured through
beamforming techniques by focusing signals simultaneously in
multiple specific directions. However, the MIMO ISAC with
transmit beamforming in terrestrial networks suffers from se-
vere performance degradation due to non-line-of-sight (NLoS)
signal paths or clutter caused by obstacles and scatterers in the
surrounding environment, especially for sensing.

Given the altitude advantage of unmanned aerial vehicles
(UAVs), they are expected to serve as a promising new type
of aerial ISAC platform to overcome existing limitations.
Hence, the UAV-enabled ISAC with transmit beamforming
has attracted significant attention from both industry and
academia. For instance, [15] investigates UAV performing
sensing tasks in target areas while simultaneously serving
multiple users for communication tasks, for the purpose of
maximizing the weighted average communication rate un-
der sensing performance requirements. To achieve this, the
optimization of UAVs’ two-dimensional (2D) trajectory and
transmit beamforming vectors is conducted. A novel adaptable
ISAC mechanism in UAV-assisted systems is designed in [16]
to avoid excessive sensing, where the duration of sensing does
not need to align with the duration of communication and
can be flexibly configured based on application requirements.
In [17], two joint optimization schemes under different UAV
states are discussed. On the one hand, a joint design approach
for communication precoding and UAV flight trajectory is
proposed to address the minimum user rate maximization
problem. On the other hand, a joint optimization method for
UAV sensing position, communication, and sensing precoding
is proposed to tackle the minimum target detection probabil-
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ity maximization problem. Paper [18] studies a multi-UAV
assisted ISAC scenario where the UAVs detect a target and
simultaneously transmit the corresponding data to users. A
joint design scheme for the UAVs trajectory, user association,
and beamforming is proposed to maximize the sum weighted
bit rate of all ground users while ensuring the minimum service
requirement of radar sensing.

The authors in [15–18] address the trajectory optimization
problem of UAVs under discrete speed constraints by modeling
the UAV as a mass point in the ISAC scenarios with transmit
beamforming. They obtain a series of segmented trajectories
using time discretization techniques. However, this model only
focuses on the position and speed of the UAV while neglecting
its rotational motion, internal forces, and torques. This means
the complex dynamic characteristics of the UAV as a rigid
body are ignored, which can lead to inaccuracies in both
trajectory optimization and control strategies. In other words,
the UAV controller might struggle to accurately follow the
planned trajectory in practical applications. Any mismatch
between the planned and actual trajectories can result in
increased communication link delays, acquisition errors, and
a decrease in the environmental modeling and target recogni-
tion capabilities of the sensing system, ultimately degrading
communication and sensing performance.

Motivated by the aforementioned discussions, we propose
a joint design of beamforming and trajectory control to
maximize the average weighted communication rate while
guaranteeing the service requirement for radar sensing. In
particular, we consider the three-degree-of-freedom (3-DoF)
model with translational UAV motion and the six-degree-
of-freedom (6-DoF) dynamic model with both translational
and rotational UAV motion. These two UAV models provide
performance-complexity tradeoffs. We investigate the scenario
where a multi-antenna UAV senses targets within a specific
region while simultaneously providing communication ser-
vices to multiple users, with potential applications in border
surveillance and environmental monitoring. To address the
challenges posed by the dynamic constraints on the UAV, we
decompose the original optimization problem into two distinct
subproblems: one that focuses on beamforming optimization,
and the other on designing the UAV’s trajectory, solving
them iteratively in an alternating manner. Different from
the trajectory discretization in existing methods [15–18], the
proposed approach parameterizes control variables based on a
state-space model and describes the UAV state variables (such
as position and velocity) as functions of control parameters
to achieve a continuous and smooth flight path. Additionally,
this method effectively reduces vibrations and abrupt changes
during flight, enhancing stability and trackability.

The primary contributions of this paper can be summarized
below.

• We propose a control-based joint design of beamforming
and trajectory that incorporates either the 3-DoF model
or the 6-DoF model. Compared with the segmented
piecewise trajectories commonly obtained in [15–18], the
proposed scheme achieves continuous and smooth flight
trajectories.

End point

Sensing Beam Communication Beam

UAV

Start point

Fig. 1: Description of the UAV-aided downlink ISAC scenario.

• We leverage an iterative method to solve the joint beam-
forming and trajectory optimization problem, combin-
ing the UAV dynamics model. The original problem is
decomposed into two subproblems: communication and
sensing beamforming optimization, and UAV trajectory
optimization. Given the UAV trajectory, the communica-
tion and sensing beamforming optimization subproblem
is reformulated as a convex problem adopting sequential
convex approximation (SCA) and semi-definite relaxation
(SDR) methods, which can be addressed with the CVX
toolbox. Based on the obtained communication and sens-
ing beamforming vectors, we apply a piecewise-based
parameterization method and an exact penalty function
method to transform the UAV trajectory optimization
subproblem into a static nonlinear program which can
be solvable via sequential quadratic programming (SQP).

• We evaluate the performance of the proposed schemes
and verify the effectiveness of the proposed algorithms
through numerical simulations. The results indicate that
the two proposed schemes are more feasible in terms of
the UAV control than the benchmark scheme [15] in prac-
tical UAV-enabled ISAC systems, with less performance
loss or even no performance degradation. Furthermore,
the proposed scheme with the 3-DoF model strikes an
effective compromise between computational complexity
and performance compared to both the benchmark model-
free scheme and the proposed scheme with the 6-DoF
model.

The rest of the paper is structured as follows. In Section
II, the UAV dynamic models and the communication and
sensing channel models are described. The joint problem of
beamforming design and UAV flight trajectory planning is
solved in Section III. In Section IV, the assessment of the
proposed methods is conducted. Finally, we conclude the paper
in Section V.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We study a downlink UAV-enabled ISAC system designed
to perform radar sensing on potential targets while providing
downlink communication services for multiple single-antenna
users1, as shown in Fig. 1. The quad-rotor UAV travels from a
predetermined initial location to a final location within a finite
time horizon, i.e., T ∆

= [0, T ]. Let p(t) = [x(t), y(t), z(t)]⊤

represent the position vector of the UAV, where [·]⊤ stands for
the matrix transpose. For simplicity, it is assumed that the UAV
operates at a fixed altitude denoted by zu

2. A uniform linear
array (ULA) with N antennas and d = λ/2 adjacent-element
spacing is installed at the UAV, where λ represents the carrier
wavelength. Similarly to [21], the ULA is placed vertically
to the horizontal plane at the UAV to facilitate the technical
derivation. The set of sensing targets in the area of interest
is represented by J ≜ {1, ..., J}, with each target’s location
given by oj = [ox,j , oy,j , 0]

⊤, j ∈ J . The position of targets
is assumed to be known by the UAV. We also assume there
are M users, with each user m ∈ M ≜ {1, ...,M} having
a position denoted by pm = [px,m, py,m, 0]⊤. The position
of users can be acquired either through the global positioning
system (GPS) or estimated from uplink signals [22]. For ease
of reading, the notations for the primary variables are provided
in Table I.

A. Communication and Sensing Model

We consider that the UAV sends the information signal
cm(t) to user m ∈ M with transmit beamforming at time
t ∈ T 3. Although it is feasible to reuse communication signals
for sensing, the DoF of sensing may be limited [25]. Thus, we
design a dedicated radar signal c0 ∈ CN×1 to further enhance
communication and sensing performance [12, 15, 26]. We
assume that the information signals {cm}Mm=1 are independent,
i.e., cm(t) ∼ CN (0, 1), while the dedicated radar signal c0 has
zero mean and covariance matrix Gd = E

[
c0c

H
0

]
⪰ 0N×N ,

where (·)H stands for the matrix conjugate transpose and
⪰ denotes positive semi-definite. Moreover, the information
signals are uncorrelated with the dedicated radar signal, i.e.,
E(c0cm) = 0N×1, ∀m ∈ M. Let wm ∈ CN×1 represent

1The system we consider can be applied to various scenarios, including
large-scale public events, emergency responses and rescues, and traffic mon-
itoring. To illustrate its functionality, we focus on the traffic monitoring sce-
nario. In the event of a traffic accident, or during major public events such as
marathons, the UAV provides high-quality downlink communication services
for traffic management departments, drivers, and pedestrians by broadcasting
real-time road condition information. Simultaneously, the UAV utilizes radar
to scan the monitored area, track vehicle flow, and precisely locate accident
locations. By delivering real-time and precise data, the UAV enables traffic
management departments to optimize traffic control and enhance emergency
response efficiency.

2The algorithms proposed in this paper can be easily extended to systems
with varying UAV altitude.

3The prerequisite for UAV to successfully provide users with data transmis-
sion services is to ensure the synchronization of downlink. If synchronization
is not guaranteed, the system performance will degrade due to inter-symbol
interference and inter-carrier interference. Thus, this paper assumes that
synchronization can be achieved through synchronization signal blocks similar
to those used in 5G systems [23, 24].

TABLE I: Symbol Notations

Notation Physical Meaning
ma Aircraft mass (kg)
g Acceleration of gravity (m/s2)
l Rigid cross-frame size (m)
ξi Speed of motor i (rad/s)
Kp Lift force coefficient (N/(rad/s)2)
Km Torque coefficient (N ·m/(rad/s)2)
Kd Fuselage drag coefficient (N/(m/s)2)
Im Motor propeller inertia (kg ·m2)
χ Attack angle (rad)
δ Heading angle (rad)
ζ Roll angle (rad)
η Pitch angle (rad)
γ Yaw angle (rad)
zu Flying height (m)
β0 Channel power gain at the distance 1 m (dB)
Pmax Maximum communication power (W)
Vmax Maximum flying velocity (m/s)
α Path loss exponent
Kdx Drag coefficient of x-axis (N/(m/s)2)
Kdy Drag coefficient of y-axis (N/(m/s)2)
Kdz Drag coefficient of z-axis (N/(m/s)2)
Kdmx Damping torque coefficient of x-axis (N ·m/(rad/s)2)
Kdmy Damping torque coefficient of y-axis (N ·m/(rad/s)2)
Kdmz Damping torque coefficient of z-axis (N ·m/(rad/s)2)
Ixx Rotational inertia of x-axis (kg ·m2)
Iyy Rotational inertia of y-axis (kg ·m2)
Izz Rotational inertia of z-axis (kg ·m2)

the transmit beamforming vector for m-th user. Therefore, the
transmitted signal by the UAV is given by

c(t) =

M∑
m=1

wm(t)cm(t) + c0(t),∀t ∈ T . (1)

Hence, the sum transmit power of UAV is expressed as

E
(
∥c(t)∥2

)
= E

∥∥∥∥∥
M∑

m=1

wm(t)cm(t) + c0(t)

∥∥∥∥∥
2


=

M∑
m=1

∥wm(t)∥2 + tr (Gd(t)) , (2)

where ∥ · ∥ stands for the vector Frobenius norm and tr(·)
denotes matrix trace. Then the power constraint is expressed
as

M∑
m=1

∥wm(t)∥2 + tr(Gd(t)) ≤ Pmax,∀t ∈ T , (3)

where Pmax is shown on Table I.
To quantitatively characterize the propagation channel,

many studies [27–30] have conducted a series of air-to-ground
channel measurements in various typical environments, includ-
ing near-urban, suburban, and hilly/mountainous areas. The
air-to-ground channel model is consistent with the LoS chan-
nel model when the UAV altitude is above 50 meters [27, 28].
Therefore, the LoS channel link between the UAV and ground
users has also been widely adopted in previous works [31–
34] for gaining essential insights on the placement/trajectory
design. Furthermore, the Doppler effect resulting from UAV
mobility is assumed to be adequately compensated at both
users [35, 36] and targets [37]. Hence, the air-to-ground
channel is considered to follow the free-space path loss model.
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The channel power gain from the UAV to the m-th user is
specified as

βm(p(t),pm) =
β0

d(p(t),pm)
α , (4)

where β0 and α are shown on Table I, with α characterizing
the rate at which the signal strength diminishes with distance.
d(p(t),pm) =

√
(x(t)− px,m)2 + (y(t)− py,m)2 + z2u de-

notes the Euclidean distance between the UAV’s position p(t)
and the m-th user’s position pm. The transmit array response
vector of the UAV in the direction of the m-th user is written
as

b(p(t),pm) =[
1, ei2π

d
λ cosϕ(p(t),pm), . . . , ei2π

d
λ (N−1) cosϕ(p(t),pm)

]⊤
, (5)

where ϕ(p(t),pm) is the angle of departure (AoD) of the
signal from the UAV to the m-th user with

ϕ(p(t),pm) = arccos
zu

d(p(t),pm)
. (6)

Therefore, the channel vector from the UAV to the m-th user
is expressed as

gm(p(t)) =
√
βm(p(t),pm)b(p(t),pm). (7)

Then, the received signal at the m-th user is written as

sm(t) = gH
m(p(t−td))c(t− td) + nm(t)

=

M∑
i=1

gH
m(p(t− td))wi(t− td)ci(t− td)+

gH
m(p(t− td))c0(t− td) + nm(t), (8)

where td is the time delay from when a signal is trans-
mitted by the UAV until it is received by the user, and
nm(t) ∼ CN (0, σ2

m) represents the additive white Gaussian
noise (AWGN) at the m-th user. The received signal power of
the m-th user is given by

E
(∣∣gH

m(p(t− td))wm(t− td)cm(t− td)
∣∣2)

=
∣∣gH

m(p(t− td))wm(t− td)
∣∣2 .

Since the transmission of the communication signals and
the dedicated radar signal share the same frequency spec-
trum, the received signal of one user is interfered by the
communication signals of other users and the dedicated radar
signal4.Specifically, for the m-th user, the average power of
the interference caused by other users’ transmissions can be
computed as

E


∣∣∣∣∣∣∣

M∑
i=1,
i̸=m

gH
m(p(t− td))wi(t− td)ci(t− td)

∣∣∣∣∣∣∣
2

=

M∑
i=1,
i̸=m

∣∣gH
m(p(t− td))wi(t− td)

∣∣2.
4In fact, the other interference suppression strategies [38–41] can also be

considered in our proposed framework.

The average power of the interference at the m-th user caused
by the dedicated radar signal is given by

E
(∣∣gH

m(p(t− td))c0(t− td)
∣∣2)

= gH
m(p(t− td))Gd(t− td)gm(p(t− td)).

The signal-to-interference-plus-noise ratio (SINR) of the m-
th user is expressed as (9) at the top of the next page. Since the
time delay td is only a few microseconds, which is sufficiently
short that it does not cause significant changes, the term
E
(∣∣gH

m(p(t− td))wm(t− td)cm(t− td)
∣∣2) can be approxi-

mated as E
(∣∣gH

m(p(t))wm(t)cm(t)
∣∣2), and similarly for other

terms. Therefore, ϕm(p(t− td), {wi(t− td)} ,Gd(t− td)) is
approximated by ϕm(p(t), {wi(t)} ,Gd(t)), which is written
as

ϕm(p(t), {wi(t)} ,Gd(t)) =∣∣gH
m(p(t))wm(t)

∣∣2
M∑

i=1,
i̸=m

|gH
m(p(t))wi(t)|2 + gH

m(p(t))Gd(t)gm(p(t)) + σ2
m

.

(10)

As a result, the achievable spectral efficiency (data rate per
unit bandwidth) of the m-th user in bits-per-second-per-Hertz
(bps/Hz) is written as

Rm(t) = log2(1 + ϕm(p(t), {wi(t)}Mi=1 ,Gd(t))). (11)

Next, we consider the radar sensing services provided by
UAV. To enhance the sensing performance, communication
signals for the users can also be exploited for estimating target
parameter [12, 34]. Generally, the power of the sensing signal
directed towards target j ∈ J is referred to as the transmit
beam pattern gain [12, 34, 42], which is written as

Θt,j(p(t), {wm(t)} ,Gd(t)) = E
(∣∣bH(p(t),oj)c(t)

∣∣2)
= bH(p(t),oj)

(
M∑

m=1

wm(t)wH
m(t) +Gd(t)

)
b(p(t),oj),

where b(p(t),oj) is defined in (5). Due to path loss, the
received beam pattern gain at the UAV depends on d(p(t),oj),
which is adopted as the sensing performance evaluation and
is indicated by

Θr,j(p(t), {wm(t)} ,Gd(t)) =
Θt,j (p(t), {wm(t)} ,Gd(t))

d (p(t),oj)
α .

(12)

B. Dynamic Model of Quad-Rotor UAV

1) The 3-DoF dynamic model
In this model, the UAV is treated as a mass point and is

characterized by the earth frame I{x, y, z} as depicted in Fig.
2. We consider that the gravity force mag, the drag force FD,
and the lift force FL are applied to the UAV in the earth frame
I. Since the UAV maintains a constant altitude during flight,
the lift force can be derived as FL = mag/ cosχ(t), where
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ϕm(p(t− td), {wi(t− td)} ,Gd(t− td)) =

∣∣gH
m(p(t− td))wm(t− td)

∣∣2
M∑

i=1,
i̸=m

|gH
m(p(t− td))wi(t− td)|2 + gH

m(p(t− td))Gd(t− td)gm(p(t− td)) + σ2
m

.

(9)

mag

V

x

y

z

D
F

L
F

d

c

Fig. 2: Force analysis of quad-rotor UAV.

χ(t) is the angle between the direction of FL and the z-axis
as shown in Fig. 2.

According to the definition of the drag force FD(t) =
KdV

2(t) [43, 44], where Kd is shown on Table I and V (t) is
the velocity of the UAV, the 3-DoF model in horizontal flight
is expressed as [45][

maẍ(t)
maÿ(t)

]
=

[
FLx(t)− FDx(t)
FLy(t)− FDy(t)

]
=

[
mag tanχ(t) cos δ(t)−Kd|ẋ(t)|ẋ(t)
mag tanχ(t) sin δ(t)−Kd|ẏ(t)|ẏ(t)

]
,

(13)

where ẋ(t), ẏ(t), ẍ(t), ÿ(t), FLx(t), FLy(t), FDx(t) and
FDy(t) are the velocities, accelerations, lift forces, and drag
forces along the x and y axis, respectively.

2) The 6-DoF dynamic model
In this model, the UAV is considered as a rigid body and

is characterized by the fixed-body frame B{xb, yb, zb} and
the earth frame I{x, y, z}. For simplicity, Fig. 3 illustrates
a UAV equipped with four rotors5. The UAV is operated by
controlling the speed of its propellers. For example, the vertical
motion is achieved by concurrently increasing or decreasing
the speed of four propellers. The orientation vector of the UAV
can be represented by Φ(t) = [ζ(t), η(t), γ(t)]⊤.

The translational dynamics based on the Lagrange-Euler
equation and the rotational dynamics based on the Newton-
Euler equation together form a 6-DoF model [43, 45, 46],

5The algorithms developed later are applicable to UAVs with other number
of rotors, as they are unaffected by differences in dynamic models.

Motor 1

Motor 2

Motor 3

Motor 4

L1

L2L3

L4

xy

z

bx

by

bz

z

h

g

Fig. 3: Schematic view of quad-rotor UAV.

thus the dynamic equations of a quad-rotor UAV are written
as{

map̈(t) = fL(t)− fD(t)− fg(t),
Jω̇(t) = −ω(t)× Jω(t) +φf (t) +φg(t)−φa(t),

(14)
where fL(t) and fD(t) denote respectively the lift forces
produced via four propellers and the drag force along x, y,
and z axis [43], as shown below,

fL(t) =

 cos ζ(t) cos γ(t) sin η(t) + sin ζ(t) sin γ(t)
cos ζ(t) sin η(t) sin γ(t)− sin ζ(t) cos γ(t)

cos ζ(t) cos η(t)


·

4∑
i=1

Li(t), (15)

fD(t) =

 Kdx 0 0
0 Kdy 0
0 0 Kdz

 ṗ(t), (16)

and fg(t) = [0, 0,mag]
⊤. In (15), Li(t) denotes the lift

force generated by the i-th propeller. Since the lift force is
proportional to the square of the propeller speed [44], it is
expressed as Li(t) = Kpξ

2
i (t), where Kp is shown on Table I

and ξi(t) denotes the speed of the i-th propeller. In (16), Kdx,
Kdy and Kdz are shown on Table I.

In the second equation of (14), symbol ‘×’ denotes the
cross-product of vectors. J ∈ R3×3 is the inertia matrix, which
is expressed as

J =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 .
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
maẍ(t)
maÿ(t)

Ixxζ̈(t)
Iyy η̈(t)
Izz γ̈(t)

 =


mag [tan η(t) cos γ(t) + csc η(t) tan ζ(t) sin γ(t)]− sign(ẋ(t))Kdxẋ

2(t)
mag [tan η(t) sin γ(t)− csc η(t) tan ζ(t) cos γ(t)]− sign(ẏ(t))Kdy ẏ

2(t)

lKp

[
ξ22(t)− ξ24(t)

]
+ (Iyy − Izz)η̇(t)γ̇(t) + ImΛ(t)η̇(t)− sign(ζ̇(t))Kdmxζ̇

2(t)

lKp

[
ξ23(t)− ξ21(t)

]
+ (Izz − Ixx)ζ̇(t)γ̇(t)− ImΛ(t)ζ̇(t)− sign(η̇(t))Kdmy η̇

2(t)

Km

[
ξ21(t) + ξ23(t)− ξ22(t)− ξ24(t)

]
+ (Ixx − Iyy)ζ̇(t)η̇(t)− sign(γ̇(t))Kdmz γ̇

2(t)

 (21)

ω(t) represents the rotational angular velocity of the quad-
rotor UAV. Under small disturbances, the rate of change of the
Euler angles is approximately equal to the body’s rotational
angular velocity, i.e., ω(t) = [ζ̇(t), η̇(t), γ̇(t)]⊤. Additionally,
φf (t), φg(t), and φa(t) indicate the torque generated by
the propellers, the gyroscopic torques, and the aerodynamic
friction torques, respectively [43], as shown below,

φf (t) =

 l(L2(t)− L4(t))
l(L3(t)− L1(t))

Km(ξ21(t) + ξ23(t)− ξ22(t)− ξ24(t))

 , (17)

φg(t) = [ImΛ(t)η̇(t),−ImΛ(t)ζ̇(t), 0]⊤, (18)

φa(t) = [Kdmxζ̇
2(t),Kdmy η̇

2(t),Kdmz γ̇
2(t)]⊤, (19)

where l, Km, Im, Kdmx, Kdmy and Kdmz are shown on Table
I, Λ(t) = −ξ1(t) + ξ2(t)− ξ3(t) + ξ4(t).

Since the UAV flies horizontally, we can deduce the total
lift force acting upon it to be [45]

4∑
i=1

Li(t) = Kp

4∑
i=1

ξ2i (t) =
mag

cos ζ(t) cos η(t)
. (20)

As a result, the 6-DoF model for horizontal flight can be
described as (21), located at the top of this page, where sign(b)
denotes the sign of b.

C. Problem Formulation

In this paper, the average weighted sum-rate (per Hz) of
communication is maximized by optimizing the UAV tra-
jectory, the transmit information and sensing beamforming
vectors, subjecting to the UAV dynamics model, the sensing
requirements, and the transmit power constraints. We consider
problems with the 3-DoF model and the 6-DoF model, respec-
tively.

First, we consider the problem with the 3-DoF model (13),
which is formulated as

(P1) : max
{wm(t)},

Gd(t)⪰0,p(t)

Rave(p(t), {wm(t)} ,Gd(t))

s.t. Θr,j(p(t), {wm(t)} ,Gd(t)) ≥ Θth
j ,

∀j ∈ J ,∀t ∈ T , (22a)√
ẋ(t)2 + ẏ(t)2 ≤ Vmax,∀t ∈ T , (22b)

p(0) = pI, (22c)
p(T ) = pF, (22d)
(3), (13).

In problem (P1), our objective is to maximize the av-
erage weighted sum-rate Rave(p(t), {wm(t)} ,Gd(t)) =

1
T

∫ T

0

M∑
m=1

ρmRm(t)dt, where ρm denotes the weight of the

m-th user and Rm(t) is given in (11). The received beam
pattern gain constraint of UAV is shown by (22a), where Θth

j

represents the beam pattern gain threshold of j-th target. The
maximum flight speed constraint is given by (22b), where
Vmax is shown on Table I. In addition, (22c) and (22d) denote
the initial and final location constraints with pI = [xI, yI, zu]

⊤

and pF = [xF, yF, zu]
⊤.

Next, we consider the joint design problem with the 6-DoF
model (21). This optimization problem is formulated as

(P2) : max
{wm(t)},

Gd(t)⪰0,p(t)

Rave(p(t), {wm(t)} ,Gd(t))

s.t. (3), (21), (22a), (22b), (22c), (22d).

Notice that the main difference between problem (P1) and
problem (P2) is the dynamic models (13) and (21).

Solving the problems of (P1) and (P2) is highly challeng-
ing due to their nature of infinite-dimensional optimization
problems. Additionally, the UAV trajectories are embedded in
the exponential part of the transmit array response vector in
an extremely complex manner, as described in (5). Moreover,
the strong coupling between the optimization variables, as
indicated in (10) and (12), further increases the difficulty of
computation. Problem (P2) with the 6-DoF model is particu-
larly more complicated to handle compared to problem (P1)
with the 3-DoF model, due to its involvement of more complex
dynamic characteristics, higher control complexity, and greater
computational burden. As such, we will deal with problem
(P2) in Section III, problem (P1) can be solved in a similar
manner.

III. PROPOSED OPTIMIZATION METHOD

We address problem (P2) by adopting the alternating opti-
mization strategy in this section, due to the strong coupling re-
lationship between the UAV trajectory point and beamforming
vectors. Specifically, we first fix the UAV trajectory p(t) and
design {wm(t)} and Gd(t) based on the convex optimization
technique in Section III-A. Subsequently, we optimize the
UAV trajectory p(t) with updated {wm(t)} and Gd(t) by
solving a dynamic optimization problem in Section III-B.

A. Communication and Sensing Beamforming Optimization

For given UAV trajectory p(t), the optimization subproblem
of communication beamforming vectors {wm(t)} and sensing
covariance matrix Gd(t) is expressed as

(P2.1) : max
{wm(t)},

Gd(t)⪰0

1

T

∫ T

0

M∑
m=1

ρmRm({wm(t)} ,Gd(t))dt
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s.t. (3), (22a).

To transform the above subproblem into a tractable form,
we discretize the time interval T into P equal subintervals
and P + 1 time slots, indexed by {τn, n = 0, 1, . . . , P}, and

0 = τ0 < τ1 < τ2 < . . . < τP−1 < τP = T.

Therefore, we obtain the following discrete optimization
problem

(P2.2) : max
{wm[τn]},

Gd[τn]⪰0

1

P

P∑
n=1

M∑
m=1

ρmRm({wm[τn]} ,Gd[τn])

s.t.

M∑
m=1

∥wm[τn]∥2 + tr(Gd[τn]) ≤ Pmax,∀n,

(23a)

Θr,j({wm[τn]} ,Gd[τn]) ≥ Θth
j ,∀n, ∀j. (23b)

Since the optimization variables {wm[τn]} and Gd[τn] at
different time slots are independent, as indicated in (23a) and
(23b), we can decouple them over different time slots. This
means that problem (P2.2) can be equivalently decomposed
into P subproblems. We refer to problem (P2.2) at time slot
τn as problem (P2.2n). As a result, the values of {wm[τn]} and
Gd[τn] at time slot τn can be obtained by solving (P2.2n). In
particular, the optimization problem at time slot τn is written
as

(P2.2n) : max
{wm[τn]},

Gd[τn]⪰0

M∑
m=1

ρmRm({wm[τn]} ,Gd[τn])

s.t.

M∑
m=1

∥wm[τn]∥2 + tr(Gd[τn]) ≤ Pmax, (24a)

Θr,j({wm[τn]} ,Gd[τn]) ≥ Θth
j ,∀j. (24b)

By utilizing the SCA and SDR techniques, we can obtain
a high-quality solution to problem (P2.2n). We first define
Wm[τn] = wm[τn]w

H
m[τn], then rank(Wm[τn]) ≤ 1 and

Wm[τn] ⪰ 0. Further, (P2.2n) is reformulated as

(P2.3) : max
{Wm[τn]⪰0},
Gd[τn]⪰0

M∑
m=1

ρmRm({Wm[τn]} ,Gd[τn])

s.t.

M∑
m=1

tr(Wm[τn]) + tr(Gd[τn]) ≤ Pmax, (25a)

Θr,j({Wm[τn]} ,Gd[τn]) ≥ Θth
j , ∀j, (25b)

rank(Wm[τn]) ≤ 1, (25c)

where Rm({Wm[τn]} ,Gd[τn]) is represented in (26) (shown
on the top of the next page) according to the properties of trace
functions. Note that solving problem (P2.3) is non-trivial due
to the non-concavity of the objective function and the highly
non-convexity of the rank constraint given in (25c).

In the sequel, based on the facts that the first-order Taylor
expansion of a convex function is its global under-estimator
and that of a concave function is its global over-estimator,
we approximate the objective function in (26) as a concave
function via the SCA technique in an iterative manner. Here,

we rewrite Rm({Wm[τn]} ,Gd[τn]) as (27) (shown on the top
of the next page) based on the properties of the log function.
In particular, the second term in (27) is converted into a linear
function by adopting the first-order Taylor expansion, as shown
in (28) at the top of the next page, where C

(k)
m = log2(E

(k)
m ),

D
(k)
m =

gm(p[τn])g
H
m(p[τn])

ln2(E
(k)
m )

, and E
(k)
m is given by

E(k)
m =

M∑
i=1,
i̸=m

tr
(
gm(p[τn])g

H
m(p[τn])W

(k)
i [τn]

)
+ tr

(
gm(p[τn])g

H
m(p[τn])G

(k)
d [τn]

)
+ σ2

m. (29)

In fact,
{
W

(k)
m [τn]

}
and G

(k)
d [τn] denote the local points of

{Wm[τn]} and Gd[τn] at the k-th iteration. Consequently, by
replacing the objective function in problem (P2.3) with (28),
the problem at the k-th iteration is represented as

(P2.4)
(k)

: max
{Wm[τn]⪰0},
Gd[τn]⪰0

M∑
m=1

ρmR̃(k)
m ({Wm[τn]} ,Gd[τn])

s.t. (25a), (25b), (25c).

Next, we adopt the SDR method to tackle the non-convex
rank constraint (25c). The rank constraint can be relaxed, and
the new problem is formulated as

(P2.5)
(k)

: max
{Wm[τn]⪰0},
Gd[τn]⪰0

M∑
m=1

ρmR̃(k)
m ({Wm[τn]} ,Gd[τn])

s.t. (25a), (25b).

It is obvious that problem (P2.5)(k) is convex and can be
efficiently tackled by CVX. However, the feasible solution of
problem (P2.5)(k) may not satisfy the rank constraint (25c).
To address this issue, we can leverage Gaussian randomization
to construct the solution that meets the rank constraint. Fortu-
nately, we can provide the following proposition to guarantee
that a rank-one solution to problem (P2.4)(k) always exists.

Proposition 1: Let {W ∗
m[τn]}Mm=1 and G∗

d[τn] be the
optimal solution of problem (P2.5)(k). We can reconstruct
equivalent solutions to problem (P2.4)(k) as W̃ ∗

m[τn] and
G̃∗

d[τn], given by

w̃∗
m[τn] =

(
gH
m(p[τn])W

∗
m[τn]gm(p[τn])

)−1/2

·W ∗
m[τn]gm(p[τn]), (30)

W̃ ∗
m[τn] = w̃∗

m[τn](w̃
∗
m[τn])

H, (31)

G̃∗
d[τn] =

M∑
m=1

W ∗
m[τn] +G∗

d[τn]−
M∑

m=1

W̃ ∗
m[τn], (32)

which satisfy the rank constraints and are feasible for problem
(P2.4)(k). The equivalent solutions

(
{W̃ ∗

m[τn]}Mm=1, G̃
∗
d[τn]

)
achieve the same objective value for (P2.4)(k) as the opti-
mal value achieved by

(
{W ∗

m[τn]}Mm=1,G
∗
d[τn]

)
. Therefore,

{W̃ ∗
m[τn]}Mm=1 and G̃∗

d[τn] are optimal for (P2.4)(k).
Proof: See Appendix A.
The above proposition allows us to obtain the optimal solu-

tion of problem (P2.4)(k) by solving problem (P2.5)(k). As a
result, the reconstructed solution

(
{W̃ ∗

m[τn]}Mm=1, G̃
∗
d[τn]

)
is
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Rm({Wm[τn]} ,Gd[τn]) = log2

(
1 +

tr
(
gm(p[τn])g

H
m(p[τn])Wm[τn]

)
M∑

i=1,
i̸=m

tr
(
gm(p[τn])gH

m(p[τn])Wi[τn]
)
+ tr

(
gm(p[τn])gH

m(p[τn])Gd[τn]
)
+ σ2

m

)
. (26)

log2

(
M∑
i=1

tr
(
gm(p[τn])g

H
m(p[τn])Wi[τn]

)
+ tr

(
gm(p[τn])g

H
m(p[τn])Gd[τn]

)
+ σ2

m

)

− log2

(
M∑

i=1,
i̸=m

tr
(
gm(p[τn])g

H
m(p[τn])Wi[τn]

)
+ tr

(
gm(p[τn])g

H
m(p[τn])Gd[τn]

)
+ σ2

m

)
(27)

≥ log2

(
M∑
i=1

tr
(
gm(p[τn])g

H
m(p[τn])Wi[τn]

)
+ tr

(
gm(p[τn])g

H
m(p[τn])Gd[τn]

)
+ σ2

m

)

−

(
C(k)

m [τn] +

M∑
i=1,
i̸=m

tr
(
D(k)

m (Wi[τn]−W
(k)
i [τn])

)
+ tr

(
D(k)

m (Gd[τn]−G
(k)
d [τn])

))
≜ R̃(k)

m ({Wm[τn]} ,Gd[τn]). (28)

(A1) R̃(k)
m

({
W (k)

m [τn]
}
,G

(k)
d [τn]

)
= Rm

({
W (k)

m [τn]
}
,G

(k)
d [τn]

)
.

(A2) R̃(k)
m ({Wm[τn]} ,Gd[τn]) ≤ Rm({Wm[τn]} ,Gd[τn]).

(A3) ∇R̃(k)
m

∣∣∣∣({W (k)
m [τn]

}
,G

(k)
d [τn]

) = ∇Rm

∣∣∣∣({W (k)
m [τn]

}
,G

(k)
d [τn]

) .

(A4) R̃(k)
m ({Wm[τn]} ,Gd[τn]) is continuous in ({Wm[τn]} ,Gd[τn]).

guaranteed to be a feasible solution of problem (P2.3). We can
provide the following proposition to guarantee the convergence
for the solution to problem (P2.3) [47].

Proposition 2: If the approximate function
R̃

(k)
m ({Wm[τn]} ,Gd[τn]) satisfies the conditions (A1)−(A4)

located at the top of this page, where symbol ‘∇’ denotes the
differential operation. Then each limit point of the iterations
generated by the problem (P2.4)(k) is a stationary point of
the original problem (P2.3).

Proof: See Appendix B.
Consequently, we can achieve the optimal {Wm[τn]}

and Gd[τn] of problem (P2.3) by iteratively solving prob-
lem (P2.4)(k). Specifically, in the k-th iteration, we get
the optimal

{
W

(k,∗)
m [τn]

}
and G

(k,∗)
d [τn] by solving prob-

lem (P2.4)(k). Then, in the (k + 1)-th iteration, we use{
W

(k,∗)
m [τn]

}
and G

(k,∗)
d [τn] as the local points for comput-

ing R̃
(k+1)
m ({Wm[τn]} ,Gd[τn]). This process continues until

convergence.

B. UAV Trajectory Optimization

For given communication beamforming vectors {wm(t)}
and the sensing covariance matrix Gd(t), the optimization
subproblem of the UAV trajectory p(t) is represented as

(P2.6) : max
p(t)

1

T

∫ T

0

M∑
m=1

ρmRm(p(t))dt

s.t. (21), (22a), (22b), (22c), (22d).

To obtain a suboptimal but high-quality solution, we first
reformulate the problem (P2.6) as an optimal control prob-
lem based on the state-space model. Then, the introduced
continuous-time control vector is discretized using a con-
trol parameterization approach. Furthermore, an exact penalty
function method is adopted to address the continuous state
inequality constraints. Based on the above techniques, we
design an efficient gradient-based algorithm to optimize the
UAV trajectory.

1) State-space based problem transformation
By considering the meaning of variables in the 6-DoF model

(21), the state vector is defined as [48]

x(t) = [x1(t), x2(t), . . . , x10(t)]
⊤ (33)

=
[
x(t), y(t), ẋ(t), ẏ(t), ζ(t), η(t), γ(t), ζ̇(t), η̇(t), γ̇(t)

]⊤
.

The control variables are defined as [43, 46, 49]

u1(t) = ξ22(t)− ξ24(t),
u2(t) = ξ23(t)− ξ21(t),
u3(t) = ξ21(t) + ξ23(t)− ξ22(t)− ξ24(t),

(34)

thus the control vector is described as

u(t) = [u1(t), u2(t), u3(t)]
⊤
. (35)

Based on (33) and (35), the state-space model of (21) is written
in (36) on the top of the next page. We obtain from (36) that
the UAV trajectory can be optimized by adjusting the control
variables u1(t), u2(t), and u3(t), where lKpu1(t), lKpu2(t),
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

ẋ1(t) = x3(t), ẋ2(t) = x4(t),
ẋ3(t) = g (tanx6(t) cosx7(t) + cscx6(t) tanx5(t) sinx7(t))− sign (x3(t))Kdxx

2
3(t)/ma,

ẋ4(t) = g (tanx6(t) sinx7(t)− cscx6(t) tanx5(t) cosx7(t))− sign (x4(t))Kdyx
2
4(t)/ma,

ẋ5(t) = x8(t), ẋ6(t) = x9(t), ẋ7(t) = x10(t),
ẋ8(t) =

[
lKpu1(t) + (Iyy − Izz)x9(t)x10(t) + ImΛ(t)x9(t)− sign (x8(t))Kdmxx

2
8(t)

]
/Ixx,

ẋ9(t) =
[
lKpu2(t) + (Izz − Ixx)x8(t)x10(t)− ImΛ(t)x8(t)− sign (x9(t))Kdmyx

2
9(t)

]
/Iyy,

ẋ10(t) =
[
Kmu3(t) + (Ixx − Iyy)x8(t)x9(t)− sign (x10(t))Kdmzx

2
10(t)

]
/Izz.

(36)

and Kmu3(t) denote the torques produced along the x, y, and
z axis, respectively. For brevity, (36) can be abbreviated as

ẋ(t) = h(x(t),u(t)). (37)

Thus, the problem (P2.6) is written as the optimal control
problem in the following form

(P2.7) : max
x(t),u(t)

1

T

∫ T

0

M∑
m=1

ρmRm (x(t |u )) dt

s.t. (37),
|ui(t)| ≤ Umax

i , i = 1, 2, 3, ∀t, (38a)

Θr,j (x(t |u ),oj) ≥ Θth
j , ∀j, ∀t, (38b)√

x3(t)2 + x4(t)2 ≤ Vmax, ∀t, (38c)
x(0) = x̂0, (38d)
x1(T ) = xF, x2(T ) = yF, (38e)

where x̂0 =
[
x0, y0, ẋ0, ẏ0, ζ0, η0, γ0, ζ̇0, η̇0, γ̇0

]⊤
. For practi-

cal reasons, (38a) is introduced to constrain the maneuvering
capability of the UAV. Additionally, (38d) provides the initial
state vector essential for solving the differential equations in
(37). The remaining constraints are derived by reformulating
the constraints from problem (P2) in terms of x(t) and u(t).

Remark 1: The optimal control problem (P2.7) is extremely
difficult to solve optimally due to the fact that the control vari-
ables are multi-dimensional continuous-time function (38a) as
well as there are infinite state constraints in (38b) and (38c). To
address these issues, a control parametrization technique and
an exact penalty function method are adopted to transform
problem (P2.7) into a solvable form.

2) Control parametrization
In this paper, we adopt a piecewise constant function to

parameterize the control variables [50]. As shown in Fig. 4, the
parametrization function of control variable ui(t), i = 1, 2, 3
is expressed as

ui(t) =

P∑
n=1

ϑn
i ϖ[τn−1,τn)(t), ∀t ∈ T , (39)

where ϖ[τn−1,τn) is defined as follows

ϖ[τn−1,τn)(t) =

{
1, t ∈ [τn−1, τn)
0, t /∈ [τn−1, τn)

,

and τn, n = 1, 2, . . . , P are fixed times that remain the same
as those in subproblem 1.

By letting ϑn = [ϑn
1 , ϑ

n
2 , ϑ

n
3 ]

⊤
, n = 1, 2, . . . , P , and ϑ =[

(ϑ1)⊤, (ϑ2)⊤, . . . , (ϑP )⊤
]⊤

, we rewrite the dynamic system
(37) as

ẋ(t) = h(x(t),ϑn), ∀t ∈ Pn, n = 1, 2, . . . , P, (40)

where Pn = T
P × [n− 1, n). By replacing u(t) with ϑ, the

constraints (38a) and (38b) are rewritten as

|ϑn
i | ≤ Umax

i , i = 1, 2, 3, ∀n, (41)

Θr,j (x(t |ϑn ),oj) ≥ Θth
j , ∀t ∈ Pn, ∀j. (42)

3) Exact penalty function method
To deal with the countless state inequality constraints given

in (38b) and (38c), we employ an exact penalty function
method to incorporate these constraints into the objective func-
tion, thereby transforming the constrained nonlinear program-
ming problem into an unconstrained optimization problem. We
redefine the objective function by utilizing the exact penalty
function method, as (43) (displayed on the top of the next
page) [48], where Q(x(t |ϑ )) is the original objective function
and is represented by

Q(x(t |ϑ )) = − 1

T

P∑
n=1

∫
Pn

M∑
m=1

ρmlog2(1 + ϕm(x(t |ϑn )))dt,

ϕm(x(t |ϑn )) =

∣∣gH
m(x(t |ϑn ))wm[τn]

∣∣2
M∑

i=1,
i̸=m

|gH
mwi[τn]|2 + gH

mGd[τn]gm + σ2
m

.

Γ (x(t |ϑ ), ς) in (43) is the constraint violation term, which is
expressed as

Γ (x(t |ϑ ), ς)

=

P∑
n=1

∫
Pn

 J∑
j=1

max
{
0,Θth

j −Θr,j(x(t |ϑn ),oj)− ςϵO
}2

+ max
{
0,
√

x3(t)2 + x4(t)2 − Vmax − ςϵO
}2
]
dt. (44)

Ω(x(T |ϑ )) in (43) is the terminal state constraint violation
function, which is given as follows

Ω(x(T |ϑ )) = (x1(T )− xF)
2 + (x2(T )− yF)

2. (45)

In (43), µ > 0 denotes the penalty parameter, and κ, θ, ϵ, O
are given constants satisfying κ > 0, θ > 2, ϵ > 0, O ∈ (0, 1).

Based on the above discussion, problem (P2.7) can be
translated into the following form

(P2.7)ϑ,ς : min
ϑ,ς

Qµ(x(t |ϑ ), ς)

s.t. ς ∈ [0, ςmax] , (46)
(38d), (40), (41),
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Qµ (x(t |ϑ ), ς) =

 Q (x(t |ϑ )) ς = 0,Γ (x(t |ϑ ), ς) = 0,
Q(x(t |ϑ )) + ς−κ (Γ (x(t |ϑ ), ς) + Ω(x(T |ϑ ))) + µςθ ς > 0,

∞ otherwise.
(43)

0
t

1
t 2

t
1n

t - n
t

[ )0 1
,t t [ )1 2

,t t [ )1
,

n n
t t-

( )i
u t

t

1

i
J

2

i
J

P
t

n

i
J

Fig. 4: The process of control parametrization.

where

Qµ(x(t |ϑ ), ς) = F(x(T |ϑ ), ς)

+

P∑
n=1

∫
Pn

H(t,x(t |ϑn ), ς)dt, (47)

F(x(T |ϑ ), ς) = µςθ + ς−κΩ(x(T |ϑ )), (48)

and

H(t,x(t |ϑn ), ς) = − 1

T

M∑
m=1

ρmlog2(1 + ϕm(x(t |ϑn )))

+ ς−κ

 J∑
j=1

max
{
0,Θth

j −Θr,j(x(t |ϑn ),oj)− ςϵO
}2

+ max
{
0,
√

x3(t)2 + x4(t)2 − Vmax − ςϵO
}2
]
. (49)

Note that given the system (38d) and (40), problem
(P2.7)ϑ,ς is a static nonlinear programming problem, subject-
ing to only box constraints (41) and (46). Once the gradients
of the objective function Qµ(x(t |ϑ ), ς) with respect to ϑ and
ς are obtained, the problem (P2.7)ϑ,ς can be solved. As such,
the calculation of gradients is crucial to the solution of the
problem. The steps of calculating the gradients are shown in
Appendix C. Note that Theorems 9.3.2, 9.3.3, and 9.3.4 in
[48] show that the solution of problem (P2.7) converges to a
local optimum by solving a series of problems (P2.7)ϑ,ς .

C. The Overall Algorithm

Based on the analysis in the previous two subsections,
the design of beamforming vectors in Section III-A and
the optimization of the UAV trajectory in Section III-B, we
propose an efficient iterative algorithm for solving problem
(P2) via the alternating optimization strategy, as presented
in Algorithm 1. Specifically, we partition all optimization
variables into two blocks. Given the other block of variables,

Algorithm 1 Solving Problem (P2)
Input: {wm},Gd,p,ϑ.
Output: {w∗

m},G∗
d,p

∗,ϑ∗.
Initialization: υ = 1, Γth = 0.5, {w(υ)

m } = {wm}, G(υ)
d =

Gd, p(υ) = p, ϑ(υ) = ϑ, R(1)
ave = 1, R(0)

ave = 0.
1: While R

(υ)
ave −R

(υ−1)
ave ≥ Γth do

2: Solve problem (P2.2) under {w(υ)
m },G(υ)

d ,p(υ) to obtain
{w(υ,∗)

m },G(υ,∗)
d .

3: Solve problem (P2.7) under {w(υ,∗)
m },G(υ,∗)

d ,ϑ(υ) to ob-
tain p(υ,∗),ϑ(υ,∗), as shown in Algorithm 2.
4: Let υ = υ+1, {w(υ)

m } = {w(υ−1,∗)
m }, G(υ)

d = G
(υ−1,∗)
d ,

p(υ) = p(υ−1,∗), ϑ(υ) = ϑ(υ−1,∗).
5: End while.
6: Output {w∗

m} = {w(υ)
m }, G∗

d = G
(υ)
d , p∗ = p(υ),

ϑ∗ = ϑ(υ).

Algorithm 2 Solving Problem (P2.7)
Input: ϑ0.
Output: ϑ∗.
Initialization: o = 0, µ(0) = 10, ς(0) = 0.1, ϑ(0) = ϑ0,
ςmin = 10−9, µmax = 108, θ > 2.
1: Problem (P2.7)ϑ,ς under (ϑ(o), ς(o)) is solved as shown
in Algorithm 3, and (ϑ(o,∗), ς(o,∗)) is the optimal solution
obtained. Then, x(o,∗) is calculated by (40).
2: While ς(o,∗) > ςmin, µ(o) < µmax do
3: Let µ(o+1) = 10µ(o), ς(o+1) = ς(o,∗), ϑ(o+1) = ϑ(o,∗),
o = o+ 1, then go to Step 1.
4: End while
5: Let ς(o,∗) = ςmin.
6: If x(o),∗ is feasible do
7: Exit.
8: Else
9: Adjust the parameters κ, θ, and ϵ. Let µ(o+1) = 10µ(o),
ς(o+1) = 0.1ς(o), o = o+ 1, then go to Step 1.
10: End if
11: Output ϑ∗ = ϑ(o,∗).

we alternately optimize the beamforming vectors by solving
problem (P2.2) and the UAV trajectory by solving problem
(P2.7), respectively. Furthermore, the obtained solution in each
outer iteration υ ≥ 1 is used as the input of the next iteration.
Finally, we obtain an efficient solution until the increase of the
average weighted sum-rate Rave is below a fixed threshold Γth.

In Algorithm 1, the main computational complexity arises
from Steps 2 and 3. In Step 2, the beamforming {wm[τn]}
and Gd[τn] are obtained by the semidenite programming
method. Thus, the number of iterations required to reduce the

duality gap to a threshold is bounded above by O(

√
Nc∑
n=1

Dn),

where Nc and Dn denote the number of constraints and the
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O
(
IbP

√
MN +N + J + 1(MN2 +N2)2(M2N2 +N2 + J + 1) + Iu(NuP + 1)2

)
. (50)

Algorithm 3 Solving Problem (P2.7)ϑ,ς

Input: ϑ(o) and ς(o).
Output: ϑ(o+1) and ς(o+1).
1: The control vector u(o)(t) is calculated by ϑ(o) according
to (39).
2: The state vector x(o)(t) is obtained by solving the differ-
ential equations (40) with u(o)(t).
3: The gradients of the objective function Qµ concerning ϑ(o)

and ς(o) are calculated.
4: Input the values obtained in the first three steps into the
nonlinear program solver.
5: Output ϑ(o+1) and ς(o+1).

dimension of the n-th constraint, respectively. In problem

(P2.5)(k),
Nc∑
n=1

Dn = (MN +N + J +1). According to [51],

the computational complexity of solving problem (P2.5)(k) is
expressed as O(

√
MN +N + J + 1(MN2+N2)2(M2N2+

N2+J+1)), where (MN2+N2) is the number of variables.
In Step 3, we adopt the SQP approach to compute the UAV
trajectory p(t), resulting in a computational complexity of
O((NuP + 1)2)[45, 52], where Nu denotes the number of
control variables. Therefore, the total complexity of Algorithm
1 is expressed as (50), where Ib and Iu are the iterations
required for solving (P2.2) and (P2.7), respectively.

We would like to note that problem (P1) can be solved
similar to problem (P2) by executing the steps in Algorithm 1
and replacing the 6-DoF model (21) with the 3-DoF model
(13). Since the number of control variables in (P1) is less
than that of the control variables in (P2), the computational
complexity of (P1) is less than that of (P2). However, the
planned trajectories of (P1) cannot be accurately followed
which results in performance degradation in contrast to (P2).
Therefore, problem (P1) with the 3-DoF model achieves a
balance between computational complexity and performance.

Remark 2: In Step 3 and Step 9 of Algorithm 2, the penalty
parameter µ is increased. This is because with the increase
of µ, ςθ will be reduced to minimize Qµ (x(t |ϑ ), ς) given
in (43). Since θ is constant, ς will be reduced which leads
to an increase of ς−κ. Hence, the value of Γ (x(t |ϑ ), ς) and
Ω(x(T |ϑ )) must diminish to meet the sensing requirement
(38b), the velocity constraint (38c) and the terminal constraint
(38e).

IV. NUMERICAL EXAMPLE

To validate the effectiveness of our proposed schemes, we
compare our proposed schemes to the benchmark scheme
with the model-free approach [15] (which is referred to as
P0). Unless specified differently, the system parameters can
be found in Table II [53]. In the simulation, we consider
that the UAV starts at pI = [450m, 525m]⊤ and ends at
pF = [550m, 525m]⊤. Meanwhile, M = 8 ground users

TABLE II: Parameters for simulations.

ma 3 kg Kdx 0.11 N/(m/s)2

g 9.8 m/s2 Kdy 0.11 N/(m/s)2

zu 100 m Kdz 0.2 N/(m/s)2

l 0.3 m Kp 4.848× 10−5 N/(rad/s)2

Vmax 30 m/s Km 8.891× 10−7 N ·m/(rad/s)2

Pmax 0.5 W Kdmx 1.6× 10−2 N ·m/(rad/s)2

β0 -60 dB Kdmy 1.6× 10−2 N ·m/(rad/s)2

σ2
m -110 dBm Kdmz 0.1 N ·m/(rad/s)2

α 2 Im 8.02× 10−4 kg ·m2

ρm 1 Ixx 4.29× 10−2 kg ·m2

N 12 Iyy 4.29× 10−2 kg ·m2

Kd 0.11 N/(m/s)2 Izz 7.703× 10−2 kg ·m2
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650
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P1 Trajectory

P2 Trajectory

Fig. 5: The planned trajectories of P0, P1 and P2.

are located at p1 = [370m, 400m], p2 = [380m, 345m],
p3 = [420m, 300m], p4 = [470m, 275m], p5 =
[530m, 275m], p6 = [580m, 300m], p7 = [620m, 345m],
p8 = [630m, 400m]. Furthermore, a matrix sensing region
is considered, with a midpoint at [500m, 600m], a length
of 80 meters and a width of 20 meters, with a total of
J = 18 sensing points. The beam pattern gain threshold
Θth

j = 1e−7 W (−40 dBm), ∀j ∈ J . The UAV initial
conditions for P1 and P2 are set as [p⊤

I , −12, −27.4955]⊤

and [p⊤
I , −1, −15, 0.67638, −0.001, −0.26295, 0, 0, 0]⊤,

respectively.
The planned trajectories of P0, P1 and P2 are plotted in Fig.

5. As depicted in Fig. 5, the planned trajectories of the three
schemes look similar. During the flight, the UAV continually
strives to approach users for more communication throughput.
However, the UAV cannot reach the user position, as it needs
to maintain a suitable sensing distance from the sensing area
to satisfy the requirement of sensing beam pattern gain.

The actual trajectories of P0 and P1 are plotted in Fig.
6, which are obtained by designing the proportional-integral-
derivative (PID) controller with (21) to track the planned
trajectories. The process of obtaining the actual trajectory is
shown in Fig. 7. It is evident from Fig. 6 that the actual
trajectory of P0 cannot reach the destination, while that of P1
can. This phenomenon occurs because the planned trajectory
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(a) The planned and actual trajectories of P0.
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(b) The planned and actual trajectories of P1.

Fig. 6: A comparison between the existing scheme and the proposed scheme.
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Fig. 7: The process of obtaining the actual trajectory.

of P0 does not take into account the UAV dynamics, giving rise
to the control inputs required for the planned trajectory beyond
the execution capabilities of the UAV system. Therefore, the
UAV fails to track the planned trajectory of P0. Although the
actual trajectory of P1 can complete the main task as required,
it cannot exactly follow the planned trajectory due to the
absence of the 6-DoF model. This underscores the importance
of incorporating the 6-DoF model in the trajectory planning
process, while also exposing the fact that the planned trajectory
of P2 is the actual flight trajectory of the UAV.

The received beam pattern gain of UAV versus time at sens-
ing point [500m, 600m] is plotted in Fig. 8. As depicted in Fig.
8, the received beam pattern gain of the UAV first decreases
and then increases for all trajectories. This trend arises because
as the UAV approaches the users, the sensing distance between
the UAV and the sensing position gradually increases, leading
to a gradual decline in sensing performance. Subsequently,
as the UAV flies away towards its destination, the sensing
distance gradually decreases, resulting in an improvement
in sensing performance. Additionally, we can observe that
although the beam pattern gain of the planned trajectory
of P0, P1 and P2 is always greater than the predetermined
threshold Θth, there are moments where that of the actual
trajectory of P0 and P1 is less than Θth. This indicates
that the sensing performance constraint is violated at these
moments. The violation occurs because the actual trajectory
of the UAV deviates from the pre-planned trajectory, and the
actual trajectory points fail to meet the sensing performance
constraints. Compared with the proposed scheme P1, there is a
longer duration of constraint violation in the actual trajectory
of P0 due to the larger deviation between its actual and planned
trajectories.
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Fig. 8: The received beam pattern gain versus time.

The average rate versus the received beam pattern gain
threshold Θth under different trajectories is plotted in Fig.
9. As depicted in Fig. 9, with the increase of Θth, the average
rate of each scheme decreases. This is attributed to the fact
that the UAV needs to spend more transmit power to meet
higher sensing requirements, thereby leaving less transmit
power for communication. Additionally, it is observed that
the communication performance of the planned trajectory of
P0 and P1 outperforms that of the planned trajectory of
P2. However, the communication performance of the actual
trajectories for P0 and P1 is not only inferior to their re-
spective planned trajectories, but also falls below that of the
planned trajectory for P2. The performance degradation of
P0 and P1 occurs primarily due to the absence of the UAV
complex 6-DoF dynamics. Although the proposed scheme P2

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3604344

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CURTIN UNIVERSITY. Downloaded on September 10,2025 at 02:09:26 UTC from IEEE Xplore.  Restrictions apply. 



13

achieves a significant performance improvement in real-flight,
the P2 scheme has a higher complexity than the P1 and P0
schemes. Consequently, the proposed scheme provides useful
complexity-performance trade-offs which can be exploited in
practical UAV-enabled ISAC system design.
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Fig. 9: The average sum rate versus Θth.

V. CONCLUSION

This paper considers a control-based novel UAV-enabled
ISAC system with dynamic model, where a UAV equipped
with multiple antennas provides users with downlink commu-
nication service while simultaneously sensing areas of interest.
A control-based alternating optimization algorithm for jointly
designing communication and sensing beamforming vectors
as well as UAV trajectories is developed. The methods from
SCA and SDR are adopted to transform the beamforming opti-
mization subproblem into a convex problem. The techniques of
control parametrization and exact penalty function are utilized
to convert the dynamic trajectory optimization subproblem
into a form that can be efficiently tackled as a nonlinear
program. Simulation results demonstrate that, in comparison
to the existing scheme, the proposed scheme can markedly
reduce the degradation of communication performance and
the violation of sensing constraints. Moreover, the design
scheme incorporating the 3-DoF model achieves a good trade-
off between the complexity and performance.

APPENDIX

A. Proof of Proposition 1

For the simplicity of notation, we omit the notations (k)
and [τn] in the following. We show that {W̃ ∗

m}Mm=1 and G̃∗
d

are the optimal solution of problem (P2.4)(k). In view of (30)
and (31), it is not difficult to see that {W̃ ∗

m}Mm=1 are positive
semi-definite and meet the rank constraint in (25c). Likewise,
substituting (31) and (32) into (25a) and (25b), it can be shown
that the sensing requirements in (25b) and the transmit power
constraints in (25a) are satisfied.

Then, we need to show that G̃∗
d is positive semi-definite.

For any y ∈ CN×1, m ∈ M, it follows that

yH(W ∗
m − W̃ ∗

m)y = yHW ∗
my − yHw̃∗

m(w̃∗
m)Hy

= yHW ∗
my −

(
gH
m(p)W ∗

mgm(p)
)−1 ∣∣yHW ∗

mgm(p)
∣∣2 .

Using the Cauchy-Schwarz inequality, it is evident that∣∣yHW ∗
mgm(p)

∣∣2 =
∣∣yHw∗

m(w∗
m)Hgm(p)

∣∣2
≤
∣∣yHw∗

m

∣∣2 ∣∣gH
m(p)w∗

m

∣∣2
= (yHW ∗

my)
(
gH
m(p)W ∗

mgm(p)
)
. (51)

Therefore, we can obtain

yH(W ∗
m − W̃ ∗

m)y ≥ 0, (52)

which means that W ∗
m − W̃ ∗

m ⪰ 0. Due to G∗
d ⪰ 0, this

further implies that G̃∗
d ⪰ 0 based on (32).

Following that, we also need to show that the value
of the objective function (28) with the new solution(
{W̃ ∗

m}Mm=1, G̃
∗
d

)
is consistent with that of

(
{W ∗

m}Mm=1,G
∗
d

)
.

According to (31), we can get that

gH
m(p)W̃ ∗

mgm(p) = gH
m(p)W ∗

mgm(p). (53)

Substituting (32) and (53) into (28), for ∀m ∈ M, we can
obtain that

M∑
i=1

tr
(
gm(p)gH

m(p)W̃ ∗
i

)
+ tr

(
gm(p)gH

m(p)G̃∗
d

)
=

M∑
i=1

tr
(
gm(p)gH

m(p)W ∗
i

)
+ tr

(
gm(p)gH

m(p)G∗
d

)
, (54)

Cm +

M∑
i=1,
i̸=m

tr
(
Dm(W̃ ∗

i −W ∗
i )
)
+ tr

(
Dm(G̃∗

d −Gd)
)

= Cm +

M∑
i=1,
i̸=m

tr
(
Dm(W ∗

i −Wi)
)
+ tr

(
Dm(G∗

d −Gd)
)
.

(55)

Thus, it follows from (54) and (55) that the objective
value achieved by

(
{W̃ ∗

m}Mm=1, G̃
∗
d

)
is identical to that of(

{W ∗
m}Mm=1,G

∗
d

)
. Based on the above discussion, we show

that
(
{W̃ ∗

m}Mm=1, G̃
∗
d

)
is the optimal solution of problem

(P2.5)(k), and {W̃ ∗
m}Mm=1 also meet the rank constraint in

(25c). Thus,
(
{W̃ ∗

m}Mm=1, G̃
∗
d

)
is also the optimal solution of

(P2.4)(k).

B. Proof of Proposition 2

For the simplicity of notation, we omit the notation [τn] in
the following. Since the nonconvex function Rm({Wm},Gd)

is approximated as the concave function R̃
(k)
m ({Wm},Gd) by

adopting the first-order Taylor expansion, as shown in (28), it
is not difficult to see that conditions (A1)-(A4) are satisfied.

Furthermore, the first-order Taylor expansion of

log2

(
M∑

i=1,
i̸=m

tr
(
gm(p)gH

m(p)Wi

)
+tr

(
gm(p)gH

m(p)Gd

)
+σ2

m

)
is its global over-estimator. As such, problem (P2.4)(k)

maximizes a lower bound of the objective function
Rm({Wm},Gd) of problem (P2.3), and the lower bound
and the objective function of (P2.3) are equal only at the
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local point
({

W
(k)
m

}
,G

(k)
d

)
; thus, the objective value

of problem (P2.3) with the solution obtained by solving
problem (P2.4)(k) is no smaller than that with the local point({

W
(k)
m

}
,G

(k)
d

)
. This means that the sequence of objective

function values is not decreasing. Moreover, the objective
function has an upper bound since the channel capacity is
limited. Combining with the monotone bounded theorem
[54], we can obtain that the sequence of objective function
values obtained by solving a series of problems (P2.4)(k)

converges.
Assume that there exists a subsequence

({
W

(kj)
m

}
,G

(kj)
d

)
converging to a limit point

({
W ∗

m

}
,G∗

d

)
. According to (A4),

the gradient of the approximation function is consistent with
that of the original function at the local point

({
W ∗

m

}
,G∗

d

)
.

Combined with the fact that each iteration solution is the
extreme point of the approximation problem, this implies that({

W ∗
m

}
,G∗

d

)
is a stationary point of the original problem

(P2.3).

C. The Derivation of Gradient

According to the derivative rule, the gradient of the objective
function Qµ(x(t |ϑ ), ς) with respect to ϑn

i , i = 1, 2, 3, n =
1, 2, . . . , P is denoted as follows

∂Qµ(x(t |ϑ ), ς)

∂ϑn
i

=
∂F(x(T |ϑ ), ς)

∂ϑn
i

+

∫ T

0

[
∂H(t,x(t |ϑ ), ς)

∂ϑn
i

+
∂H(t,x(t |ϑ ), ς)

∂x

∂x(t)

∂ϑn
i

]
dt

+
∂F(x(T |ϑ ), ς)

∂x

∂x(T |ϑ )

∂ϑn
i

. (56)

There is implicit relationship between x(t |ϑ ) and ϑn
i , thus

∂x(t|ϑ )
∂ϑn

i
needs to be computed with certain skills. For ∀t ∈ T ,

x(t |ϑ ) can be represented by

x(t |ϑ ) = x(0) +

∫ t

0

h(x(τ |ϑ ),ϑ)dτ . (57)

Hence, the gradient of x(t |ϑ ) with respect to ϑn
i is denoted

as
∂x(t |ϑ )

∂ϑn
i

=
∂x(0)

∂ϑn
i

+

∫ t

0

[
∂h(x(τ |ϑ ),ϑ)

∂x

∂x(τ |ϑ )

∂ϑn
i

+
∂h(x(τ |ϑ ),ϑ)

∂ϑn
i

]
dτ.

(58)

With t = 0, (58) is equivalent to ∂x(0|ϑ )
∂ϑn

i
= ∂x(0)

∂ϑn
i

. By
considering the derivative of both sides of (58) concerning
t, we can get

d

dt

(∂x(t |ϑ )

∂ϑn
i

)
=

∂h(x(τ |ϑ ),ϑ)

∂x

∂x(t |ϑ )

∂ϑn
i

+
∂h(x(τ |ϑ ),ϑ)

∂ϑn
i

. (59)

Define
∂x(t |ϑ )

∂ϑn
i

= ρn
i (t), ∀t ∈ T , (60)

hence ρn
i (t) satisfies the following auxiliary dynamic system

ρn
i (0) =

∂x(0)

∂ϑn
i

,

dρn
i (t)

dt
=

∂h(x(t |ϑ ),ϑ)

∂x
ρn
i (t) +

∂h(x(t |ϑ ),ϑ)

∂ϑn
i

.

(61)

It follows from x(0) is independent of ϑn
i that ρn

i (0) = 010×1.
In addition, define

∂F(x(T |ϑ ), ς)

∂ϑn
i

= ιni ,
∂F(x(T |ϑ ), ς)

∂x
= Ψ̇, (62)

∂H(t,x(t |ϑ ), ς)

∂ϑn
i

= εni ,
∂H(t,x(t |ϑ ), ς)

∂x
= Ψ̃. (63)

Thus, by substituting (60), (62), and (63) into (56), we can
get

∂Qµ(x(t |ϑ ),ϑ, ς)

∂ϑn
i

= ιni + Ψ̇⊤ρn
i (T |ϑ ) +

∫ T

0

(
εni + Ψ̃⊤ρn

i (t |ϑ )
)
dt. (64)

Similarly, the gradient of the objective function
Qµ(x(t |ϑ ), ς) with respect to ς is expressed as follows,

∂Qµ(x(t |ϑ ), ς)

∂ς

=
∂F(x(T |ϑ ), ς)

∂ς
+

∫ T

0

∂H(t,x(t |ϑ ), ς)

∂ς
dt, (65)

where
∂F(x(T |ϑ ), ς)

∂ς
= µθςθ−1 + (−κ)ς−κ−1Ω(x(T |ϑ )), (66)

∂H(t,x(t |ϑ ), ς)

∂ς

= f1

 J∑
j=1

max
{
0,Θth

j −Θr(x(t |ϑ ),pj)− ςϵO
}2

+ max
{
0,
√

x3(t)2 + x4(t)2 − Vmax − ςϵO
}2
]

+ f2

 J∑
j=1

max
{
0,Θth

j −Θr(x(t |ϑ ),pj)− ςϵO
}

+ max
{
0,
√

x3(t)2 + x4(t)2 − Vmax − ςϵO
}]

. (67)

In (67), f1 = −κς−κ−1, f2 = −2Oϵςϵ−κ−1. We substitute
(66) and (67) into (65), this thus completes the gradient
calculation.
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