
NOISE-ROBUST CONTRASTIVE LEARNING WITH AN MFCC-CONFORMER FOR
CORONARY ARTERY DISEASE DETECTION

Milan Marocchi, Matthew Fynn, Yue Rong

Curtin University, Bentley 6102, WA, Australia

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death
worldwide, with coronary artery disease (CAD) comprising
the largest subcategory of CVDs. Recently, there has been
an increased focus on the detection of CAD using phonocar-
diogram (PCG) signals, with high success in clinical environ-
ments with low noise and optimal sensor placement. Mul-
tichannel techniques have been found to be more robust to
noise, however, there are still challenges in achieving robust
performance and practical real-world performance. This work
utilises a novel energy-based noisy-segment rejection algo-
rithm for the discarding of audio segments with large amounts
of non-stationary noise, before training a deep learning clas-
sifier. This conformer-based classifier takes mel-frequency
cepstral coefficients (MFCCs) from multiple channels, fur-
ther helping improve the models noise robustness. The pro-
posed method achieved 78.4% accuracy and 78.2% balanced
accuracy on 297 subjects, representing improvements of 4.1%
and 4.3%, respectively, compared to training without noise-
segment rejection.

Index Terms— Contrastive Learning, Noise-robust au-
dio classification, Deep Learning, Phonocardiograms analy-
sis, Coronary artery disease detection

1. INTRODUCTION

Cardiovascular disease (CVD) result in 31% of deaths annu-
ally around the globe [1]. Coronary artery disease (CAD)
is the largest subtype. CAD requires prompt diagnosis to
help manage the disease before it progresses. However, aus-
cultation yields relatively low diagnostic accuracy, partly be-
cause heart sounds often lie near the threshold of human hear-
ing [2, 3, 4]. With expensive and highly invasive angiograms
being the gold-standard diagnostic tool [5], there is a gap in
prescreening tools. Recently deep learning aided phonocar-
diogram (PCG) methods have been employed to accuractely
pre-screen CAD [6, 7]. It has been found that multichannel
PCG signals help improve CAD classification performance
in the presence of background hospital noise [8]. The use
of linear frequency cepstral coefficients (LFCCs) and mel-
frequency cepstral coefficients (MFCCs) have further been
found to improve the noise robustness of deep learning mod-

els [6]. Modern strong performing transformer-based archi-
tectures such as conformers have seen success in speech but
have not yet been evaluated in PCG signals [9]. They have
been found to lead to state-of-the-art (SOTA) performance for
speech in clean and noisy conditions, showing promise for
use on noisy PCG data. However, there is currently a lack of
work utilising all these techniques, along with noisy segment
removal, based on external and internal noise, on a real-world
noisy dataset to validate all of these approaches [10]. This
study makes use of data collected in a noisy hospital environ-
ment with unoptimal sensor placement, to evaluate the perfor-
mance of noise-segment rejection, along with a conformer-
based model that uses MFCCs as input.

This work’s novel contributions to the field are:

• An energy-based noisy segment rejection algorithm
leveraging multichannel PCG data and built-in noise
reference microphones

• Use of contrastive learning for an MFCC conformer-
based model to improve balanced performance with
noisy data

2. MATERIALS

All data processing and model training were conducted using
a Ryzen 7 3800X CPU and an Nvidia RTX 3090 (24 GB),
with Python 3.11 and PyTorch 2.1.2.

2.1. Data Aquistion

A wearable vest embedded with multiple PCG sensors was
used to acquire synchronised multichannel PCG data from
participating subjects [6]. Each stethoscope incorporated two
microphones: one positioned beneath the diaphragm (Heart
mic – HM) and another on the rear of the stethoscope (Noise
mic – NM). The vest can be fitted easily, requiring less than a
minute. This work made use of channels 1, 2, 3 and 4 of the
seven PCG channels.

2.2. Dataset

The wearable vest collected data from 297 male subjects
at Fortis Hospital, Kolkata, across three separate rounds:
May–June 2023, January–February 2024, and February 2025.



Of these, 155 subjects were diagnosed with CAD, defined
as having greater than 50% stenosis in the right coronary
artery, left coronary artery, or left circumflex artery, con-
firmed through angiography. The remaining 142 subjects
were classified as normal, including 32 subjects under 35
years of age, assumed to be free of CAD as the risk is sig-
nificantly higher in males above 45 years [11]. Data was
collected in a clinical environment, and thus typical hospital
background noise was present, including talking, privacy cur-
tains closing, and doors slamming. Subjects were instructed
to sit comfortably on a chair and breathe normally during
recording. Between one and three 60-second recordings were
acquired from each subject.

3. METHOD

Segments of audio from the PCG signals are extracted and
preprocessed before being used to train a conformer-based
classifier with a contrastive loss. The methods will first detail
the novel energy-based noisy segment rejection approach,
preprocessing, and feature extraction before detailing the
model training and inference.

3.1. Preprocessing

The PCG signals first are concatenated so that there is one
contiguous recording for each subject. This will ensure that
there is no data leakage. The regions around the joins are
then discarded when segmenting the signal, which is further
discussed in Section 3.3. Following this, the signals undergo
noisy segment rejection, which will mark noisy segments so
that they will not be included in any fragments. Following
this, the signals undergo spike removal [12] and then are
bandpassed using a second-order Butterworth filter between
25Hz and 450Hz. The signals are then k-peak mean nor-
malised [7], before being used to extract features. Then the
signals are segmented into fragments to be used for training.

3.2. Noisy Segment Rejection

Both HM and NM signals were utilised for noisy segment
rejection. We propose an algorithm that identifies and mit-
igates impulsive and movement noise within the recordings.
The algorithm outputs the set of indices deemed corrupted
by impulse noise, enabling clean signal segments to be used
in downstream training and inference. The algorithm takes a
signal (either from HM or NM) as input and divides it into
frames of fixed length. For each frame, the energy is com-
puted as the sum of squared samples. The median frame en-
ergy (excluding the first and last frames) is then calculated.
Each frame whose energy exceeds the product of the median
value and the given threshold is flagged, and the correspond-
ing start and end indices of that frame are stored in a variable.
Additionally, the first and last seconds of each recording are

Algorithm 1 Noisey Segment Identification
Require: Signal x[0 . . . L − 1], sampling rate fs, frame length (s) Tf ,

threshold τ
Ensure: List of index intervals I containing frames flagged as noise
1: N ← ⌊L/(Tf · fs)⌋ ▷ number of full frames
2: F ← Tf · fs ▷ samples per frame
3: E← 01×N ▷ frame energies
4: for i = 0 to N − 1 do
5: s← iF ; e← (i+ 1)F − 1
6: E[i]←

∑e
n=s x[n]

2 ▷ sum of squares (energy)
7: end for
8: m← median

(
E[1:N−2]

)
▷ exclude first/last frame

9: I ← [ ] ▷ empty list of (start,end) indices
10: for i = 1 to N do
11: if E[i] > τ ·m then
12: s← iF ; e← (i+ 1)F − 1
13: append (s, e) to I
14: end if
15: end for
16: return I

flagged as noisy, ensuring boundaries between concatenated
signals are excluded from downstream tasks, including filter-
ing. Algorithm 1 describes this process of highlighting noisy
segment indices. Sources of identifiable noise included sud-
den bursts of external voices and door slams, while patient
movement introduced friction noise between the diaphragm
and the skin. As the NM signals from all stethoscopes were
highly correlated, only channel 4 was used to detect noisy
indices, whereas each HM was processed separately. The
frame length was tailored to the dominant noise source of
each channel: for HM signals, it was set to 2.5 s to capture
longer-duration friction noise, while for NM signals, it was
set to 0.25 s to detect brief impulsive events such as door
slams or speech bursts. For both signal types, the threshold
was fixed at 2.5 times the median frame energy, chosen to
balance sensitivity to noise events against robustness to natu-
ral signal variability. Figure 1 illustrates an example HM and
NM signal with noisy indices highlighted in red. The result-
ing indices from all HM and NM signals were then combined
to form a final vector of noise-corrupted segments across the
concatenated recording, accounting for overlapping indices
highlighted by separate channels. From this combined out-
put, the complementary indices corresponding to noise-free
segments were extracted and applied uniformly across the en-
tire multichannel recording.

3.3. Segmentation

Following denoising, the noise-free indices of each sub-
ject’s recording were used to extract clean segments, whose
lengths varied according to the distribution of noise. Seg-
ments shorter than four seconds were discarded. From the
remaining segments, fixed-length fragments of four seconds
were extracted. To ensure class balance during training, a
base number of fragments Fbase was specified per class, with
additional fragments drawn from the underrepresented class



Fig. 1. Zoomed-in HM (top) and NM (bottom) signals with noise-corrupted
segments highlighted in red. These segments were discarded from all chan-
nels during downstream training and inference.

until equal counts were achieved. During validation and test-
ing, the target number of fragments was fixed across classes
to avoid bias.

For a subject in class c, the assigned number of fragments
Fclass was distributed across its noise-free segments in propor-
tion to segment duration. Specifically, for the ith noise-free
segment,

Fi =

⌊
Fclass ·

Li∑
j Lj

⌋
, (1)

where Li is the length of the ith segment and
∑

j Lj is the
total length of all valid segments for that subject. Any re-
maining fragments were allocated to the longest segments to
preserve proportionality (i.e

∑
i Fi = Fclass). Fragments were

then extracted with variable overlap, determined by both Fi

and the length of the corresponding segment.

3.4. Feature Extraction

MFCCs were extracted from each recording segment follow-
ing amplitude normalisation to mitigate inter-recording vari-
ability. The normalisation conducted was k-peak normalisa-
tion, which has been shown to be more effective for PCG sig-
nals [7]. For each segment, the short-time Fourier transform
(STFT) was computed, mapped to the mel scale, and sub-
sequently transformed into cepstral coefficients. There were
128 MFCCs extracted between 25Hz and 450Hz with a win-
dow length of 512 samples, hop length of 160 samples for
the STFT computation. The MFCC vectors obtained from in-
dividual segments for each channel were then concatenated
along the time channel axis to create a unified representation
of all features from each channel.

3.5. Models

The proposed network is a conformer-style encoder operating
on MFCC sequences. After per-segment MFCC preprocess-
ing (single- or multi-channel; features concatenated across
channels), a linear projection maps the input F -dimensional
frames to the model width D. The encoder comprises B

stacked conformer blocks, each following a layered topol-
ogy: a pre-normalized feed-forward sublayer (scaled by 0.5),
multi-head self-attention with H heads, a convolutional mod-
ule, and a second pre-normalised feed-forward sublayer of di-
mension M (again scaled by 0.5), with residual connections
throughout. The convolutional module employs a pointwise
expansion with gated linear units (GLU), depthwise convo-
lution (kernel size k, which was fixed to 31), batch normal-
isation, SiLU activation, and a pointwise projection back to
D. Layer normalisation is applied before attention and con-
volutional sublayers, and dropout is used in the feed-forward
paths. A final layer normalisation precedes temporal aggrega-
tion via adaptive average pooling to produce an embedding,
which is fed to a shallow MLP classifier (one hidden layer
with ReLU and dropout) to predict one of the two classes.

Parameter Value Parameter Value

batch size (Nb) 256 α 0.7235
learning rate 2.97e-06 β 0.9807
weight decay 5.71e-05 temperature 0.8050
s 2 λc 0.00281
γ 0.2903 D 1024
H 8 M 128
B 3 dropout 0.2903

Table 1. Hyperparameter values.

3.6. Contrastive Learning

3.6.1. Hybrid-Contrastive Loss

A hybrid-contrastive loss is utilised to best shape the embed-
ding space to ensure more robust classifications, especially in
the case of noise, which is typical within this dataset. It is a
supervised loss function to best make use of the data being
fully labelled. The training objective combines three compo-
nents: a supervised contrastive loss, a classification loss, and
an optional center loss. Given a batch of feature embeddings
zi ∈ Rd with corresponding class labels yi, the total loss is
defined as

L = β Lcontr(z,y; τ) + αLCE(p,y) + λc Lcenter(z,y), (2)

where p are the classifier logits, α and β weight the classifi-
cation and contrastive terms, respectively, and λc controls the
influence of the center loss. The hyperparameter τ denotes
the temperature. A standard cross-entropy objective is used
for the classification loss (LCE).

3.6.2. Supervised Contrastive Loss

We normalise all embeddings and compute a cosine similar-
ity matrix S = ẑẑ⊤. The contrastive loss encourages em-
beddings of the same class to be close, and embeddings of
different classes to be pushed apart:

Lcontr = − 1

Nmb

Nmb∑
i=1

1

|P(i)|
∑

j∈P(i)

log
exp(Sij/τ)∑Nmb

k=1 exp(Sik/τ)
,

(3)



Table 2. Model performance at the fragment and subject level - Base number of fragments is 61
Method Acc UAR TPR TNR F1+ F1− MCC

Fragment Level

Noisy MFCC Conformer 71.2±0.05% 70.9±0.05% 77.5±0.07% 64.2±0.17% 73.9±0.02% 67.5±0.09% 0.425±0.009
Denoised MFCC Conformer 73.9±0.35% 73.7±0.37% 76.8±0.42% 70.7±0.76% 75.5±0.32% 71.9±0.44% 0.478±0.072
Noisy Wav2Vec 2.0 [13] 70.7±0.21% 68.2±0.18% 78.9±0.46% 57.6±0.30% 76.8±0.22% 59.9±0.22% 0.372±0.004

Subject Level

Noisy MFCC Conformer 74.3±0.09% 73.9±0.10% 80.9±0.11% 66.9±0.30% 76.8±0.06% 70.6±0.15% 0.490±0.019
Denoised MFCC Conformer 78.4±0.29% 78.2±0.32% 81.9±0.49% 74.5±0.97% 79.9±0.20% 76.4±0.48% 0.570±0.058
Noisy Wav2Vec 2.0 [13] 77.1±1.50% 74.3±1.73% 86.5±1.30% 62.0±2.76% 82.3±1.10% 67.1±2.56% 0.510±0.035

where P(i) is the set of positive indices (samples with yj =
yi, excluding i itself), and Nmb is the number of samples
within the mini batch.
3.6.3. Center Loss

For each class c, a learnable center vector cc ∈ Rd is main-
tained. The center loss penalises the distance between feature
vectors and their class centers:

Lcenter =
1

Nmb

Nmb∑
i=1

∥zi − cyi
∥22. (4)

3.7. Model Training

Training is done on a fragment level to optimise the fragment-
level metrics. The model was trained using the AdamW opti-
miser [14]. An exponential decay learning rate scheduler was
also utilised parameterised by the step size (s) and the decay
rate (γ). The model makes use of gradient accumulation with
a mini batch size (Nmb) and a batch size (Nb), where the gra-
dients from each mini batch update are accumulated until the
number of samples sum to the Nb. The models are trained for
10 epochs, with the best model from training being selected
as the one with the best weighted average Matthew’s Corre-
lation Coefficient (MCC) between the training and validation
set; a scaling factor of 0.9 to the validation MCC and 0.1 to
the training MCC. The MCC metric provides a single mea-
sure that captures all aspects of model performance [15]. For
tuning the hyperparameters and the architecture of the model,
a Bayesian optimisation was conducted using the Optuna li-
brary [16]. Table 1 contains the parameters included in this
optimisation. Each trial was repeated three times and was op-
timised over the average validation MCC score to ensure a
less noisy value being used.

3.8. Model Inference

Before being used for inference, the MLP is removed and re-
placed with a support vector machine (SVM) with a radial
basis function (RBF) kernel. The subject-level predictions
are then taken by majority vote of each of the fragment-level
predictions. The accuracy, unweighted average recall (UAR),
true positive rate (TPR), true negative rate (TNR), F1 scores,
and MCC are reported.

4. RESULTS AND DISCUSSION

Table 2 displays the fragment and subject performance
which compares the baseline with no noise-segment rejec-
tion to a model that was trained with the contrastive loss
and the signals denoised. These results are presented as
average±standard deviation, where the models are averaged
over the five folds and run three times to account for the
stochasticity of the training of the neural networks. The table
also contained a comparison to a previous method on this
same vest data, with the best method for each metric being
highlighted in bold.

The proposed noise-segment rejection algorithm, when
applied in conjunction with the conformer-based model,
yielded subject-level improvements of 4.1%, 4.3%, and 0.08
in accuracy, UAR, and MCC, respectively. The model’s
performance was also significantly more balanced between
TPR and TNR with the use of the noise-segment rejection,
highlighting the importance of removing segments heavily
contaminated with non-stationary noise. Comparing this
method to another work utilising data from the same vest,
it is seen that this method results in a more performant and
noise robust model, with subject-level increases of 1.3%,
3.9% and 0.06 in the accuracy, UAR and MCC, respectively.
This confirms that the use of these techniques to deal with a
noisy real-world dataset help to improve performance, whilst
also providing a model which is signifigicantly smaller than
the one in [13]. It is much smaller as an early feature fusion
is employed, as opposed to a late feature fusion.

5. CONCLUSION AND FURTHER WORK

This work presented a CAD classifier that is more robust
to the noise of a real-world dataset by employing a noise-
segment rejection algorithm, the use of MFCC features and
a conformer architecture trained with a hybrid contrastive
loss. This model performed better than a previous method
which utilised multiple Wav2Vec 2.0 feature extractors. Fur-
ther work includes the use of augmentations coupled with the
contrastive learning method to improve the robustness of the
model, along with testing on out-of-distribution datasets to
assess how the preprocessing and model generalise to other
datasets that the model is not trained on.
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