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Abstract—Orthogonal time frequency space (OTFS) modula-
tion has emerged as a promising technique for high-mobility
communication scenarios due to its robustness against doubly-
dispersive channels. Unlike the orthogonal frequency-division
multiplexing (OFDM) technique, OTFS operates in the delay-
Doppler (DD) domain, offering superior performance in envi-
ronments with significant Doppler shifts. This paper proposes a
deep neural network (DNN)-based Doppler estimation method
integrated into an OTFS receiver. By leveraging fully-connected
neural networks (FCNNs), the proposed system effectively learns
to estimate Doppler shifts from received OTFS signals under
various signal-to-noise ratio (SNR) conditions. Different input
window sizes are examined to analyze network performance,
revealing a trade-off between noise robustness and overfitting.
Simulation results demonstrate that appropriately tuned FCNNs
can provide accurate Doppler estimation, which significantly
improves OTFS receiver performance in high-mobility settings.

I. INTRODUCTION

The orthogonal frequency-division multiplexing (OFDM)
technique is the key physical-layer modulation scheme adopted
by 4G and 5G mobile systems. This technique is well-known
for its robustness and high spectral efficiency in time-invariant
frequency-selective channels, where the Doppler effect is lim-
ited and inter-symbol interference (ISI) is the primary factor
limiting communication performance [1].

However, emerging mobile applications—such as low-earth-
orbit (LEO) satellites, autonomous vehicles, high-speed rail-
ways, and unmanned aerial vehicles (UAVs)—introduce new
challenges due to their highly dynamic nature [2]. In such
environments, wireless channels become doubly-dispersive,
exhibiting both time dispersion due to multipath propagation
and frequency dispersion caused by Doppler shifts [3]. These
Doppler shifts result in inter-carrier interference (ICI) in
OFDM systems, significantly degrading their performance [4].

To address this limitation, orthogonal time frequency space
(OTFS) modulation was first proposed in [5], [6]. Compared
to the OFDM system proposed in [7], which receives mul-
tiple linearly precoded OFDM symbols to provide time and
frequency diversity, OTFS explicitly introduces a precoding
technique that transforms the time-varying multipath channel
into a 2D channel in the delay-Doppler (DD) domain, making
it time-independent and constant. OTFS introduces an explicit
precoding mechanism that maps information symbols into
the delay-Doppler (DD) domain. This transformation renders

the channel representation quasi-static and independent of
time variations. OTFS modulation distributes each information
symbol across the entire time-frequency space via a set of
2D orthogonal basis functions—using inverse discrete Fourier
transform (IDFT) along the Doppler axis and discrete Fourier
transform (DFT) along the delay axis—thereby ensuring all
transmitted symbols experience a nearly uniform channel gain
in the DD domain [8]. This inherent property enhances the
robustness of OTFS systems under severe Doppler effects.

The performance of OTFS systems has been evaluated in
high-Doppler fading channels [9] and static multipath chan-
nels [10]. To demodulate interference-affected signals, various
receiver designs have been proposed in the literature.

Channel estimation is a crucial element of OTFS demodu-
lation. An impulse-based delay-Doppler domain channel esti-
mation algorithm is described in [11] and further improved
in [12]. This scheme transmits an impulse in the delay-
Doppler domain as the training pilot. The received signals
can be considered as a 2D periodic convolution of the trans-
mitted impulse with the delay-Doppler channel in the delay-
Doppler domain. Consequently, the delay-Doppler channel can
be determined from the received signal using a threshold
method. This scheme is extended to multiple-input multiple-
output (MIMO)-OTFS systems, where multiple impulses are
transmitted with proper guards between adjacent impulses to
distinguish channels from different antennas [13]. The method
described may lead to inefficient usage of the time-frequency
resource due to the guards while the actual Doppler shifts
remain unknown.

In parallel, deep learning (DL) and deep neural network
(DNN) have emerged as powerful tools for solving complex
optimization and estimation problems in wireless communica-
tion systems [14]. For instance, a DNN model was developed
in [15] to classify the type of traffic in received signals, while
[16] proposed a DL-based channel estimation scheme for mas-
sive MIMO systems. Similarly, DNN-based estimators have
been designed for underwater acoustic (UA) OFDM systems
in [17], [18], demonstrating strong generalization capabilities
and performance gains. In [19], a DNN was applied to a multi-
objective resource allocation problem under multiple system
constraints.

Motivated by these advances, this paper proposes an OTFS-
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Fig. 1: Pilot-aided OTFS transceiver

based receiver that integrates a DNN-based Doppler estimator.
The proposed system is designed to estimate the Doppler shifts
of multipath components within a given delay period.

The contributions of this work lie in the development and
evaluation of DNN-based receiver architectures for robust
Doppler shift estimation in time-varying multipath channels.
To facilitate model training and evaluation, large-scale datasets
are generated across a wide range of signal-to-noise (SNR)
levels, encompassing both single-path and two-path channel
scenarios with identical delays. Extensive simulations using
different window sizes are conducted to assess performance
under various channel conditions, demonstrating the robust-
ness of the proposed method to noise.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model, including the OTFS
transceiver, channel assumptions, and the proposed Doppler
shift estimation approach. Section III presents the DNN ar-
chitectures, training procedure, hyperparameter settings, and
implementation details of the proposed model. Section IV
reports numerical simulation results and performance compar-
isons across various SNR levels. Finally, section V summarizes
the important discoveries of this work.

II. SYSTEM MODELS

A. OTFS System

The proposed pilot-aided OTFS system is demonstrated in
Fig. 1. The OTFS system transmits symbols across a 2D delay-
Doppler (DD) domain lattice. It consists of Nsc subcarriers
and Nbl blocks in the time-frequency (TF) domain, each
OTFS symbol being prefixed with a cyclic prefix (CP) of Ncp

samples. With sampling interval Ts, the subcarrier spacing is
given by:

f∆ =
1

TsNsc
. (1)

The system bandwidth is Bo = Nscf∆, and the OTFS symbol
duration is To = TsNscNbl + TsNcp.

B. OTFS Modulation

A quadrature amplitude modulation (QAM)-modulated data
sequence with a pilot symbol is arranged in the DD domain
over the lattice:

Λ(dd) =

{
kf∆
Nbl

, lTs

}
, 0 ≤ k < Nbl, 0 ≤ l < Nsc (2)

This DD-domain matrix S(dd) is transformed into a time-
frequency (TF) domain matrix S(tf) inverse symplectic finite
Fourier transform (ISFFT):

S(tf) = Fsc

(
FH

blS
(dd)

)T

(3)

where Fsc and Fbl are DFT matrices of sizes Nsc and Nbl,
respectively.

Each TF block column is then transformed using an inverse
DFT to obtain the time-domain blocks:

S(tt) = FH
scS

(tf) =
(
FH

blS
(dd)

)T

. (4)

Serializing S(tt) column-wise yields the 1D time-domain
sequence s′(t). CP is prepended to form the transmitted signal
s(t).

s(t)n =

{
s
′(t)
NblNsc−Ncp+n 0 ≤ n < Ncp

s
′(t)
n−Ncp

Ncp ≤ n < Ncp +NscNbl

.

After pulse shaping with gt(t), the continuous-time transmitted
signal is:

s(t) =

NblNsc+Ncp−1∑
m=0

s(t)m gt(t−mTs). (5)

C. Channel Model

We consider a doubly-dispersive, baseband time-varying
channel with Np paths, where each path has complex gain αn,
delay τn, and Doppler νn. The DD-domain channel spreading
function is given by

ht(τ, ν) =

Np−1∑
n=0

αnδ(τ − τn)δ(ν − νn) (6)

where δ(·) denotes the Dirac delta function. The received
signal is modeled as:

r(t) =

Np−1∑
n=0

αne
j2πνnts(t− τn) + w(t) (7)

where w(t) is analog additive white Gaussian noise (AWGN).

D. OTFS Demodulation

At the receiver, the signal r(t) is matched-filtered with a
predefined filter gr(t) and sampled at intervals of Ts. After the
CP is removed, the time-domain samples of an OTFS symbol
are reshaped into a 2D block. DFT is applied along columns
to obtain the TF domain signal, followed by the symplectic
FFT (SFFT) to recover the DD-domain symbols.

Assuming that the resolution Ts is sufficient to approximate
the path delays to the nearest sampling point in a typical wide-
band system, let τ ′n denote the closest integer to τn

Ts
, for n =

0, 1, · · · , Np−1. Then, the received signal rk,l at DD-domain
grid point Λ(dd) =

(
kf∆
Nbl

, lTs

)
is given by [11]:
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rk,l =

Np−1∑
n=0

{
Nbl/2−1∑
q=−Nbl/2

(
ᾱ(q, νn)αn S

(dd)
[k+q]Nbl

,[l−τ ′
n]Nsc

× e−j2πνnτ
′
nTs

)}
+ vk,l

(8)

where vk,l is the AWGN noise at DD domain, [·]M denotes
modulo M operation, and ᾱ(q, νn) represents the fractional
Doppler factor and is defined as:

ᾱ(q, νn) =
ej2π(−q−NscNblTsνn) − 1

Nble
j 2π
Nbl

(−q−NscNblTsνn) −Nbl

. (9)

The magnitude of (9) resembles a sampled Dirichlet sinc
function shifted by NscNblTsνn, characterizing the amplitude
distribution of fractional Doppler spreading in the Doppler
axis.
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Fig. 4: Typical DNN structure.

E. DNN-based Doppler Estimation

In this section, we consider a pilot-aided OTFS system as
illustrated in Fig. 2 [11]. For each OTFS symbol, a single pilot
symbol is inserted in the DD domain, with sufficient guard
gaps along both the delay and Doppler axes. This ensures that
the pilot region and the data region do not interfere with each
other at the receiver, as shown in Fig. 3, allowing them to be
separated. The region containing the pilot symbol is utilized
for Doppler estimation.

We assume a very high sampling rate in the system, so that
each column in the pilot region in DD domain corresponds to
different and limited propagation paths, enabling independent
channel estimation. A DNN is employed to estimate the
Doppler shifts of these channel paths. The network input is
a column from the pilot region, normalized by the transmitted
pilot symbol to eliminate its influence.

III. THE PROPOSED DNN-BASED DOPPLER ESTIMATOR

A. Deep Neural Network

Deep neural network is a subset of machine learning that
has gained prominence due to its ability to automatically
extract and process features from raw data without manual
intervention. Inspired by the human brain, DNNs consist of
multiple layers of interconnected neurons and are widely used
in tasks such as classification, signal detection, and channel
estimation.

While a single-layer network can approximate any function,
deeper networks are more effective at capturing complex
patterns. As shown in Fig. 4, a typical DNN includes an input
layer, multiple hidden layers, and an output layer. The architec-
ture—including the number of layers and neurons—is usually
determined through experimentation. Activation functions are
key to enabling nonlinear transformations and allow DNNs to
approximate virtually any nonlinear function.

A common form of DNN is the fully connected neural
network (FCNN), where each neuron in one layer connects
to every neuron in the next layer. The fundamental unit of an
FCNN is the perceptron, which computes a weighted sum of



inputs plus a bias, followed by a nonlinear activation function.
Training process is adopted to optimize these weights using
backpropagation to minimize a predefined loss function.

The deployment of a DNN model typically involves two
distinct phases: the training phase and the inference (work-
ing) phase. Prior to being applied for real-time applications,
the DNN must undergo a comprehensive training process.
The training process consists of two main steps: forward
propagation, where input data is passed through the network
layers to produce an output, and backpropagation, where the
error between the predicted and actual outputs is propagated
backward through the network to update weights and biases
according to gradient descent rules. This iterative process
continues until a stopping criterion is met, such as convergence
of the loss function or reaching a predefined number of epochs.

In general, effective training is critical to the success of any
DNN-based system. A sufficiently large and diverse dataset
is required to ensure the network captures the full range of
relevant feature. As discussed in Section II, a DNN model
is employed to estimate Doppler shifts using a column of
the received pilot signal. Given the constraints of limited
computational and time resources during inference, a relatively
simple yet efficient DNN architecture is adopted.

B. The Proposed DNN Model

A DNN model is proposed for regression-based Doppler
estimation, featuring a six-layer architecture comprising an
input layer, four hidden layers, and an output layer. The pro-
posed model consists of 257, 771, 514, 128, 64, and 2 neurons
in successive layers according to the simulation settings in
Section IV. The rectified linear unit (ReLU) activation function
is employed in all layers except the output layer, for which
the hyperbolic tangent (Tanh) function is adopted to produce
bounded output values.

It is assumed that the SNR is known at the receiver, and
the network input comprises both the received pilot signals
and the corresponding SNR. Specifically, a window of length
Nw centered at the transmitting pilot position is applied to the
received pilot to retain the dominant Doppler components. The
real and imaginary parts of this windowed pilot are separated
and concatenated with the SNR value, forming a composite
input feature vector. The corresponding labels are the Doppler
shifts of two paths, normalized to the range [−1, 1] using the
maximum Doppler frequency.

To train and evaluate the proposed model, two in-
dependent datasets were generated: one for training and
one for testing. The training dataset consists of two sub-
sets—one with single-path channels and the other with
two-path channels. Each subset contains samples across
multiple SNR levels: 6, 10, 14, 18, 22, 26, 30, 34 dB, with
10,000 samples per SNR level, resulting in a total of
160,000 training samples. The testing dataset spans SNR
levels 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34 dB,
with 10,000 samples generated for each level.

When training the networks, the training dataset is parti-
tioned into training and validation sets in an 8:2 ratio. The

network is trained using the mean-squared error (MSE) loss
function (10), which is a standard choice for regression tasks.

emse = E

[
1

2

1∑
p=0

(ν̌p − ν̃p)
2

]
(10)

where ν̌p denotes the normalized Doppler shift of the pth path
and ν̃p denotes the corresponding estimated value. Optimiza-
tion is performed using the Adam algorithm with a learning
rate of 0.0001, facilitating efficient convergence of the model
parameters.

IV. NUMERICAL RESULTS

In this section, we verify the proposed Doppler estimation
algorithm through simulations. An OTFS symbol structure is
considered with Nsc = 512 subcarriers and Nbl = 128 blocks,
resulting in a DD-domain grid of size 128 × 512. The CP
length is set to 20 samples. The subcarrier spacing is set to
f∆ = 15 kHz, and the carrier frequency is configured at
fc = 4 GHz. The user equipment (UE) speed is assumed
to be 120 km/h, which corresponds to a high-mobility sce-
nario typical of vehicular or high-speed rail environments.
Given this configuration, the Doppler resolution in the DD
domain is 117.19 Hz, and the maximum Doppler shift is
νM = 444.44 Hz.

We consider a one-path or two-path channel model, where
both paths share the same delay value set to 0. This configu-
ration is representative of wideband wireless communication
environments. For instance, under the above system settings,
the 3GPP LTE Extended Vehicular A (EVA) channel model
[20] typically contains no more than two multipath compo-
nents within one sampling interval, making the above two-path
assumption both practical and realistic for such scenarios. The
Doppler shifts for each channel realization are generated based
on Jakes’ model, using the expression ν = νM cos θ, where
θ is a random variable uniformly distributed in the interval
[−π, π]. Each path is modeled as a complex-valued random
variable whose real and imaginary parts are independent Gaus-
sian variables with zero mean and equal variance, resulting in
a magnitude that follows a Rayleigh distribution. The variance
of the real and imaginary components is 1/2 and 1/4 for one-
path and two-path channels, respectively.

An example of DD-domain channel response of the received
signal without noise is shown in Fig. 5. In this example,
the channel contains two paths with delay 0 and different
Doppler shifts. The amplitudes of the two paths are 0.568
and 0.624, respectively. The theoretical channel responses of
the two paths are shown together with the amplitude of the
received channel response. It can be observed that the left part
follows the first path response while the right part follows
the second path response. The maximum amplitude of the
received response fails to reach the theoretical one. The result
implies that the Doppler of the two paths can be estimated
in this example as the amplitude of the first path response
is sufficiently small when the second path response reaches
maximum, and the amplitude of the second path response
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is sufficiently small when the first path response reaches
maximum. It also implies that it is not necessary to take all
the 128 elements within one column of the pilot region for
Doppler estimation, as several middle elements already occupy
dominant energy.

The performance of the trained networks using different
window sizes (9, 11, and 101) is illustrated in Fig. 6 compared
with the traditional estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) algorithm. The MSE
between the estimated and true Doppler shifts (10) is used to
evaluate the network performance.

The ESPRIT algorithm achieves performance comparable
to the proposed DNN-based estimator with a window size
of 9. Specifically, ESPRIT performs worse than the DNN at
low SNRs but converges to a similar accuracy when the SNR
exceeds 30 dB. In contrast, ESPRIT with a larger window
size of 101 exhibits degraded performance due to its high
sensitivity to the additional noise introduced by the extended
window.

The network with a window size of 9 achieves the best
performance for SNR values up to 20 dB. However, as the SNR
exceeds 18 dB, its performance begins to degrade, suggesting
an overfitting issue at higher SNRs. A similar trend is observed
for the window size 11, though the degradation is smoother.

In contrast, the network trained with a window size of 101
exhibits poor performance at low SNRs (below 8 dB), due to
the introduction of significant noise. However, its performance
improves steadily with increasing SNR and outperforms the
other two networks for SNR values above 22 dB. Importantly,
no overfitting issue is observed in this network, as the larger
window size likely contributes to better generalization in high-
SNR conditions.

V. CONCLUSION

This work presents a novel OTFS receiver architecture en-
hanced by a fully-connected deep neural network for Doppler
shift estimation. The proposed method uses an embedded
pilot and transforms received DD-domain pilot into Doppler
estimates using a trained DNN, providing resilience against
high-mobility impairments. Evaluations across different SNR
levels and input window sizes show that smaller windows
perform better at low SNRs but are prone to overfitting at high
SNRs, while larger windows offer improved generalization
in high SNR conditions. The results confirm that DNNs
can serve as effective tools in channel parameter estimation,
complementing traditional signal processing methods and en-
hancing the robustness of OTFS systems in dynamic wireless
environments.
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