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Detections for Ambient Backscatter
Communications Systems with Dynamic Sources
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Abstract—In this paper, signal detection in ambient backscatter
communication (AmBC) with dynamic sources is investigated.
Dynamic ambient radio frequency sources are the sources which
transmit their signals randomly. The states of the dynamic source
include the on-state and off-state. In the off-state, dynamic
sources do not transmit any signal and the backscatter device
cannot backscatter any signal accordingly. The received signals
may contain only pure noises. Thus, it brings new challenges to
the signal detection. We develop detection methods with/without
truncating received signals for AmBC under both dynamic
complex Gaussian source signals and dynamic 𝑀-ary phase-
shift keying (𝑀-PSK) source signals with on-off keying. To make
detection simple and tractable for the dynamic 𝑀-PSK at the
receiver, Manchester code is applied. Simulation results show it is
necessary to truncate part of the signal in detections in the high
signal-to-noise ratio region unless the received signals contain
few pure noise samples, in order to reduce the bit-error-rate of
backscatter signals.

Index Terms—Ambient backscatter, dynamic sources, detec-
tion, truncated probability distribution function.

I. INTRODUCTION

The ambient backscatter communication (AmBC) [1]–[4]
technology has drawn growing interest from both academia
and industry due to its low power consumption and spectrum
sharing characteristics. In an AmBC system, the backscatter
device relies on modulated ambient radio frequency (RF) sig-
nals rather than unmodulated dedicated ones. The ambient RF
sources can be divided into two types, i.e., static ambient RF
sources and dynamic ambient RF sources. Static ambient RF
sources are the sources which transmit RF signals constantly,
e.g., TV towers [5] and FM base stations [6]. Dynamic ambient
RF sources refer to sources which operate randomly, e.g., Wi-
Fi, mobile or radar system [7].

Existing works [8]–[24] mainly focus on studying the
AmBC system under static sources while a few works explore
the AmBC system under dynamic sources. The Guardrider
system in [25] applies Reed-Solomon code to recover lost
bits caused by the silent Wi-Fi signal. The authors in [26]
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assume the ambient source to have a Bernoulli distribution
and investigate its channel capacity. While the capacity of
AmBC with dynamic complex Gaussian source is reported in
[27]. The work on signal detection and theoretical performance
analysis of AmBC with dynamic sources is still scarce. The
paper [7] explores the effect of the source signal on the
detection performance assuming the source signal appears or
disappears only once during the backscattering. However, a
general source traffic model has not been explored.

The states of a dynamic source include the on-state and off-
state, and the transition between the two states is random. In
the on-state, the source transmits RF signals to serve its users.
In the off-state, no RF signal is transmitted by the source.
If the dynamic RF source is in the off-state, the backscatter
device (BD) cannot reflect any signal and the signals sampled
at the receiver are pure noises. In this sense, the BD should not
transmit information to the receiver when the source is in the
off-state. However, it is impossible for a passive tag to sense
every state of the dynamic source since the ambient signals
change rapidly. Consequently, the BD cannot backscatter the
source signal only in the on-state. That is, the BD and the
receiver cannot communicate only using the on-state parts of
the dynamic source.

Without exactly tracking the source’s states, the BD has to
transmit its information continuously. If the BD uses dynamic
sources to transmit its information, there must exist some
time slots where the BD cannot backscatter any signal to the
receiver. The received signals at the receiver contain not only
backscattered signals but also the pure noise signal which is
useless and imposes a huge challenge to the signal detection
for AmBC.

To deal with this problem, the receiver should find these
pure noise samples and discard them. However, these pure
noises are not easy to be removed/truncated completely from
received signals because the receiver does not have the exact
source state information and pure noises are mixed with other
information signals. If the truncation threshold is too low,
the pure noises cannot be discarded. On the other hand,
some information signals will also be removed with a high
truncation threshold. We need to determine an appropriate
truncation threshold for the receiver. Moreover, if the noise
signal is large enough, the useful signal can also be abandoned
by the truncation threshold. In this situation, the necessity of
the truncation at the receiver remains unknown. Thus, both two
detection cases with or without truncation threshold should be
explored to handle different communication scenarios.

In this paper, we investigate the signal detection of AmBC
with dynamic sources. First, the on-off keying (OOK) modula-
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tion is adopted at the tag. We study the two cases of truncating
the noise and not. The receiver can exclude part of the received
signal with a truncation threshold. To this end, first, the
truncation threshold should be determined. Then, the receiver
detects the backscatter symbol from the residual signals. It is
challenging to detect the backscattered symbols under dynamic
sources because received signals with or without truncation
are more complicated than the received signals under static
sources.

Second, to make the detection operation simple and tractable
for the dynamic 𝑀-ary phase-shift keying (𝑀-PSK) source at
the receiver, we propose that the tag uses Manchester code to
backscatter the dynamic source signal. Manchester code is a
line code in which the encoding of each data bit is either low
then high, or high then low, for equal time. With Manchester
code, the detecting threshold is not required since we can
detect the backscattered symbol by simply comparing the two
energy levels. The energy truncation threshold does not need to
be calculated, as the signal truncation can be done by simply
throwing away the same number of received signals of the
first and second half part in Manchester code. Instead, only
the number of truncated received signals is required.

Our contributions are summarized as follows:

• Detections for ambient backscatter communication with
dynamic complex Gaussian (CG) and 𝑀-PSK sources
with the OOK modulation are investigated. Both the
likelihood ratio test (LRT) detector and the energy detec-
tor (ED) with truncated or not truncated received signal
for the dynamic CG source are developed. Besides, the
energy detector for the dynamic 𝑀-PSK source is studied.
The corresponding approximated bit-error-rates (BERs)
for ED based methods are derived in closed form when
the ratio of the duration of one backscattered symbol to
the duration of one ambient source symbol is large.

• Detections for Manchester coded AmBC system under
dynamic CG and 𝑀-PSK sources are explored. For
both two sources, ED and truncated ED (TED) are pre-
sented. Moreover, tractable BER expressions are derived
in closed form.

• Numerical results show the detector with truncated re-
ceived signals achieves a better BER performance than
the detector with all received signals in the high signal-to-
noise ratio (SNR) region unless there are few pure noise
samples in received signals.

The remainder of this paper is organized as follows. Section
II describes the channel model and signal model for AmBC
with dynamic sources. In Section III, the detection methods
for the OOK modulation are developed. In Section IV the
detection methods of Manchester code are investigated. Sim-
ulation results are provided in Section V. Finally, Section VI
concludes this paper.

Notations: Scalars are lowercase letters, while vectors and
matrices are boldfaced letters. 0m×n and 1m×n represent re-
spectively 𝑚 × 𝑛 all zero and all one matrices. N(𝜇, 𝜎2) and
CN(𝜇, 𝜎2) denote the real Gaussian and complex Gaussian
distribution with mean 𝜇 and variance 𝜎2, respectively. The
function 𝑒𝑟𝑓𝑐(𝑥) = 2√

𝜋

∫ +∞
𝑥

𝑒−𝑡
2
𝑑𝑡 returns the complementary

error function evaluated at 𝑥. 𝐸 [𝑥] and 𝑉𝑎𝑟 [𝑥] represent
respectively the mean and variance of 𝑥. The function Q(𝑥) =∫ +∞
𝑥

1√
2𝜋

𝑒𝑥𝑝(− 𝑡2

2 )𝑑𝑡 is the tail distribution function of the
standard normal distribution.

II. SYSTEM MODEL

A. Wireless Channel Model

Consider an ambient backscatter communication system
consisting of an ambient source, a tag and a reader as in
Fig. 1. Each of them is equipped with a single antenna.
We denote the channel from the source to the reader as
a direct channel ℎ𝑑 , the channel from the source to the
tag as a forward channel ℎ 𝑓 , and the channel from the tag
to the reader as a backward channel ℎ𝑏, respectively. We
assume that AmBC channels obey a frequency-flat and block-
fading channel model, where all the channels keep unchanged
within the channel coherence time but may vary in different
coherence intervals independently.

Reader

Tag

hf

hd

Ambient RF

Source

hb

Fig. 1. System model of ambient backscatter communications.

B. Signal Model

With different impedance, the tag can vary the amount of
signals backscattered to the reader. Taking binary amplitude-
shift keying modulation as an example, if the tag wants to
transmit ‘0’, it will adjust its impedance so that little of the
incident signal is backscattered; while if the tag wants to
transmit ‘1’, all of the incident signal will be backscattered
to the reader.

The ambient dynamic source broadcasts its signal to the air,
which can be received by both the tag and the reader. Denote
the backscattered signal of tag as 𝑥(𝑛) ∈ {0, 1} and the source
signal as 𝑠(𝑛). The received signal at the reader is

𝑦(𝑛) = ℎ𝑑𝑠(𝑛) + ℎ𝑏ℎ 𝑓 𝛼𝑥(𝑛)𝑠(𝑛) + 𝑤(𝑛), (1)

where 𝛼 is a coefficient representing the scattering efficiency
and antenna gain, 𝑤(𝑛) is the zero-mean additive white
Gaussian noise (AWGN) with variance 𝜎2

𝑤 . Let ℎ0 = ℎ𝑑 and
ℎ1 = ℎ𝑑 + ℎ𝑏ℎ 𝑓 𝛼 for notation simplicity, we get

𝑦(𝑛) =
{
ℎ0𝑠(𝑛) + 𝑤(𝑛), 𝑥(𝑛) = 0,
ℎ1𝑠(𝑛) + 𝑤(𝑛), 𝑥(𝑛) = 1. (2)
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In this paper, we assume that perfect channel energy informa-
tion |ℎ1 |2 and |ℎ0 |2 are known at the receiver to investigate its
optimal detection performance.

Since backscattered signals are weak compared to the source
signals, the duration of the backscatter symbol is normally 𝑁

(an even number without loss of generality) times the duration
of the source symbol. The received signal corresponding to
a backscatter symbol is 𝒚 = [𝑦(1), 𝑦(2), · · · , 𝑦(𝑁)]. If the
OOK modulation is used at the tag, the uncoded transmission
symbols vector 𝒙 = [𝑥(1), 𝑥(2), · · · , 𝑥(𝑁)] is chosen from
{01×N, 11×N}. The transmission symbols vector 𝒙 belongs to
{11×N/201×N/2, 01×N/211×N/2} if Manchester code is applied at
the tag.

It is possible that the source is off within the duration of one
backscatter symbol, and pure noise is received at the receiver.
In this paper, we consider the off part would not happen
to a whole backscatter symbol. The Wi-Fi system follows
CSMA/CA with inter-frame space, backoff and fragmentation.
Inter-frame space and backoff are short and random, which
make the source signal off. Fragmentation is adopted to
reduce the probability of packet collision. The maximum frame
duration is 542𝜇𝑠 for IEEE 802.11g [25]. Then, if the duration
of the tag symbol is 1000𝜇𝑠 (the rate is 1 kbps as adopted in
two fundamental works in [5], [29] ), the state of the source
will have multiple transitions between on and off during one
backscatter symbol.

We consider that the source period is smaller than the
tag frame. Specifically, we consider that the source period is
smaller than one backscatter symbol. In this case, the proba-
bility of losing an entire frame or most of the symbols in a
frame is close to zero. If backscatter symbols can be recovered
by detection techniques, retransmission will be unnecessary.

The probability of the on-state and off-state of the source
are 𝑧𝑜𝑛 and 𝑧𝑜𝑓 𝑓 respectively, and 𝑧𝑜𝑛 + 𝑧𝑜𝑓 𝑓 = 1. Assume that
𝑧𝑜𝑛 and 𝑧𝑜𝑓 𝑓 are known at the receiver. The transition between
the on-state and off-state is assumed to be independent. In this
paper, we consider two types of dynamic sources including dy-
namic CG sources and dynamic 𝑀-PSK sources. To facilitate
the detection in the sequel, some probability density functions
(PDFs) of the received signal are required.

Case 1: In the case of dynamic CG sources, we assume the
source signal to be CG distributed with zero mean when the
source is in the on-state, i.e., 𝑠𝑜𝑛 (𝑛) ∼ CN(0, 𝜎2

𝑠 ). Otherwise,
the source signal is in the off-state, i.e., 𝑠𝑜𝑓 𝑓 (𝑛) = 0. This case
is practical since Wi-Fi signals are modulated by orthogonal
frequency-division multiplexing (OFDM) modulated. Its time
domain signal is modelled as Gaussian signals [7]. Also, in
a practical radio environment, the source could be a sum
of many random signals and according to the central limit
theorem, the overall signal can be approximated as Gaussian
[7].

The PDF of 𝑦(𝑛) can be derived as

𝑦(𝑛) ∼


CN(0, 𝜎2

1 ), 𝑥(𝑛) = 1, 𝑠(𝑛) = 𝑠𝑜𝑛 (𝑛),
CN(0, 𝜎2

0 ), 𝑥(𝑛) = 0, 𝑠(𝑛) = 𝑠𝑜𝑛 (𝑛),
CN(0, 𝜎2

𝑤), 𝑥(𝑛) = 1, 𝑠(𝑛) = 𝑠𝑜𝑓 𝑓 (𝑛),
CN(0, 𝜎2

𝑤), 𝑥(𝑛) = 0, 𝑠(𝑛) = 𝑠𝑜𝑓 𝑓 (𝑛),

(3)

where 𝜎2
0 = |ℎ0 |2𝜎2

𝑠 +𝜎2
𝑤 and 𝜎2

1 = |ℎ1 |2𝜎2
𝑠 +𝜎2

𝑤 . In summary,
the probability of 𝑦(𝑛) conditioned on 𝑥 = 1 and 𝑥 = 0 are

𝑝(𝑦(𝑛) |𝑥 = 1) = 𝑧𝑜𝑛

𝜋𝜎2
1
𝑒
− |𝑦 (𝑛) |2

𝜎2
1 +

𝑧𝑜𝑓 𝑓

𝜋𝜎2
𝑤

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤 , (4)

𝑝(𝑦(𝑛) |𝑥 = 0) = 𝑧𝑜𝑛

𝜋𝜎2
0
𝑒
− |𝑦 (𝑛) |2

𝜎2
0 +

𝑧𝑜𝑓 𝑓

𝜋𝜎2
𝑤

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤 . (5)

The probability of 𝒚 conditioned on 𝑥 = 𝑖 with respect to
the OOK modulation is

𝑝(𝒚 |𝑥= 𝑖)=
𝑁∏
𝑛=1

(
𝑧𝑜𝑛

1
𝜋𝜎2

𝑖

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑖 +𝑧𝑜𝑓 𝑓

1
𝜋𝜎2

𝑤

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤

)
. (6)

As for the energy 𝑟 (𝑛) = |𝑦(𝑛) |2, it is subject to

𝑟 (𝑛) ∼



1
𝜎2

1
𝑒
− 𝑟 (𝑛)

𝜎2
1 , 𝑥(𝑛) = 1, 𝑠(𝑛) = 𝑠𝑜𝑛 (𝑛),

1
𝜎2

0
𝑒
− 𝑟 (𝑛)

𝜎2
0 , 𝑥(𝑛) = 0, 𝑠(𝑛) = 𝑠𝑜𝑛 (𝑛),

1
𝜎2
𝑤

𝑒
− 𝑟 (𝑛)

𝜎2
𝑤 , 𝑥(𝑛) = 1, 𝑠(𝑛) = 𝑠𝑜𝑓 𝑓 (𝑛),

1
𝜎2
𝑤

𝑒
− 𝑟 (𝑛)

𝜎2
𝑤 , 𝑥(𝑛) = 0, 𝑠(𝑛) = 𝑠𝑜𝑓 𝑓 (𝑛).

(7)

Using (7), the probability of 𝑟 (𝑛) conditioned on 𝑥 = 𝑖 can be
rewritten as

𝑝(𝑟 (𝑛) |𝑥 = 𝑖) = 𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟 (𝑛)

𝜎2
𝑖 +

𝑧𝑜𝑓 𝑓

𝜎2
𝑤

𝑒
− 𝑟 (𝑛)

𝜎2
𝑤 . (8)

Case 2: In the case of the dynamic 𝑀-PSK source signal,
this source signal can be expressed as{

𝑠𝑜𝑛 (𝑛) ∈ {
√︁
𝑃𝑠𝑒

2𝜋 𝑗 (𝑚−1)
𝑀 }, 𝑚 = 1, · · ·𝑀,

𝑠𝑜𝑓 𝑓 (𝑛) = 0,
(9)

where 𝑃𝑠 is average signal power of 𝑠𝑜𝑛 (𝑛). The PDF of 𝑦(𝑛)
conditioned on 𝑥 = 𝑖 is

𝑝(𝑦(𝑛) |𝑥 = 𝑖) =𝑧𝑜𝑛
©­­«

𝑀∑︁
𝑚=1

𝜆𝑚

𝜋𝜎2
𝑤

𝑒
−

��
𝑦 (𝑛)−ℎ𝑖

√
𝑃𝑠𝑒

2𝜋 𝑗 (𝑚−1)
𝑀

��2
𝜎2
𝑤

ª®®¬
+ 𝑧𝑜𝑓 𝑓

1
𝜋𝜎2

𝑤

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤 ,

(10)

where 𝜆𝑚 is the probability of the 𝑚-th PSK symbol. Assume
that these PSK symbols are sent with equal probabilities. That
is, 𝜆𝑚 = 1/𝑀 . Correspondingly, the joint PDF of y with regard
to the OOK modulation is shown as follows

𝑝(𝒚 |𝑥= 𝑖)=
𝑁∏
𝑛=1

[
𝑧𝑜𝑛

©­­«
𝑀∑︁
𝑚=1

𝜆𝑚

𝜋𝜎2
𝑤

𝑒
−

��
𝑦 (𝑛)−ℎ𝑖

√
𝑃𝑠𝑒

2𝜋 𝑗 (𝑚−1)
𝑀

��2
𝜎2
𝑤

ª®®¬
+ 𝑧𝑜𝑓 𝑓

1
𝜋𝜎2

𝑤

𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤

]
.

(11)

III. OOK MODULATION AND DETECTION

In this section, the OOK modulation is adopted at the tag
to backscatter the dynamic source signal. We will study the
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LRT detection and the ED with or without truncated received
signals for the dynamic CG signal. Then, ED for the dynamic
𝑀-PSK source signal is presented.

A. LRT Detection with Dynamic CG Source
Under the maximum likelihood (ML) principle, the

backscatter symbol detection can be achieved from an LRT,
defined as

𝑝(𝒚 |H1)
𝑝(𝒚 |H0)

H1
≷
H0

1, (12)

where H0 denotes the hypothesis of 𝑥(𝑛) = 0 and H1 denotes
the hypothesis of 𝑥(𝑛) = 1.

Substituting (6) into (12), the backscattered symbol can be
detected by

𝑁∏
𝑛=1

(
𝑧𝑜𝑛

1
𝜋𝜎2

1
𝑒
− |𝑦 (𝑛) |2

𝜎2
1 + 𝑧𝑜𝑓 𝑓

1
𝜋𝜎2

𝑤
𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤

)
𝑁∏
𝑛=1

(
𝑧𝑜𝑛

1
𝜋𝜎2

0
𝑒
− |𝑦 (𝑛) |2

𝜎2
0 + 𝑧𝑜𝑓 𝑓

1
𝜋𝜎2

𝑤
𝑒
− |𝑦 (𝑛) |2

𝜎2
𝑤

) H1
≷
H0

1. (13)

Due to the complexity of 𝑝(𝒚 |𝑥 = 𝑖) in (6), it is intractable to
derive a closed-form expression for the BER based on (13).

B. Truncated Likelihood Ratio Test (TLRT) Detection with
Dynamic CG Source

To investigate whether the TLRT detection can achieve a
better performance than the LRT detection, the TLRT detection
is also studied.

To truncate the noise signal, the truncation threshold should
be obtained first. We need to use the truncation threshold
to distinguish the noise signal and useful signals. There are
three types of the received signal including pure noises, the
backscattered signal plus the source signal plus noise, and the
source signal plus noise. The power of the superposition of
the source and the backscattered signals for 𝑥(𝑛) = 1 is not
guaranteed larger than that of the signals for 𝑥(𝑛) = 0 because
the channel coefficients and signals are complex. Thus, there
are two cases when determining the truncation threshold as
shown in (14).

Denote H𝑜𝑛 and H𝑜𝑓 𝑓 as the hypotheses that the source is
in the on-state and the off-state. Using the ML principle, the
state of the source can be estimated by

𝑝(𝑦(𝑛) |H𝑜𝑛,H0)
𝑝(𝑦(𝑛) |H𝑜𝑓 𝑓 ,H1)

H𝑜𝑛

≷
H𝑜𝑓 𝑓

1, 𝜎2
1 > 𝜎2

0 ,

𝑝(𝑦(𝑛) |H𝑜𝑛,H1)
𝑝(𝑦(𝑛) |H𝑜𝑓 𝑓 ,H1)

H𝑜𝑛

≷
H𝑜𝑓 𝑓

1, 𝜎2
1 < 𝜎2

0 .

(14)

Substituting (3) into (14), (14) is simplified to

|𝑦(𝑛) |2
H𝑜𝑛

≷
H𝑜𝑓 𝑓

𝑇𝑠 , (15)

where

𝑇𝑠 = ln

(
𝜎2

0

𝜎2
𝑤

)
𝜎2

0𝜎
2
𝑤

𝜎2
0 − 𝜎2

𝑤

, 𝜎2
1 > 𝜎2

0 ,

𝑇𝑠 = ln

(
𝜎2

1

𝜎2
𝑤

)
𝜎2

1𝜎
2
𝑤

𝜎2
1 − 𝜎2

𝑤

, 𝜎2
1 < 𝜎2

0 ,

(16)

is the optimal source state detection threshold.

Denote the signals after truncation as 𝑦𝑡 (𝑛), 𝑛 =

1, 2, · · · , 𝑁𝑜𝑛,𝑖 , 𝑖 = 0, 1. The PDF of 𝑦𝑡 (𝑛) is calculated by
[30], [31]

𝑝(𝑦𝑡 (𝑛) |𝑥 = 𝑖) = 𝑝(𝑦(𝑛) |𝑥 = 𝑖) |𝑦 = 𝑦𝑡 (𝑛)∫ +∞√
𝑇𝑠

𝑝(𝑦(𝑛) |𝑥 = 𝑖)𝑑𝑦(𝑛)

=

𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

, |𝑦𝑡 (𝑛) | >
√︁
𝑇𝑠 ,

(17)

where 𝑟𝑡 (𝑛) = |𝑦𝑡 (𝑛) |2.

The joint PDF of the truncated signals is

𝑝(𝒚𝒕 |𝑥 = 𝑖) =
𝑁𝑜𝑛,𝑖∏
𝑛=1

[ 𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

]
, (18)

where 𝒚𝒕 = [𝑦𝑡 (1), 𝑦𝑡 (2), · · · , 𝑦𝑡 (𝑁𝑜𝑛,𝑖)]. Thus, the LRT
detection can be written as

𝑝(𝒚𝒕 |H1)
𝑝(𝒚𝒕 |H0)

=

𝑁𝑜𝑛,1∏
𝑛=1

[
𝑧𝑜𝑛

𝜎2
1
𝑒

− 𝑟𝑡 (𝑛)
𝜎2

1 +
𝑧𝑜𝑓 𝑓

𝜎2
𝑤

𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑤

𝑧𝑜𝑛𝑒

− 𝑇𝑠

𝜎2
1 +𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

]
𝑁𝑜𝑛,0∏
𝑛=1

[
𝑧𝑜𝑛

𝜎2
0
𝑒

− 𝑟𝑡 (𝑛)
𝜎2

0 +
𝑧𝑜𝑓 𝑓

𝜎2
𝑤

𝑒
− 𝑟𝑡 (𝑛)

𝜎2
𝑤

𝑧𝑜𝑛𝑒

− 𝑇𝑠

𝜎2
0 +𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

] H1
≷
H0

1. (19)

Due to its complexity, (19) cannot be further simplified
and the corresponding closed-form BER expression is also
intractable.

C. ED with Dynamic CG Source

To reduce the detection calculation complexity, the energy
detection is applied to detect the backscattered symbol. Let

𝑍𝑑𝑐𝑔,𝑖 =
1
𝑁

𝑁∑
𝑛=1

��𝑦(𝑛) |𝑥=𝑖 ��2.

Theorem 1: The PDF of the average energy 𝑍𝑑𝑐𝑔,𝑖 of 𝒚 is
approximated when 𝑁 is large and derived as

𝑍𝑑𝑐𝑔,𝑖 ∼ N(𝜇𝑑𝑐𝑔,𝑖 , 𝜎2
𝑑𝑐𝑔,𝑖), 𝑖 = 0, 1, (20)

where

𝜇𝑑𝑐𝑔,𝑖 =𝑧𝑜𝑛𝜎
2
𝑖 + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤 ,

𝜎2
𝑑𝑐𝑔,𝑖 =

2𝑧𝑜𝑛𝜎4
𝑖
+2𝑧𝑜𝑓 𝑓𝜎4

𝑤−(𝑧𝑜𝑛𝜎2
𝑖
+𝑧𝑜𝑓 𝑓𝜎2

𝑤)
2

𝑁
.

(21)

Proof: The energy 𝑍𝑑𝑐𝑔,𝑖 is the average of the sum of 𝑁

independent identically distribution (i.i.d.) signals. When 𝑁 is
large, it can be approximated by a Gaussian distribution. Its
mean is the same as 𝑟 and variance equals the variance of 𝑟
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5

scaled by 1/𝑁 . First, the mean of 𝑟 is obtained by

𝐸 [𝑟 |𝑥 = 𝑖] =
∫ +∞

0
𝑟 𝑓 (𝑟 |𝑥 = 𝑖)𝑑𝑟

=

∫ +∞

0
𝑟

(
𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟

𝜎2
𝑖 +

𝑧𝑜𝑓 𝑓

𝜎2
𝑤

𝑒
− 𝑟

𝜎2
𝑤

)
𝑑𝑟

= 𝑧𝑜𝑛𝜎
2
𝑖 + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤 .

(22)

Then, the mean of 𝑟2 is calculated as

𝐸 [𝑟2 |𝑥 = 𝑖] =
∫ +∞

0
𝑟2 𝑓 (𝑟 |𝑥 = 𝑖)𝑑𝑟

=

∫ +∞

0
𝑟2

(
𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟

𝜎2
𝑖 +

𝑧𝑜𝑓 𝑓

𝜎2
𝑤

𝑒
− 𝑟

𝜎2
𝑤

)
𝑑𝑟

= 2𝑧𝑜𝑛𝜎4
𝑖 + 2𝑧𝑜𝑓 𝑓𝜎4

𝑤 .

(23)

Finally, the variance of 𝑟 is

𝑉𝑎𝑟 [𝑟 |𝑥 = 𝑖]
=𝐸 [𝑟2 |𝑥 = 𝑖] − (𝐸 [𝑟 |𝑥 = 𝑖])2

=2𝑧𝑜𝑛𝜎4
𝑖 + 2𝑧𝑜𝑓 𝑓𝜎4

𝑤 − (𝑧𝑜𝑛𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤)2.

(24)

Then, the mean and variance of 𝑍𝑑𝑐𝑔,𝑖 are given by (21). □
The detection threshold 𝑇

𝑑𝑐𝑔

ℎ
can be computed from

𝑓 (𝑍𝑑𝑐𝑔,1 |H1) = 𝑓 (𝑍𝑑𝑐𝑔,0 |H0). (25)

That is,

1√︃
2𝜋𝜎2

𝑑𝑐𝑔,1

𝑒
−

(𝑇𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,1 )

2

2𝜎2
𝑑𝑐𝑔,1 =

1√︃
2𝜋𝜎2

𝑑𝑐𝑔,0

𝑒
−

(𝑇𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,0 )

2

2𝜎2
𝑑𝑐𝑔,0 . (26)

Taking the natural logarithm of both sides of (26) and rear-
ranging the terms, we obtain

𝑐1 (𝑇𝑑𝑐𝑔

ℎ
)2 + 𝑐2𝑇

𝑑𝑐𝑔

ℎ
+ 𝑐3 = 0, (27)

where 𝑐1 = 𝜎2
𝑑𝑐𝑔,0 − 𝜎2

𝑑𝑐𝑔,1, 𝑐2 = 2(𝜇𝑑𝑐𝑔,0𝜎2
𝑑𝑐𝑔,1 −

𝜇𝑑𝑐𝑔,1𝜎
2
𝑑𝑐𝑔,0) and 𝑐3 = 𝜇2

𝑑𝑐𝑔,1𝜎
2
𝑑𝑐𝑔,0 − 𝜇2

𝑑𝑐𝑔,0𝜎
2
𝑑𝑐𝑔,1 −

𝜎2
𝑑𝑐𝑔,1𝜎

2
𝑑𝑐𝑔,0 ln

(
𝜎2
𝑑𝑐𝑔,0

𝜎2
𝑑𝑐𝑔,1

)
. As 𝑇

𝑑𝑐𝑔

ℎ
is the detection threshold

of the received signal energy, only the positive root of (27) is
valid, which gives the threshold 𝑇

𝑑𝑐𝑔

ℎ
. The decision rule is

𝑝(𝑍𝑑𝑐𝑔,0 |H0)
H0
≷
H1

𝑝(𝑍𝑑𝑐𝑔,1 |H1)⇐⇒


𝑍𝑑𝑐𝑔

H0
≷
H1

𝑇
𝑑𝑐𝑔

ℎ
, 𝜎2

0 > 𝜎2
1 ,

𝑍𝑑𝑐𝑔

H0
≶
H1

𝑇
𝑑𝑐𝑔

ℎ
, 𝜎2

0 < 𝜎2
1 .

(28)

If 𝜎2
0 > 𝜎2

1 , the corresponding BER can be obtained by

𝑃
𝑑𝑐𝑔

𝑏
= 𝑝(H0)𝑝(𝑍𝑑𝑐𝑔 < 𝑇

𝑑𝑐𝑔

ℎ
|H0)

+ 𝑝(H1)𝑝(𝑍𝑑𝑐𝑔 > 𝑇
𝑑𝑐𝑔

ℎ
|H1)

=
1
2

∫ 𝑇
𝑑𝑐𝑔

ℎ

−∞
𝑝(𝑍𝑑𝑐𝑔 |H0)𝑑𝑧 +

1
2

∫ +∞

𝑇
𝑑𝑐𝑔

ℎ

𝑝(𝑍𝑑𝑐𝑔 |H1)𝑑𝑧

=
1
2
− 1

2
Q

(
𝑇
𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,0

𝜎𝑑𝑐𝑔,0

)
+ 1

2
Q

(
𝑇
𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,1

𝜎𝑑𝑐𝑔,1

)
.

(29)

If 𝜎2
0 < 𝜎2

1 , the BER is similarly derived as

𝑃
𝑑𝑐𝑔

𝑏
=

1
2
+ 1

2
Q

(
𝑇
𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,0

𝜎𝑑𝑐𝑔,0

)
− 1

2
Q

(
𝑇
𝑑𝑐𝑔

ℎ
−𝜇𝑑𝑐𝑔,1

𝜎𝑑𝑐𝑔,1

)
. (30)

D. TED with the Dynamic CG Source

The received signals are truncated by the threshold cal-
culated in (16). The PDF of the energy of the signal after
truncation is

𝑝(𝑟𝑡 = |𝑦𝑡 |2 |𝑥 = 𝑖)

=
𝑝(𝑟 |𝑥 = 𝑖) |𝑟 = 𝑟𝑡∫ +∞
𝑇𝑠

𝑝(𝑟 |𝑥 = 𝑖)𝑑𝑟

=

𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟𝑡

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟𝑡

𝜎2
𝑤(

𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟

𝜎2
𝑤

) ����+∞
𝑇𝑠

=

𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟𝑡

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟𝑡

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

, 𝑟𝑡 > 𝑇𝑠 .

(31)

The mean of 𝑟𝑡 is

𝐸 [𝑟𝑡 |𝑥 = 𝑖] =
∫ +∞

𝑇𝑠

𝑟𝑡 𝑝(𝑟𝑡 |𝑥 = 𝑖)𝑑𝑟𝑡

=

∫ +∞

𝑇𝑠

𝑟𝑡

𝑧𝑜𝑛

𝜎2
𝑖

𝑒
− 𝑟𝑡

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓

𝜎2
𝑤
𝑒
− 𝑟𝑡

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

𝑑𝑟𝑡

=
𝑧𝑜𝑛 (𝑇𝑠 + 𝜎2

𝑖
)𝑒

− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓 (𝑇𝑠 + 𝜎2

𝑤)𝑒
− 𝑇𝑠

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

.

(32)

The second-order moment of 𝑟𝑡 is

𝐸 [𝑟𝑡 2 |𝑥 = 𝑖] =
∫ +∞

𝑇𝑠

𝑟2
𝑡 𝑝(𝑟𝑡 |𝑥 = 𝑖)𝑑𝑟𝑡

=
𝑧𝑜𝑛 (𝑇𝑠2 + 2𝑇𝑠𝜎2

1 + 2𝜎4
1 )𝑒

− 𝑇𝑠

𝜎2
1

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
1 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

+
𝑧𝑜𝑓 𝑓 (𝑇𝑠2 + 2𝑇𝑠𝜎2

𝑤 + 2𝜎4
𝑤)𝑒

− 𝑇𝑠

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
1 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

.

(33)

The variance of 𝑟𝑡 can be obtained by

𝑉𝑎𝑟 [𝑟𝑡 |𝑥 = 𝑖] = E[𝑟𝑡 2 |𝑥 = 𝑖] − 𝐸 [𝑟𝑡 |𝑥 = 𝑖]2. (34)

The average energy of the truncated received signals is

𝑍 𝑡
𝑑𝑐𝑔,𝑖 =

1
𝑁𝑜𝑛,𝑖

𝑁𝑜𝑛,𝑖∑︁
𝑛=1

��𝑦𝑡 (𝑛) |𝑥=𝑖 ��2
∼ N(𝐸 [𝑟𝑡 |𝑥 = 𝑖], 𝑉𝑎𝑟 [𝑟𝑡 |𝑥 = 𝑖]

𝑁𝑜𝑛,𝑖

).
(35)
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Following the similar steps from (25)-(30), the detection
threshold and the BER can be obtained.

E. ED with Dynamic 𝑀-PSK Source

To apply ED, the PDF of received signals average en-
ergy in terms of dynamic 𝑀-PSK is required. Let 𝑍𝑑𝑝,𝑖 =

1
𝑁

𝑁∑
𝑛=1

��𝑦(𝑛) |𝑥=𝑖 ��2.

Theorem 2: When 𝑁 is large, the PDF of 𝑍𝑑𝑝,𝑖 is approxi-
mated as

𝑝(𝑍𝑑𝑝,𝑖 |𝑥 = 𝑖) = 1√︃
2𝜋𝜎2

𝑑𝑝,𝑖

𝑒
−

(𝑍𝑑𝑝,𝑖−𝜇𝑑𝑝,𝑖 )2

2𝜎2
𝑑𝑝,𝑖 , (36)

where

𝜇𝑑𝑝,𝑖 =𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠 + 𝜎2
𝑤) + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤 ,

𝜎2
𝑑𝑝,𝑖 =

2𝑧𝑜𝑛 |ℎ𝑖 |2𝑃𝑠𝜎
2
𝑤 + 𝜎4

𝑤 + 𝑧𝑜𝑓 𝑓𝜎
4
𝑤

𝑁

+
𝑧𝑜𝑛( |ℎ𝑖 |2𝑃𝑠+𝜎2

𝑤)
2−

(
𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠+𝜎2

𝑤)+𝑧𝑜𝑓 𝑓𝜎2
𝑤

)2

𝑁
.

(37)

Proof: For the 𝑀-PSK signal, the PDF of its energy
conditioned on 𝑥 = 𝑖 is approximated as [13] [32]

𝑝(𝑟𝑝𝑠𝑘,𝑖 |𝑥 = 𝑖) = 1√︃
2𝜋𝜎2

𝑝𝑠𝑘,𝑖

𝑒
−

(𝑟𝑝𝑠𝑘,𝑖−𝜇𝑝𝑠𝑘,𝑖 )2

2𝜎2
𝑝𝑠𝑘,𝑖 , (38)

where

𝜇𝑝𝑠𝑘,𝑖 = |ℎ𝑖 |2𝑃𝑠 + 𝜎2
𝑤 ,

𝜎2
𝑝𝑠𝑘,𝑖 = 2|ℎ𝑖 |2𝑃𝑠𝜎

2
𝑤 + 𝜎4

𝑤 .
(39)

Similarly, the conditional PDF of the noise signal energy is
approximated by

𝑝(𝑟𝑝𝑠𝑘,𝑤 |𝑥 = 𝑖) = 1
𝜎2
𝑤

𝑒
−

𝑟𝑝𝑠𝑘,𝑤

𝜎2
𝑤 , (40)

and the mean and the variance of 𝑟𝑝𝑠𝑘,𝑤 are

𝜇𝑝𝑠𝑘,𝑤 = 𝜎2
𝑤 , 𝜎

2
𝑝𝑠𝑘,𝑤 = 𝜎4

𝑤 . (41)

Then, the PDF of the received signal energy in terms of the
dynamic 𝑀-PSK source is given by

𝑝(𝑟𝑑𝑝 |𝑥 = 𝑖) =𝑧𝑜𝑛
1√︃

2𝜋𝜎2
𝑝𝑠𝑘,𝑖

𝑒
−

(𝑟𝑑𝑝−𝜇𝑝𝑠𝑘,𝑖 )2

2𝜎2
𝑝𝑠𝑘,𝑖 +

𝑧𝑜𝑓 𝑓
1
𝜎2
𝑤

𝑒
−

𝑟𝑑𝑝

𝜎2
𝑤 .

(42)

The mean of 𝑟𝑑𝑝 is derived as

𝐸 [𝑟𝑑𝑝 |𝑥 = 𝑖] =
∫ +∞

−∞
𝑟𝑑𝑝 𝑓 (𝑟𝑑𝑝 |𝑥 = 𝑖)𝑑𝑟𝑑𝑝

= 𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠 + 𝜎2
𝑤) + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤 .

(43)

Then, the mean of 𝑟2
𝑑𝑝

is calculated as

𝐸 [𝑟2
𝑑𝑝 |𝑥 = 𝑖] =

∫ +∞

−∞
𝑟2
𝑑𝑝 𝑓 (𝑟𝑑𝑝 |𝑥 = 𝑖)𝑑𝑟𝑑𝑝

=2𝑧𝑜𝑛 |ℎ𝑖 |2𝑃𝑠𝜎
2
𝑤+𝑧𝑜𝑛𝜎4

𝑤+𝑧𝑜𝑓 𝑓𝜎4
𝑤+𝑧𝑜𝑓 𝑓𝜎4

𝑤

+ 𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠+𝜎2
𝑤)

2
.

(44)

Finally, the variance of 𝑟𝑑𝑝 can be obtained by

𝑉𝑎𝑟 [𝑟𝑑𝑝 |𝑥 = 𝑖]
=𝐸 [𝑟2

𝑑𝑝 |𝑥 = 𝑖] − (𝐸 [𝑟𝑑𝑝 |𝑥 = 𝑖])2

=2𝑧𝑜𝑛 |ℎ𝑖 |2𝑃𝑠𝜎
2
𝑤 + 𝜎4

𝑤 + 𝑧𝑜𝑓 𝑓𝜎
4
𝑤

+𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠+𝜎2
𝑤)

2−
(
𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠+𝜎2

𝑤)+𝑧𝑜𝑓 𝑓𝜎2
𝑤

)2
.

(45)

In summary, the mean and the variance of 𝑍𝑑𝑝,𝑖 are given by
(37). □

Following the similar steps from (25)-(30), the detection
threshold and the BER can be derived.

Due to the complex PDF in (10), the truncation threshold for
dynamic ambient 𝑀-PSK is intractable and truncation-aided
detection methods cannot be developed. We resort to detection
methods without acquiring the threshold. In the next section,
we will utilize Manchester code to facilitate the detection
process for the dynamic 𝑀-PSK source. Also, Manchester
code is also applied to the dynamic CG source since the
detection threshold is not required [13], which can make the
detection more simple.

IV. MANCHESTER CODE AND DETECTION

A typical detector for Manchester code aided ambient
backscatter communication is the energy detector [13]. In this
section, ED and TED are elaborated and their performance
analysis is conducted.

A. ED with Dynamic CG Source
To use ED, the average energy of the received signals

corresponding to two parts of the Manchester code is necessary
to be determined. The PDF of the received signal energy in
the half part of Manchester code can be obtained following
similar derivation steps in (22)-(24) and is listed as follows

𝑍̄𝑑𝑐𝑔,𝑖 ∼ N
(
𝜇̄𝑑𝑐𝑔,𝑖 , 𝜎̄

2
𝑑𝑐𝑔,𝑖

)
, (46)

where 𝜇̄𝑑𝑐𝑔,𝑖 = 𝑧𝑜𝑛𝜎
2
𝑖

+ 𝑧𝑜𝑓 𝑓𝜎
2
𝑤 and 𝜎̄2

𝑑𝑐𝑔,𝑖
=(

2𝑧𝑜𝑛𝜎4
𝑖
+2𝑧𝑜𝑓 𝑓𝜎4

𝑤−(𝑧𝑜𝑛𝜎2
𝑖
+𝑧𝑜𝑓 𝑓𝜎2

𝑤 )2
)

𝑁/2 .
The detection error at the receiver occurs when{

𝑍̄𝑑𝑐𝑔,1 − 𝑍̄𝑑𝑐𝑔,0 < 0, 𝜎2
1 > 𝜎2

0 ,

𝑍̄𝑑𝑐𝑔,1 − 𝑍̄𝑑𝑐𝑔,0 > 0, 𝜎2
1 < 𝜎2

0 .
(47)

The difference of two normal random variables 𝑍̄𝑑𝑐𝑔,1 and
𝑍̄𝑑𝑐𝑔,0, also follows the normal distribution. The BER equals
the probability of this difference being less than or greater
than 0. Thus we have

𝑃̄
𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
𝜇̄𝑑𝑐𝑔,1 − 𝜇̄𝑑𝑐𝑔,0√︃

2(𝜎̄2
𝑍𝑑𝑐𝑔,1

+ 𝜎̄2
𝑍𝑑𝑐𝑔,0

)

ª®®¬ , (48)
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if 𝜎2
1 > 𝜎2

0 . Similarly, we get

𝑃̄
𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
𝜇̄𝑑𝑐𝑔,0 − 𝜇̄𝑑𝑐𝑔,1√︃

2(𝜎̄2
𝑍𝑑𝑐𝑔,1

+ 𝜎̄2
𝑍𝑑𝑐𝑔,0

)

ª®®¬ , (49)

if 𝜎2
0 > 𝜎2

1 .
Combining two cases together yields

𝑃̄
𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
| 𝜇̄𝑑𝑐𝑔,0 − 𝜇̄𝑑𝑐𝑔,1 |√︃
2(𝜎̄2

𝑍𝑑𝑐𝑔,1
+ 𝜎̄2

𝑍𝑑𝑐𝑔,0
)

ª®®¬ . (50)

The expression in (51) is shown at the bottom of the next
page, where 𝛾 = 𝜎2

𝑠 /𝜎2
𝑤 . When 𝛾 approaches infinity, (51)

reduces to (52).
Remark 1: Since 𝑒𝑟𝑓𝑐(·) is a monotonically decreasing

function and 𝑁 is located in the numerator of (51), increasing
𝑁 can decrease the BER constantly. Besides, in the infinite
SNR region, 𝑧𝑜𝑛 still has an impact on the BER which can
be observed from (52). That is, increasing 𝑧𝑜𝑛 leads to a
decrease in the BER. Moreover, (52) indicates that there is
a BER error floor in the high SNR level for dynamic complex
Gaussian sources. The situation is reasonable since there is
a BER error floor for static complex Gaussian sources and
dynamic complex Gaussian sources are more complex than
static ones.

B. TED with Dynamic CG Source

The receiver needs to truncate the received signals in both
two parts of Manchester code using the truncation threshold
𝑇𝑠 . The theoretical number of residual signals after truncation
is

𝑁̄𝑜𝑛,𝑖 = 𝑁 · 𝑝(𝑟 (𝑛) > 𝑇𝑠)

= 𝑁

(
𝑧𝑜𝑛𝑒

− 𝑇𝑠

𝜎2
𝑖 + 𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

)
.

(53)

The average energy of the residual signals is calculated by

𝑍̄ 𝑡
𝑑𝑐𝑔,𝑖 =

1
𝑁̄𝑜𝑛,𝑖

𝑁̄𝑜𝑛,𝑖∑︁
𝑛=1

��𝑦𝑡 (𝑛) |𝑥=𝑖 ��2. (54)

Following the steps in (31)-(35), the PDFs of 𝑍̄ 𝑡
𝑑𝑐𝑔,𝑖

are

𝑍̄ 𝑡
𝑑𝑐𝑔,0 ∼

N
©­­«
𝑧𝑜𝑛 (𝑇𝑠+𝜎2

0 )𝑒
− 𝑇𝑠

𝜎2
0+𝑧𝑜𝑓 𝑓 (𝑇𝑠+𝜎2

𝑤)𝑒
− 𝑇𝑠

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
0+𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

,
𝑉𝑎𝑟 [𝑟 |𝑥 = 0]

𝑁̄𝑜𝑛,0

ª®®¬ ,
(55)

𝑍̄ 𝑡
𝑑𝑐𝑔,1 ∼

N
©­­«
𝑧𝑜𝑛 (𝑇𝑠+𝜎2

1 )𝑒
− 𝑇𝑠

𝜎2
1+𝑧𝑜𝑓 𝑓 (𝑇𝑠+𝜎2

𝑤)𝑒
− 𝑇𝑠

𝜎2
𝑤

𝑧𝑜𝑛𝑒
− 𝑇𝑠

𝜎2
1+𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

,
𝑉𝑎𝑟 [𝑟 |𝑥 = 1]

𝑁̄𝑜𝑛,1

ª®®¬ .
(56)

The BER is calculated as

𝑃̄
𝑡 ,𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
| 𝜇̄𝑡

𝑑𝑐𝑔,0 − 𝜇̄𝑡
𝑑𝑐𝑔,1 |√︃

2((𝜎̄𝑡
𝑑𝑐𝑔,1)2 + (𝜎̄𝑡

𝑑𝑐𝑔,0)2)

ª®®¬ . (57)

where 𝜇̄𝑡
𝑑𝑐𝑔,𝑖

=
𝑧𝑜𝑛 (𝑇𝑠+𝜎2

𝑖
)𝑒

− 𝑇𝑠

𝜎2
𝑖 +𝑧𝑜𝑓 𝑓 (𝑇𝑠+𝜎2

𝑤 )𝑒
− 𝑇𝑠

𝜎2
𝑤

𝑧𝑜𝑛𝑒

− 𝑇𝑠

𝜎2
𝑖 +𝑧𝑜𝑓 𝑓𝑒

− 𝑇𝑠

𝜎2
𝑤

, and

(𝜎̄𝑡
𝑑𝑐𝑔,𝑖

)2 =
𝑉𝑎𝑟 [𝑟 |𝑥=𝑖 ]

𝑁̄𝑜𝑛,𝑖
.

C. ED with Dynamic 𝑀-PSK Source

Let 𝑍̄𝑑𝑝,𝑖 =
2
𝑁

𝑁/2∑
𝑛=1

��𝑦(𝑛) |𝑥=𝑖 ��2 denote the average energy of

the received signal under the dynamic 𝑀-PSK source. When
𝑁/2 is large, the PDF of 𝑍̄𝑑𝑝,𝑖 is derived approximately as

𝑝(𝑍̄𝑑𝑝,𝑖 |𝑥 = 𝑖) = 1√︃
2𝜋𝜎̄2

𝑑𝑝,𝑖

𝑒
−

(𝑍− 𝜇̄𝑑𝑝,𝑖 )2

2𝜎̄2
𝑑𝑝,𝑖 , (58)

where

𝜇̄𝑑𝑝,𝑖 =𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠 + 𝜎2
𝑤) + 𝑧𝑜𝑓 𝑓𝜎

2
𝑤 ,

𝜎̄2
𝑑𝑝,𝑖 =

2𝑧𝑜𝑛 |ℎ𝑖 |2𝑃𝑠𝜎
2
𝑤 + 𝜎4

𝑤 + 𝑧𝑜𝑓 𝑓𝜎
4
𝑤

𝑁/2

+
𝑧𝑜𝑛

(
|ℎ𝑖 |2𝑃𝑠+𝜎2

𝑤

)2−
(
𝑧𝑜𝑛 ( |ℎ𝑖 |2𝑃𝑠+𝜎2

𝑤)+𝑧𝑜𝑓 𝑓𝜎2
𝑤

)2

𝑁/2
.

(59)

The BER is shown in (60) at the top of the next page. In
the asymptotic high SNR regime, (60) is degenerated to

𝑃̄
𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­­­­­«
√
𝑁 |𝑧𝑜𝑛 ( |ℎ0 |2 − |ℎ1 |2) |

2

√︄
2𝑧𝑜𝑛( |ℎ1|2+1

𝛾
)2+2𝑧𝑜𝑛( |ℎ0|2+1

𝛾
)2+4𝑧𝑜𝑓 𝑓

𝛾2 −
(
𝑧2
𝑜𝑛 ( |ℎ1|2+1

𝛾
)2+

𝑧2
𝑜 𝑓 𝑓

𝛾2 +2𝑧𝑜𝑛𝑧𝑜𝑓 𝑓 ( |ℎ1|2
𝛾
+ 1
𝛾2)

)
−
(
𝑧2
𝑜𝑛 ( |ℎ0|2+1

𝛾
)2+

𝑧2
𝑜𝑓 𝑓

𝛾2 +2𝑧𝑜𝑛𝑧𝑜𝑓 𝑓 ( |ℎ0 |2
𝛾

+ 1
𝛾2 )

)
ª®®®®®®¬
.

(51)

𝑃̃
𝑑𝑐𝑔

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
√
𝑁 |𝑧𝑜𝑛 ( |ℎ0 |2 − |ℎ1 |2) |

2
√︃

2𝑧𝑜𝑛 |ℎ1 |4 + 2𝑧𝑜𝑛 |ℎ0 |4 − 𝑧2
𝑜𝑛 ( |ℎ1 |2)2 − 𝑧2

𝑜𝑛 ( |ℎ0 |2)2

ª®®¬ . (52)
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𝑃̄
𝑑𝑝

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­­­«
√
𝑁

����𝑧𝑜𝑛 ( |ℎ0 |2 − |ℎ1 |2)
����

2
√︂

2𝑧𝑜𝑛|ℎ1|2 1
𝛾
+ 2

𝛾2 + 2𝑧𝑜𝑓 𝑓
𝛾2 +𝑧𝑜𝑛

(
|ℎ1 |2+1

𝛾

)2
−
(
𝑧𝑜𝑛 |ℎ1 |2+1

𝛾

)2
+2𝑧𝑜𝑛 |ℎ0 |2 1

𝛾
+𝑧𝑜𝑛

(
|ℎ0 |2+1

𝛾

)2
−
(
𝑧𝑜𝑛 |ℎ0 |2+1

𝛾

)2

ª®®®®¬
. (60)

𝑃̃
𝑑𝑝

𝑏
=

1
2
𝑒𝑟𝑓𝑐

©­­«
√
𝑁 |𝑧𝑜𝑛 ( |ℎ0 |2 − |ℎ1 |2) |

2
√︃
𝑧𝑜𝑛 |ℎ1 |4−

(
𝑧𝑜𝑛 |ℎ1 |2

)2+𝑧𝑜𝑛 |ℎ0 |4−
(
𝑧𝑜𝑛 |ℎ0 |2

)2

ª®®¬.
(61)

Remark 2: Similar to the analysis in Remark 1, increasing 𝑁

can decrease the BER constantly and increasing 𝑧𝑜𝑛 leads to
the decrease of the BER. Furthermore, (61) indicates that there
is a BER error floor in the high SNR level for dynamic 𝑀-
PSK sources. This result is different from existing works on
static 𝑀-PSK sources since there is no BER error floor for
static ones.

D. TED with Dynamic 𝑀-PSK Source

Although the truncation threshold is intractable for the 𝑀-
PSK source, the detection of truncated energy can be achieved
by throwing away the same number of the received signals
in two parts of Manchester code. Specifically, we can sort
the received signal energy values in the ascending order for
each part of Manchester code. Then, the first 𝑁𝑡𝑟𝑢𝑛 signals
from both two parts of Manchester code are discarded. After
truncating part of received signals, the symbol detection is
performed by comparing the first and second half received
signals energy level.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are presented to evaluate
the performance of the proposed schemes.

We set ℎ𝑑 ∼ CN(0, 10), ℎ𝑏, ℎ 𝑓 ∼ CN(0, 1). The coefficient
𝛼 representing the scattering efficiency and antenna gain is
0.5. The probability of the source in the on-state is 𝑧𝑜𝑛 is
0.8, unless stated otherwise. The source power 𝜎2

𝑠 and 𝑃𝑠

are equal and set to be 1 and the SNR is defined as 𝜎2
𝑠 /𝜎2

𝑤 .
The symbol duration ratio between the tag and the source is
𝑁 = 100, unless stated otherwise. The type of the 𝑀-PSK
source is the binary-PSK source without loss of generality.

A. BER of OOK Modulation under Dynamic Sources

First, the BER of the OOK modulation with both the
dynamic CG source and the 𝑀-PSK source is illustrated in Fig.
2. The theoretical analysis is consistent with the simulations
results. This is because when 𝑁 is sufficiently large, the
Gaussian distribution approximates the exact PDF well. For
the dynamic CG source, TED outperforms ED in the high
SNR region since TED truncates some noise signals. In the
low SNR region, TED may truncate some useful signals since
the noise level is high. As for the LRT detection, it always
has a better performance than TLRT since it obeys the ML
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Fig. 2. BER versus SNR of the OOK modulation

principle. Also, it has a lower BER than ED and TED. In
the high SNR region, TED achieves almost the same BER
compared with LRT. The BER under the BPSK source is much
lower than the BER of the CG source due to BPSK signals’
constant envelope. With the increase of the SNR, all BERs
decrease. Moreover, all BER curves meet an error floor when
the SNR is large. In the previous works, we know only the
BER with the CG source has an error floor while the BER
with a constantly-transmitting 𝑀-PSK source does not [11]–
[13]. Due to the pure noise signals in the received signals, the
BER of the dynamic 𝑀-PSK source also has an error floor.
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Fig. 3. BER versus 𝑁 of the OOK modulation

Then, we study the impact of 𝑁 and 𝑧𝑜𝑛 on the BER
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performance. The SNR is set as 10 𝑑𝐵.
The BER of the OOK modulation with both the CG source

and the 𝑀-PSK source versus 𝑁 is shown in Fig. 3. For both
two sources, the BER decreases when 𝑁 increases and there
is no error floor when 𝑁 is large. This phenomenon reminds
us to increase 𝑁 for decreasing the BER.
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Fig. 4. BER versus 𝑧𝑜𝑛 of the OOK modulation

Fig. 4 presents the impact of 𝑧𝑜𝑛 on the BER of the OOK
modulation with both the dynamic CG source and the 𝑀-PSK
source. For both two sources, the BER decreases when 𝑧𝑜𝑛
increases and does not have an error floor when 𝑧𝑜𝑛 is large.
This is because the increase of 𝑧𝑜𝑛 does not increase the source
signal strength but increase the amount of received information
signals. Specifically, when 𝑧𝑜𝑛 increases, the gaps between
different detectors for the dynamic CG source become narrow.
This trend indicates that the low complexity ED is desirable
when 𝑧𝑜𝑛 approaches 1. Moreover, when 𝑧𝑜𝑛 approximately
equals 1, the ED has a better BER performance than TED since
there is few pure noise signals. It is undesirable to truncate
received signals under this situation.

B. BER of Manchester Code under Dynamic Sources
The BER of Manchester code with both the dynamic CG

source and the 𝑀-PSK source versus the SNR is illustrated
in Fig. 5. The BER under the CG source is higher than the
BER under the 𝑀-PSK source since the CG signal is more
complex than the 𝑀-PSK signal. For both two sources, the
TED detector outperforms the ED detector when the SNR is
high. Specifically, under the BPSK source, TED has a lower
BER across the whole SNR axis.

Fig. 6 shows the BER of Manchester code with both the
dynamic CG source and the 𝑀-PSK source versus 𝑁 . For
both two sources, the BER decreases with increasing 𝑁 and
there is no error floor when 𝑁 is large. This is consistent
with the equations in (51) and (60). The function 𝑒𝑟𝑓𝑐(·) is a
monotonically decreasing and 𝑁 is located in the numerator.
It is significant to increase the value of 𝑁 to decrease the BER
continuously.
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Fig. 7 presents the BER of Manchester code with both
the CG source and the 𝑀-PSK source versus 𝑧𝑜𝑛. The BER
decreases when 𝑧𝑜𝑛 increases and there is no error floor when
𝑧𝑜𝑛 is high. Specifically, with 𝑧𝑜𝑛 increases, the gaps between
different detectors of the same type of signal become narrow.
When 𝑧𝑜𝑛 approaches 1, the ED has a better BER performance
than TED since TED truncates some useful signals in this
situation.
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Fig. 8. BER versus 𝑁𝑡𝑟𝑢𝑛 of Manchester code with TED under the dynamic
𝑀-PSK source.

Finally, the impact of the number of truncated signals
with the TED detector under the BPSK source on BER is
investigated. When 𝑁𝑡𝑟𝑢𝑛 is small, the BER decreases with the
increase of 𝑁𝑡𝑟𝑢𝑛. This is because with the increase of 𝑁𝑡𝑟𝑢𝑛,
more noise signals can be removed. Besides, the optimal 𝑁𝑡𝑟𝑢𝑛

increases with SNR. When 𝑁𝑡𝑟𝑢𝑛 is large enough, the BER
does not decrease. The reason is that a large 𝑁𝑡𝑟𝑢𝑛 leads to the
discarding of useful signals. Moreover, if 𝑁𝑡𝑟𝑢𝑛 is too large,
the BER will increase. Thus, the amount of received signals
to be discarded should be chosen properly.

In summary, the AmBC system has a better BER perfor-
mance under the PSK sources compared to the CG sources.
The LRT detection has a lower BER than ED. The truncation
based detection outperforms the non-truncation method in the
high SNR regime. There is no BER error floor with a large 𝑁

or 𝑧𝑜𝑛 level while such floor exists with a high SNR for both
two types of sources.

VI. CONCLUSION

In this paper, we studied the detections of ambient backscat-
ter communication under dynamic sources. We develop detec-
tion methods with/without truncating signals for AmBC under
dynamic CG signals with the OOK modulation. Manchester
code can be applied to make the detection more simple and
tractable for dynamic 𝑀-PSK. This code does not need to
estimate the detection threshold. Moreover, the energy trunca-
tion threshold is not explicitly required with Manchester code
for dynamic 𝑀-PSK. Instead, only the number of truncated
received signals is required. Simulation results shows it is

necessary to truncate part of signals in detections in the high
SNR region when the probability of the source on is not
close to 1. Both BERs of the dynamic CG and dynamic 𝑀-
PSK source meet an error floor under the high SNR situation
while such error floor disappears when increasing the symbol
duration ratio between the tag and the source.

As our future work, we will further extend our detection
method to the PSK modulated tag.
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