Non-invasive detection of coronary artery disease using wearable vest with integrated phonocardiogram sensors

Matthew Fynn, Kayapanda Mandana, Javed Rashid, Milan Marocchi, Yue Rong, and Goutam Saha

The Vision

Background

- Traditional Heart auscultation subjective person listenina
- Coronary artery disease (CAD) plaque accumulation in coronary arteries - decreases blood flow to heart1
- Occluded vessels cause turbulence difficult to appreciate with traditional auscultation¹
- Can digital phonocardiogram (PCG) signals, singly or in combination, with Machine Learning be useful in detecting CAD?

Fig 2: Laminar and Turbulent Flow³.

Fig 3: Normal and CAD PCG signal.

Methods

- A wearable vest embedded with 7 PCG sensors, 6 front and 1 back- collects heart sounds.
- Subjects were fitted with vest and seated—measurements made in typical "noisy" clinical ward
- 10-second breath-held signals acquired
- Signal Processing and Machine Learning applied post data collection

Fig 4: Left – Vest fitted on subject. Right – Signal Acquisition

Database

40 CAD	40 Normal
Age: 59.73 (8.02)	Age: 49 (18.8)
BMI: 24.62 (4.10)	BMI: 23.92 (3.03)

Demographics - Mean (std)

Machine Learning Model

- Linear frequency cepstral coefficients (LFCC) features Support Vector Machine (SVM) classifier
- 5-fold cross validation training and testings sets were mutually exclusive
- Metadata BMI, blood pressure, left ventricular ejection fraction, hypertension, type II diabetes inputs to SVM, and predictive probabilities fused with LFCC feature predictions

Conclusion

- Digital PCG signals, with Machine Learning, can be useful in detecting CAD with Acc: 80.44% Sens: 85.25% Spec: 75.62%. Inclusion of metadata improves classification performance
- Utility of vest requires no health/medical training Output is Binary no specialist interpretation - potential for community screening
- Potential use for **pre-operative assessment** to identity CVD can reduce cardiac complications

Results

 A four-channel combination – 2,3,6 (front) + 7 (back)gave highest performance

	Vest (PCG Only)	Vest + Metadata
Accuracy	80.44%	82.00%
Sensitivity	85.25%	85.13%
Specificity	75.62%	78.50%

References

- [1] Thomas JL, Winther S, Wilson RF, Bøttcher M. A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence. The international journal of cardiovascular imaging. 2017;33:129-36.
- [2] Retrieved from https://my.clevelandclinic.org/health/diseases/16898-coronary-
- [3] Retrieved from https://cvphysiology.com/hemodynamics/h007

