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Disease with Multi-channel Phonocardiography and
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Abstract

In this chapter, we present a new noninvasive coronary artery disease (CAD) pre-screening technique using
multi-channel phonocardiography (PCG) and electrocardiography (ECG). After a brief overview of the state-of-the-
art in PCG, we present a multichannel PCG and ECG instrument. With the aid of a background-noise microphone
integrated into each digital stethoscope, adaptive signal processing methods are then proposed to suppress the
environmental noise to improve the integrity of the recorded heartbeat signal. Finally, we investigate important
factors that can impact the performance of a neural network based CAD classifier using heart auscultation. Among
them, the integrity of the heartbeat signal plays a key role.

Index Terms

Auscultation, coronary artery disease, cardiovascular disease, electrocardiography, phonocardiography.

I. INTRODUCTION

Cardiovascular disease (CVD) including coronary artery disease (CAD) is the leading cause of mortality
and morbidity in the world [1], contributing 31% towards all global deaths. Early diagnosis of CAD is
important to prevent further development of this disease. Standard methods for diagnosis of CAD such
as coronary angiography and myocardial perfusion imaging require specialised equipment and clinical
setting. Although these methods are effective in diagnosing CAD, they are highly costly and expose
patients to radiation. Table I shows the performance of different diagnostic methods in Australia in 2012
[2]. The costs were retrieved from http://www9.health.gov.au/mbs in February, 2023, with item numbers
11704, 55132, 61324, 57360, 38310 for the five stress tests in order, respectively.

On the other hand, heart auscultation (the interpretation of heart sounds by a physician) is a cost-
effective tool for the pre-screening of CAD. It is well established that partial obstruction of coronary
arteries causes disruption of normal, laminar flow and generates flow turbulence and so modifies heart
sounds. When the coronary arteries blockage is prevalent, murmur sounds frequently occur. However,
auscultation skills are difficulty to acquire. Since the heart sound acquired by a stethoscope is often
contaminated by various internal (e.g. breathing) and external (e.g. friction) noises, it can be hard for
the human auditory system to identify abnormal heart sounds related to CAD. With the aid of computer
technology and highly sensitive electronics, digital stethoscopes can be used to detect sounds that are
below the human hearing threshold and frequency range. As a result, phonocardiogram (PCG) signal
processing combined with computer-aided classification attract much interest over the last decade as a
low-cost and noninvasive tool for prescreening of CAD.

In this chapter, we present a multi-channel phonocardiography (PCG) and electrocardiography (ECG)
based CAD pre-screening technique, developed by researchers at Curtin University in collaboration with
Ticking Heart, a health-tech start-up. With the aid of a background-noise microphone integrated into each
digital stethoscope, adaptive signal processing methods are proposed to suppress the environmental noise
to improve the integrity of the recorded heartbeat signal. We investigate important factors that can impact
the performance of a neural network based CAD classifier using heart auscultation.

Y. Rong is with the School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, WA 6102, Australia
(e-mail: y.rong@curtin.edu.au).
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TABLE I
DIAGNOSTIC METHODS FOR CORONARY ARTERY DISEASE DETECTION

Stress Test Cost $ Sensit. % Specif. % Advantages Disadvantages
Electrocar- 1) Assessment of exercise capacity 1) Lowest sensitivity of all stress tests:
diography 33 68 70-77 2) Cost effective risk of false negative test

3) First line test in absence 2) Lower diagnostic accuracy in women
of contraindications

Echocardiography 1) Assessment of exercise capacity, False negatives in single
(exercise) 240 80-85 84-86 cardiac structure/function vessel/circumflex territory ischaemia

2) No radiation (increased sensitivity with cycle ergometry)
3) High specificity

Nuclear perfusion 1) Exercise capacity can be assessed 1) Radiation
study 653 85-90 70-75 2) High sensitivity 2) False positives due to higher

sensitivity/diaphragmatic attenuation
CT coronary 1) High negative predictive value (in 1) Radiation
angiogram 728 85-99 64-90 low to intermediate risk subjects) 2) Functional effect of stenosis not

usually assessed, nor exercise capacity
Coronary 1) Invasive
angiogram 2438 ≈ 100 ≈ 100 Gold standard 2) Radiation

3) Functional effect of stenosis
not routinely assessed

The rest of this chapter is organized as follows. In Section II, a brief overview of the state-of-the-art
PCG is provided. An introduction of the multichannel PCG and ECG instrument is presented in Section III.
Adaptive PCG noise cancellation algorithm is proposed in Section IV to maintain the integrity of the signal-
of-interest. Key factors affecting machine learning based CAD classification algorithms are discussed in
Section V. Conclusions are drawn in Section VI.

A list of acronyms used in this chapter is given below.

ANN artificial neural network
BNM background-noise microphone
CAD coronary artery disease
CIC Computing in Cardiology
CNN convolutional neural network
CSA cardiac sonospectrographic analyzer
CVD cardiovascular disease
ECG electrocardiography
FIR finite impulse response
FL filter length
HM heart-sensor microphone
HSMM hidden semi-Markov model
LTI linear time-invariant
MLP multilayer perceptron
MSE mean-squared error
NLMS normalized least mean squares
NN nearest neighbor
PCG phonocardiography
PSD power spectral density
SST synchrosqueezing transform
SVM support vector machine

II. OVERVIEW OF THE STATE-OF-THE-ART PCG
PCG signals are digital recordings of heart sound. They provide a convenient primary diagnostic tool

for detecting CAD murmurs [3]. Figure 1 displays a PCG signal of a healthy subject, where the regions
of systole and diastole, and major heart sounds S1 and S2 are shown.
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Fig. 1. Phonocardiogram of a healthy subject.

Murmur sounds from the coronary arteries blockage affect the basic characteristics of PCG signals,
which provides the opportunity to detect these changes using machine learning techniques. Many al-
gorithms have been proposed to classify normal and abnormal heart cycles, aiming at achieving high
accuracy, sensitivity, and specificity from their data sets, which are defined below

Accuracy =
Tp + Tn

Tp + Fp + Fn + Tn
(1)

Sensitivity =
Tp

Tp + Fn

(2)

Specificity =
Tn

Tn + Fp

. (3)

Here Tp, Tn, Fp, and Fn represent the number of true positives, true negatives, false positives, and false
negatives, respectively.

Most PCG-based CAD detection techniques follow a similar set of methodology, which consists of
extracting features from PCG data for the machine learning algorithms to learn. Multiple studies have
undertaken time-frequency analysis techniques to extract feature vectors from the heart sound signal. In [4],
an artificial neural network (ANN) model was applied to classify heart sounds using wavelet based feature
extraction. Based on the ANN classification model, a computer-aided diagnosis system was described in
[5] for multiple pathological cases using wavelet decomposition. Support vector machine (SVM) along
with wavelet packet decomposition have been applied in [6] to detect valvular heart sounds as normal or
abnormal. In a 2010 study [7], a method was proposed to improve the performance of least-squares SVM
to diagnose pathological sounds.

A digital electronic stethoscope named the cardiac sonospectrographic analyzer (CSA) was tested in [8]
for the detection of coronary artery microbruits, where the CSA showed high sensitivity and specificity
for the detection of significant early CAD in an outpatient setting. In [9], nine different types of acoustic
features from five overlapping frequency bands were obtained and analysed for the identification of murmur
sounds associated with CAD. The result confirms that there is a potential in PCG for the diagnosis of
CAD. A dual-input neural network for CAD detection using both ECG and PCG was developed in [10].

Access to labelled heart sound recordings plays a key role in developing machine learning based
classification algorithms. A list of the currently available open access data sets is provided in a recent paper
[11]. Among these data sets, a large public database was created for the 2016 PhysioNet/Computing in
Cardiology (CIC) challenge to classify normal and abnormal heart sound recordings [12]. In this database,
there are six different data sets available, where each set is composed of heartbeat measurements recorded
by different research groups at different institutions. Each recording is labelled as ‘normal’ or ‘abnormal’
according to expert diagnosis. A currently largest pediatric heart sound data set is presented in [11], which
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Fig. 2. A vest holding six digital stethoscopes and one three-led ECG sensor (RA, LA and RLD stand for right arm, left arm and right leg
drive, respectively)

Fig. 3. Single stethoscope. Left: HM facing upward. Right: BNM facing upward.

contains 215, 780 manually annotated heart sounds. In addition to binary labels, each murmur has been
manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality.
The data set [11] is used in the 2022 PhysioNet challenge in detecting abnormal heart function from
multi-location PCG recordings of heart sounds [13].

An open access simultaneously recorded PCG and ECG database is presented recently in [14], where
the recording device includes circuitry for three-lead ECG, two digital stethoscope channels for PCG
acquisition, and two auxiliary channels to capture the ambient noise. To the best of our knowledge, there
is no open access database with multichannel (more than two channels) PCG and ECG recordings. In the
next section, we present a multichannel PCG and ECG instrument.

III. MULTICHANNEL PCG AND ECG INSTRUMENT

A measurement system has been built by Ticking Heart [15], a health-tech start-up, that incorporates
six digital stethoscopes and one three-lead ECG sensor onto a wearable vest that simultaneously measures
heartbeat signals and applies machine learning methodologies for pre-screening CAD. The digital stetho-
scopes are placed in clinically advised positions, see Figure 2. In particular, four stethoscopes are located
on the left side of the chest to detect sounds from the mitral, aortic, pulmonary, and tricuspid valves. The
other two PCG sensors are placed on the right side of the chest to detect sounds from the ascending aorta
artery. Compared with systems having only a single stethoscope or two stethoscopes [14], using multiple
stethoscopes can improve the performance of classification [16]. Moreover, multichannel PCG and ECG
signal processing has potential to separate the microphone signals with a stronger mapping to the cause
of the signal waveform.

As shown in Figure 3, each stethoscope has two microphones, where one microphone is the heart-sensor
microphone (HM) located behind the diaphragm, and the other one is the background-noise microphone
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Fig. 4. Multichannel PCG and ECG data collection board.

(BNM) located at the other end of the stethoscope. The HM acquires the heart signal plus part of the
background noise, while the BNM mainly picks up the background noise. Using such two-microphone
configuration, the background noise can be reduced from the HM, which contributes to successful diagnosis
techniques, as acquired signals from the system are cleaner with higher signal integrity. All signals from
the stethoscopes and the ECG sensor are routed to a data collection board as shown in Figure 4, for
further analog signal conditioning prior to digitalization. Note that Figures 3 and 4 are not to scale.
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Fig. 5. Waveform of heartbeat signals acquired by the HMs in six digital stethoscopes located in Figure 6. The x-axis is time in seconds
and the y-axis represents the amplitude.

An example of the PCG signals measured simultaneously from six digital stethoscopes held by TH’s
wearable vest is given in Figure 5, which shows the waveforms of the signals acquired by the HM of
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Fig. 6. Positions of the digital stethoscopes for the PCG signals shown in Figure 5.

each stethoscope sampled at 2 kHz and passed through a high-pass filter with a cutoff frequency at 20
Hz. Thus, the frequency band of signals in Figure 5 is from 20 Hz to 1 kHz. The positions of the six
stethoscopes on the chest are displayed in Figure 6. Note that the six HM signals are synchronized at
the signal sample level. We can observe that the signal from Sensor 2 has the highest amplitude, where
the pattern of S1 and S2 can be clearly seen, while Sensor 5 yields the weakest signal as it is furthest
away from the heart. An advantage of multichannel synchronized PCG signals is that they can provide
more information about the heartbeat and murmur sounds, which can be utilized by machine learning
algorithms to improve the accuracy of CAD classification.
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Fig. 7. Waveform of PCG signals and ECG signal recorded simultaneously. The x-axis is time in seconds and the y-axis represents the
amplitude.

Waveforms of six PCG signals and one ECG signal recorded simultaneously are shown in Figure 7.
Synchronization at the signal sample level is achieved through the same multichannel analogue-to-digital
converter. We can observe that in one heart cycle, the first peak in ECG (i.e., the R peak) appears slightly
ahead of the S1 peak in the PCG signals, while the second peak in ECG coincides with the S2 peak in the
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Fig. 8. Waveform of the HM (top) and BNM (bottom) signals from Sensor 2.

PCG signals. In the case of Figure 7, the ECG signal appears to be less noisy than PCG signals. Jointly
processing the ECG and PCG signals would provide more information on the feature of the heartbeat,
which can feed into a classifier to improve the performance of CAD classification.

Figure 8 shows the waveform of the signals acquired by the HM and BNM on Sensor 2 in Figure 5.
We can see that since the signals were recorded in a quiet office environment, the BNM signal (which is
mainly external noise) has a much lower amplitude than the HM signal. Moreover, the pattern of S1 and
S2 is not visible in the BNM signal, making it possible to cancel the noise in the HM based on the BNM
signal without compromising the signal-of-interest, as discussed in detail in the next section. A clinical
study is planned in 2023 to evaluate the performance of the vest in real patients.

IV. NOISE CANCELLATION

As shown in the last section, background noise can couple into the HM and corrupt acoustic heartbeat
measurements during heart auscultation. This can decrease heart signal integrity, as the noise cannot be
filtered out using conventional frequency-selective filters if it lies within the frequency band of interest
(e.g. 10-600 Hz). By using the BNM as a reference for noise, noise cancellation filtering techniques can
be applied to attenuate unwanted background noise and restore integrity to the desired signal.

A. Noise cancellation model
A noise cancellation model of the two-microphone stethoscope system is shown in Figure 9. The desired

heartbeat signal to be measured d(n) is corrupted by various background noise sources v(n) to produce
the signal acquired by the HM as x(n) = d(n)+v1(n). Without any information on v1(n), it is not possible
to remove it from d(n). The BNM measures the noise sources without heartbeat signal d(n), depicted
as v2(n). However, the HM and BNM do not detect the noise in the same way, i.e., v1(n) 6= v2(n).
This indicates that the desired signal cannot be obtained via a direct subtraction [17]. Instead, a Wiener
filter produces an estimate of v1(n), denoted as v̂1(n), via the observational measurements of v2(n). This
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Fig. 9. Noise cancellation model of the two-microphone stethoscope.

Fig. 10. Adaptive noise canceller.

estimate is subtracted from x(n) to attenuate the background noise. Here, the Wiener-Hopf equation for
a finite impulse response (FIR) filter is given by

Rv2w = rxv2 (4)

where w is the FIR coefficient vector of the Wiener filter, Rv2 is the autocorrelation matrix of v2(n), and
rxv2 is the cross-correlation vector of x(n) and v2(n). The observed signals x(n) and v2(n) are acoustic
signals and their relative time delay is unknown. An extra delay is inserted in x(n) to take into account
non-causality [18].

In environments where the background noise is constantly changing, adaptive filters are needed to
update filter coefficients w in (4) in real time. An adaptive filter model is shown in Figure 10, where the
output of the adaptive filter aims to minimize the mean-squared error (MSE) of estimating v1(n), thus
e(n) is the MSE of the desired signal d(n). We use a normalized least mean squares (NLMS) algorithm
to update the coefficients of the adaptive filter w(i). For each sample x(i) from the HM, the error history
is given by

e(i) = x(i)−wT(i)v2(i) (5)

where v2(i) = (v2(i), v2(i+ 1), . . . , v2(i+N))T , N is the filter length (FL), and (·)T denotes the matrix
transpose. The filter coefficient vector is updated for each sample as

w(i+ 1) = (1− α)w(i) + µ
v2(i)e(i)

‖v2(i)‖2
(6)
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Fig. 11. Linear system model.

where α is the leakage coefficient, ‖ · ‖ stands for the vector Euclidean norm, and µ is the step size
determining the size at which the filter coefficients are updated. The algorithm specified by (5) and (6) is
a variable leaky NLMS algorithm, which has the potential to significantly outperform the standard LMS
algorithm.

B. Coherence function
The performance of the NLMS based method in suppressing the background noise is closely related

to the coherence function of signals from the HM and BNM. The coherence between the HM and BNM
channels indicates how much noise can be attenuated at particular frequencies [19]. The coherence function
of two signals x(n) and v(n) (also referred to as the coherence-squared function) is defined by [20]

γ2
vx(f) =

|Svx(f)|2

Svv(f)Sxx(f)
(7)

where Svv(f) and Sxx(f) are the auto spectral densities and Svx(f) is the cross spectral density. For all
frequencies f , (7) is bounded by

0 ≤ γ2
vx(f) ≤ 1. (8)

If we apply (7) to a noise-free linear time-invariant (LTI) system governed by x̄(n) = v(n)∗h(n), where
h(n) is the system impulse response and ∗ denotes the convolution, it can be shown [21] that γ2

vx̄(f) = 1.
Let us rearrange Figure 9 to Figure 11, where the system of ĥ1(n) represents the concatenated system of
h2(n) and the Wiener filter. It has been shown in [21] that to minimize the MSE of e(n) in Figure 11,
there is Ĥ1(f) = H1(f), where H1(f) and Ĥ1(f) are the frequency-domain representation of h1(n) and
ĥ1(n), respectively. Based on this and assuming that d(n) and v(n) are uncorrelated, we can calculate the
coherence function in (7) as

γ2
vx(f) =

|H1(f)|2R2
vv(f)

Rvv(f) (|H1(f)|2Rvv(f) +Rdd(f))

=

(
1 +

Rdd(f)

|H1(f)|2Rvv(f)

)−1

=

(
1 +

Rdd(f)

Rxx(f)−Rdd(f)

)−1

(9)

where Rvv(f) and Rdd(f) are the auto spectral densities of v(n) and d(n), respectively. From (9), we
have

1− γ2
vx(f) =

Rdd(f)

Rxx(f)
(10)
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Fig. 12. Adaptive cancellation versus the squared coherence between v2(n) and x(n).

which establishes the link of the LTI noise cancellation approach to the coherence function.
One of the major problems applying adaptive noise cancellation techniques in real acoustic environments

is the low coherence between the noise corrupting the desired signal and the noise measured by the noise
sensor. For the scenario depicted in Figure 9, a coherence value less than unity indicates that the system
relating x(n) and v2(n) does not fulfill the theoretical assumptions [20], thus the noise at those particular
frequencies cannot be completely removed. The coherence function assumes an LTI relationship and
stationary signals. The ensemble average is used so it furthermore assumes ergodicity. The amount of
possible noise cancellation for this scenario as a function of frequency is given below and plotted in
Figure 12

C(f) =
1

1− |γ2
v2x

(f)|
. (11)

C. Noise cancellation performance
Four different sources of background noise were tested on heartbeat measurements including a single

300 Hz tone, multiple tones consisting of 200 Hz, 300 Hz and 500 Hz, hospital/clinic noise, and breathing
noise. The heartbeat measurements were of the second author and offer no diagnostic insight, thus no
ethical approval was required for this research. A FireFace UCX was used with a MATLAB interface to
allow simultaneous playback of the background noise through a Fostex 6301B speaker whilst recording
from the stethoscope. FireFace UCX is a USB and FireWire audio interface manufactured by RME Audio
[22]. The stethoscope was taped to the chest, making sure that the BNM was exposed.

Heartbeat measurements of 15-second duration were taken for each background noise scenario. The
measurements were taken under breath-held conditions, except for the breathing noise scenario, where the
speaker was turned off. The FireFace UCX collected data at 44.1 kHz sampling frequency, which was
re-sampled down to 2 kHz. The adaptive noise cancellation algorithm in Section IV-A was implemented
in MATLAB R2022a and run on a HP laptop.
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The leakage coefficient α = 0.001 was used in (6). The filter length N and step size µ were first
tuned on the single 300 Hz tone. The combination that achieved the best noise attenuation was then
used for the other background noise scenarios after comparing the performance to a conventional LMS
algorithm reviewed in [23]. For each case, the coherence function between the HM and the BNM was
plotted via a Welch estimator in MATLAB to indicate expected noise cancellation performance. The Welch
estimator applies a 1024 length Hann window with 512 overlap calculated across 1024 samples. Power
spectral density (PSD) plots and spectrograms generated through MATLAB allowed visualization of the
performance.

When a single 300 Hz tone was played through the speaker, the coherence function between the HM
and BNM is shown in Figure 13. It can be seen that the coherence function is unity at 300 Hz, indicating
that a complete attenuation of the tone is possible using linear techniques.
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Fig. 13. 300 Hz tone background noise coherence function.

The NLMS algorithm was tested with µ = 0.05 and N = 256, 512, and 1024. Figure 14 shows the
PSD of the filtered HM signals and the unfiltered HM signal. It can be seen that for all three N , the
amount of noise attenuation is 27 dB.

Next, we chose N = 512 for tuning the step size µ of the NLMS algorithm. Values of µ = 0.01,
0.05, 0.1, and 0.5 were tested. Figure 15 shows the PSD of the filtered HM signal at various µ. It can be
observed that the noise attenuation increased as µ increased, where almost complete attenuation (approx.
35 dB) was achieved at µ = 0.5. This agrees with the coherence function which suggests a complete
attenuation is possible. A 300 Hz tone is a periodic signal, suggesting why the measured attenuation was
high. This may not be the case when other non-periodic noise sources are present.

In the following experiments, we set N = 512 and µ = 0.1. In the second experiment, a multi-tone
signal at 200 Hz, 300 Hz, and 500 Hz was played through the speaker. The coherence between the HM
and BNM signals is displayed in Figure 16. It can be seen that the three tones had unity magnitude-
squared coherence, as well as the first harmonic of each tone. This indicates that the first two harmonics
of all three tones can be fully attenuated. In order to test the ability of the algorithm to adapt to different
tones, the NLMS algorithm was tested on the scenario where each tone was played for 5 seconds while
a heartbeat was recorded. It is shown in Figure 17 that a near complete noise attenuation was observed
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Fig. 16. 200, 300, and 500 Hz tone background noise coherence function.
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in the PSD comparison of the filtered and unfiltered HM signal. This can be visually observed in the
spectrogram shown in Figure 18. Here, the BNM, HM and filtered HM signal spectrograms are displayed
side-by-side, where the 200 Hz, 300 Hz, and 500 Hz tones were approximately attenuated by 24.5 dB,
21.4 dB, and 20.3 dB, respectively.
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Fig. 18. Spectrogram comparison of filtered and unfiltered HM signal in multi-tone background noise.

In the third experiment, hospital/clinic background noise was played through the speaker while taking
a heartbeat measurement. As this type of noise can be encountered in practical hospital and clinic
environment, it is of high interest to attenuate this type of non-stationary noise within the frequency
of interest. The magnitude-squared coherence between the HM and BNM signals is shown in Figure 19.
It can be seen that the coherence function varies from 0.3 to 0.7 (not unity) for the frequency band between
200 Hz and 500 Hz. Thus, linear optimal filtering will not be able to achieve a complete attenuation of the
background noise. According to Figure 12, around 3-5 dB noise suppression is possible at a magnitude-
squared coherence value of 0.5. There is visual evidence of attenuation displayed in the spectrogram
comparison in Figure 20, where we can see that the noise energy at 500 Hz, and the band between 200
and 300 Hz is slightly suppressed.

Many studies in the literature on the detection of CAD require that subjects hold their breath whilst
heartbeat measurements are taken [16]. Although this is ideal for CAD detection, extending the stethoscope
system to detect lung disease could be performed in unison, where the breathing noise can contain critical
information. Thus, it is of great interest to separate the heartbeat sound from the breathing sound, so they
can be studied and processed separately.

For the last experiment, the heartbeat signal was measured without holding breath and no extra external
background noise sound was played. The magnitude-squared coherence function between the HM and
BNM signals is shown in Figure 21. It can be seen that the coherence function was less than 0.3 across
the whole frequency band. This suggests that only less than 1 dB of breathing noise suppression is
achievable based on Figure 12. This was confirmed in Figure 22, where the HM signal before and after
filtering appear identical. Non-linear methods may be explored to suppress the breathing noise and enhance
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Fig. 19. Hospital/clinic background noise coherence function.
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Fig. 20. Spectrogram comparison of filtered and unfiltered HM signal in hospital/clinic background noise.
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Fig. 21. Breathing noise coherence function.
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Fig. 22. Spectrogram comparison of filtered and unfiltered HM signal with breathing noise.
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Fig. 23. Hand labelled (top) versus HSMM-regression based segmentation algorithm (bottom).

the heart signal. These other methods should be carefully designed as to not suppress murmurs that are
present in CAD patients, as the diagnostic process will be negatively affected.

V. MACHINE LEARNING BASED CLASSIFICATION

There are many factors which can affect the results of a neural network based CAD classifier. In this
section, we discuss four of these factors: segmentation of heart cycle, the integrity of heartbeat signal,
data set size and the neural network structure. We demonstrate that among these factors, the integrity of
heartbeat signal has great impact on the performance of a classifier.

A. Heart cycle segmentation
Prior to input into a neural network based classifier, heartbeat signals are usually segmented into heart

cycles. Let us take [24] as an example. In [24], the heartbeat data input to the SVM algorithm is segmented
into three epochs, each containing two full heart cycles. Thus, one epoch commences at S1 of the first
cycle and finishes at the end of diastole in the second cycle.

The heartbeat signal segmentation can be implemented manually following the methods in [24]. How-
ever, hand-segmenting heartbeat data can be time-consuming and is often not practical for many applica-
tions which require automatic data acquisition and pre-processing. In this case, a logistic regression-hidden
semi-Markov model (HSMM) based heart sound segmentation algorithm adapted in [25] can be applied
to provide automatic heart cycle segmentation. The segmentation algorithm [25] is a probabilistic model-
based approach, which identifies positions that correspond to S1, systole, S2, and diastole. Figure 23
displays a hand-segmented heartbeat and a heartbeat segmented via the HSMM-regression algorithm.

It can be seen that the heartbeat cycle starts directly at S1 when using the HSMM-regression algorithm,
and there is a small delay shown in Figure 23 where the hand-segmentation is based on. Ideally, this
small shift would not affect the classification results. To test the sensitivity of such shift, an adjustment
factor was included in the pre-processing algorithms. This adjustment factor causes a shift in the heartbeat
epochs after segmentation using the HSMM-regression algorithm, allowing a slight delay before S1. In
particular, 8 different adjustment factors were tested: 0, 0.006, 0.016, . . . , 0.066. The adjustment factor is
multiplied with the amount of samples in each epoch to obtain the shift value, which is the amount
of samples the segmented epoch is delayed by. Figure 24 displays the same epoch subjecting to four
different adjustment factors. Note that the higher adjustment factors provide a better representation of the
hand-segmented epochs in Figure 23, where there is a slight delay before the first S1.

For each adjustment factor, 40 normal and 40 abnormal heartbeats from data set a in [12] were
segmented into three epochs using the HSMM-regression algorithm. The k-nearest neighbor (k-NN) SVM
algorithm was implemented on the data set of 80 segmented subjects. The algorithm in [24] including
the whole process of performing the synchrosqueezing transform (SST) on each epoch, feature extraction
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Fig. 24. Epochs with various adjustment factors.
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Fig. 25. Accuracy, sensitivity and specificity versus the adjustment factor for data sets a and e.

and selection, and training the SVM classifier was repeated each time. The highest accuracy, sensitivity,
and specificity were recorded for each test.

The accuracy, sensitivity, and specificity plotted as a function of the adjustment factor is displayed in
Figure 25. Let us focus on the curves with ‘a’ at this time. It can be seen that the accuracy varied from
63.8% to 71.8% during the adjustment factor variation test. This 8% difference between the minimum
and maximum score occurred when the adjustment was 0.036 and 0.046, respectively. This shows that the
SVM algorithm is quite sensitive with respect to pre-processing the heartbeat data. Ideally, the variation
should be kept at a minimum as it is impossible to segment each subject’s heartbeat in the same way.
As it stands, a variation of 8% is too large. Note that when hand-segmenting data set a, the accuracy
was 68%. Further investigations need to be conducted to determine the nature of this accuracy variation
for different adjustment factors, where the behaviour was also apparent in the sensitivity and specificity
plots in Figure 25. We can investigate utilizing the simultaneous ECG recording (shown in Figure 7) for a
better defined segmentation. Perhaps segmentation is not necessary, and algorithms can be designed that
bypass this pre-processing technique to achieve the best results.

B. Signal integrity
The same test in Section V-A was repeated using 40 normal and 40 abnormal heartbeats from data set e

in [12]. Performing the segmentation test on different heartbeat recordings indicates how the performance
varies over different environment. We can observe from Figure 25 that for all adjustment factors, the
accuracy, sensitivity, and specificity for data set e was consistently higher than those of data set a. As
both data sets were acquired in different environment by separate research groups, the amount of noise
corrupting the signals was not the same. From the results, we conclude that data set e contained less noise
in the measurements, due to the accuracy varying between 85% and 90% for each adjustment factor, as
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opposed to 64% and 71% for data set a. This clearly indicates the importance of the data acquisition
process. Although both sets of heartbeat signals appeared to be the same visually when filtering out noisy
measurements, it is clear that critical features were corrupted in data set a, which negatively affected the
classification process.

For data set e, the maximum accuracy again corresponds to an adjustment factor 0.046. However, the
variation was not as large as that in data set a, with a minimum accuracy of 84.8% and maximum accuracy
of 88.9%. The smaller variation in accuracy can also be explained by the fact that data set e was cleaner.
Nevertheless, this 4.1% difference still has the ability to degrade the specification goal, despite having
cleaner signals.

From the results in Section IV, we expect that due to its capability to suppress the background noise, the
digital stethoscope with a BNM can obtain measurements with high signal integrity. Due to this reason,
it is expected that the accuracy, sensitivity, and specificity of the PCG system in Section II can be higher
than those of data set e, fulfilling the specification of exceeding 80%.

C. Data set size
The previous tests consist of 80 subjects in total. In this section, we investigate how the data set size

affects the classification accuracy, where it is hypothesized that larger data sets will produce better results.
Data sets a and e were combined to form larger training sets, with 160 and 240 subjects separately trained.
Each set had equal numbers of normal and abnormal heartbeats, as well as equal measurements from both
data sets. There is not enough clean data to extend the testing beyond 240 subjects. The adjustment factor
of 0.046 was used on each data set for heart cycle segmentation, as this factor had the highest performance
in the previous test according to Section V-A.

Table II displays the accuracy, sensitivity, and specificity for different data set sizes made by combining
heartbeats from data sets a and e. It can be seen from Table II that when increasing the data set size,
the accuracy and specificity increased by 1.2% and 3.8%, respectively. However, the sensitivity decreased
by 1.4%. More tests with different data sets and sizes need to be investigated to truly understand the
nature between the results and data set size. In saying this, it was encouraging to observe the accuracy
and specificity increase.

TABLE II
CAD CLASSIFICATION RESULTS OBTAINED FROM DIFFERENT DATA SET SIZES

Data set size Accuracy [%] Sensitivity [%] Specificity [%]
160 73.6 72.5 74.7
240 74.8 71.1 78.5

From the previous tests, the highest accuracy achieved in data sets a and e was 71.8% and 88.9%,
respectively. When joining these data sets together the accuracy was not at the midpoint, instead achieving
just 73.6%. Thus, the lower quality data negatively affected the entire data set. This again indicates the
importance of signal integrity. Even if most of the data is of high quality, a certain number of poorer
measurements arising from body movements or unexpected noise have the potential to disproportionately
compromise the results.

TABLE III
CAD CLASSIFICATION ACCURACY OF TWO DIFFERENT NEURAL NETWORKS

Neural network Data set a Data set e
SVM 71.8% 88.9%
CNN 73.8% 95.0%
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D. Neural network structure
Lastly, we study the impact of the neural network structure on the performance of a CAD classifier by

comparing the SVM based classifier [24] and the convolutional neural network (CNN) driven classifier
in [26], which contains two convolution layers followed by a multilayer perceptron (MLP) network. An
adjustment factor 0.046 was adopted for the SVM approach, which has the highest accuracy. No adjustment
was used for the CNN-based classifier, i.e., the HSMM-regression based segmentation algorithm was
directly applied. The accuracy results of both approaches are shown in Table III. We can see that for
both data sets a and e, the CNN based neural network achieved higher accuracy. This is mainly due to
the fact that it has a larger number of layers and parameters than the SVM to adapt to the features of
the heartbeat signals, rendering a higher classification accuracy. However, we note that a deeper neural
network in general needs a larger amount of labelled training data. Interestingly, we also observe that the
improvement in data set e is 6%, while only 2% for data set a. This suggests that by using deep neural
network to cleaner data set, one can achieve a higher accuracy.

VI. CONCLUSIONS

In this chapter, we discussed a CAD pre-screening technique using PCG. A multi-channel PCG and ECG
measurement device was presented. For the topic of adaptive noise cancellation in PCG signals, we showed
in this chapter that the coherence function can be used to predict the performance of a NLMS-based method
in suppressing the background noise. By applying existing machine learning based CAD classification
algorithms to heart sound recordings in the open database of the 2016 PhysioNet/Computing in Cardiology
Challenge, we demonstrated that the integrity of the heart sound signal has a significant impact on the
accuracy of classification. Another discovery we showed in the chapter is that the identification of the
correct starting point of heartbeat cycle affects the classification results, which raises an interesting question
if segmentation of the PCG signal is absolutely necessary in machine learning based classification methods.
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