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ABSTRACT The Internet of Underwater Things (IoUT) has emerged as a vital technological domain,
significantly advancing underwater exploration and communication capabilities. At the core of this paradigm
is Underwater Acoustic Communication (UAC), which acts as the primary medium for data transmission in
underwater environments, including environmental monitoring, security and surveillance, and underwater
exploration. Despite its significance, UAC systems face inherent challenges such as limited bandwidth,
high signal attenuation, and long propagation delays. These limitations become particularly significant
in mission-critical maritime operations, such as warning systems, underwater navigation and control,
and diver safety or emergency communications, where timely and reliable data transmission is crucial.
Existing resource allocation solutions often fail to adequately optimize limited UAC bandwidth to address
the distinct needs of mission-critical applications, making it difficult to ensure reliability and low delays
for critical tasks without compromising non-critical performance. This paper introduces a novel resource
management scheme to support mission-critical applications in UAC systems, optimizing the acoustic
spectrum using Resource Blocks (RBs) with frequency and time division multiplexing. This approach
prioritizes mission-critical applications to ensure high reliability and low latency, while also accommodating
non-critical applications. We formulate a resource allocation optimization problem based on application
type and present a solution. We also introduce a Meta-Heuristic approach designed to efficiently achieve
near-optimal solutions while minimizing computational complexity. Simulation results obtained with the
DESERT underwater network simulator show that, compared to existing resource management schemes, our
approach significantly reduces end-to-end delay and improves throughput for mission critical applications
while optimizes transmission power, thus validating the effectiveness of the proposed solution.

INDEX TERMS Acoustic communications, resource sharing, mission-critical applications, resource blocks,
Internet of Underwater Things.

I. INTRODUCTION
The Internet of Underwater Things (IoUT) is a groundbreak-
ing framework that is driving major advances in underwater
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communication systems and exploration technologies [1],
[2], [3], [4]. According to the United Nations, over 90% of
natural disasters are water-related, including tsunamis and
hurricanes. These disasters highlight the critical need for
advanced monitoring and communication systems capable
of providing early warnings and supporting life-saving
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interventions [5]. Recent developments have expanded IoUT
applications to include critical tasks such as ocean earthquake
and tsunami warning, underwater navigation, and the detec-
tion of underwater moving targets [6], [7]. These applications
require robust and efficient communication mechanisms to
ensure their success.

Underwater Acoustic Communication (UAC) systems,
recognized as the primary medium for transmitting data in
underwater environments, are indispensable for supporting
these advanced IoUT operations [8]. The potential for UAC
remains vast yet challenging [9]. Acoustic waves, while offer-
ing longer transmission distances compared to RF and optical
signals in underwater, face inherent limitations, including
significant latencies and high bit error rates [10], [11]. These
issues stem from the unique underwater environment charac-
terized by the slow speed of sound and restricted bandwidth.
Such constraints are particularly problematic for mission
critical IoUT applications, which require high reliability, low
latency, and precise timeliness. Failure to meet these stringent
demands risks ineffective decision-making, errors in control
systems, and potentially catastrophic outcomes [12].
Allocating resources in underwater environments demands

innovative approaches, given the diverse Quality of Service
(QoS) requirements of various applications [13]. Mission
critical applications, such as underwater navigation and emer-
gency communication, demand stringent QoS parameters to
ensure high reliability and low latency. Moreover, detection
and imaging sonars such as sub-bottom profilers [14] and
synthetic aperture sonar systems [15], which are commonly
used for object detection, seafloor mapping, and operational
awareness, generate critical data that also requires timely
and reliable transmission, further emphasizing the need
for efficient resource allocation. In contrast, non-critical
applications, such as environmental monitoring, can tolerate
longer delays and lower data rates, making them less
resource intensive. Moreover, underwater communication
introduces additional complexities, as signal losses increase
significantly with both distance and frequency. Allocating
suitable frequency bands becomes essential to minimize
attenuation and ensure effective transmission over extended
distances.

In terrestrial networks, significant progress has been made
in resource allocation strategies tailored for mission critical
IoT andWSN applications, where rapid and reliable detection
of events such as industrial emergencies or fire outbreaks
are paramount. For instance. Farag et al. [16] introduced a
slot-stealing mechanism that dynamically reallocates time
slots from non-critical to critical data transmissions, ensuring
the timely delivery of high-priority information. Moreover,
Sakya and Sharma [17] designed a protocol that dynamically
adjusts node duty cycles based on current energy levels and
traffic conditions, giving precedence to nodes with greater
energy availability and larger data queues. Although these
strategies work well in terrestrial environments, they depend
on structured frameworks that require nodes to connect with

a central access point for slot allocation and transmission
prioritization. However, these approaches become problem-
atic in underwater environments, dynamic conditions, and
high propagation delays disrupt slot synchronization and
priority management. These challenges significantly hinder
the ability to achieve the real-time responsiveness necessary
for mission-critical applications in underwater networks [18].
In the context of underwater networks, existing literature

has predominantly focused on developing resource allocation
mechanisms aimed at ensuring fair distribution as seen in
works such as [19], [20], and [21], or minimizing collisions
during data transmission, particularly in scenarios involving
spatial-temporal uncertainty [22], [23] and hidden terminal
issues [24], [25]. However, these approaches often fail to
address the specific needs of mission-critical applications,
leaving significant challenges with priority. Moreover, the
limited standardization of underwater communication pro-
tocols, including notable contributions such as JANUS [26]
and PHORCYS [27] developed by the North Atlantic Treaty
Organization (NATO), further complicates these issues.
While these protocols provide foundational frameworks and
utilize Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) for resource allocation, their susceptibility
to channel collisions and reduced throughput underscores the
need for more robust solutions tailored to mission-critical
underwater communication scenarios.

Therefore, the challenge of implementing priority-based
resource allocation between nodes remains largely unex-
plored, leaving a significant gap in addressing the diverse
demands of mission-critical and non-critical application
scenarios. Addressing these limitations requires further
advancements in resource allocation strategies to enhance
the reliability and efficiency of underwater communication
frameworks.

To address these challenges, advanced resource alloca-
tion strategies and robust communication frameworks are
essential for optimizing performance and ensuring reliable
data delivery for both mission-critical and non-critical IoUT
applications. In this paper, we leverage the concept of
Resource Blocks (RBs) and propose a resource allocation
solution in UAC. We utilize a hybrid approach that integrates
frequency and time division techniques to represent RBS .
Our research focuses on optimizing the limited resources of
the underwater acoustic channel by allocating resources to
nodes based on priority and application type. This ensures
that mission-critical applications receive more resources
to effectively accomplish urgent and critical tasks, while
non-critical applications receive sufficient resources. More-
over, we employ energy-efficient allocation strategies to
enhance spectrum utilization and ensure reliable underwater
communication.

The main contributions of this paper are summarized as
follows:

1) We introduce a novel approach to managing spec-
trum acoustic in underwater networks. This approach
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prioritizes mission-critical applications for high reli-
ability and low latency while accommodating non-
critical applications.

2) We formulate an optimization problem to efficiently
allocate resources, considering the unique challenges
of underwater communication. Our solution ensures
that the allocation meets the specific requirements of
various applications.

3) To address the complexity of the optimization prob-
lem, we propose a robust meta-heuristic algorithm
that achieves near-optimal solutions with significantly
reduced computational time.

4) The performance of the proposed solution is evaluated
and benchmarked against existing methods using
the DESERT Underwater simulation framework [28],
focusing on key metrics such as throughput, end-to-end
delay, and transmission power. The results demonstrate
significant improvements in all these areas, validating
the effectiveness of our proposed method.

The rest of the paper is organized as follows: Section II
reviews related work on resource allocation strategies for
UAC systems. Section III introduces the system model,
detailing the architecture and categorization of applications.
Section IV describes the mathematical model. Section V
outlines the optimization framework, defines the resource-
allocation problem, and specifies the associated constraints.
Section VI presents a comparative performance evaluation
of the proposed approach against existing protocols. Finally,
Section VII concludes this paper by summarizing the findings
presented throughout the paper.

II. RELATED WORK
Numerous studies have explored efficient resource allocation
strategies to optimize channel access in underwater networks.
This section highlights recent advancements that prioritize
nodes to enhance network performance. We provide a
detailed review of recently published literature on resource
optimization protocols, emphasizing their design princi-
ples and effectiveness. Additionally, Table 1 contrasts our
proposed protocol with the leading alternative approaches,
focusing on key attributes such as priority management,
support for mission-critical applications as well as energy
efficient.

Zhang et al. [29] proposed a Load-Based Time Slot
Allocation (LBTSA) protocol that dynamically allocates time
slots by prioritizing critical data through contention-free
TDMA while assigning less critical data to CSMA/CA.
However, high network loads in CSMA/CA risk collisions
and delays, with scalability adding slot allocation challenges.
Rahman et al. [30] introduced a channel allocation aware
protocol to address the triple hidden terminal problem in
multi-channel underwater sensor networks by leveraging a
novel channel allocation matrix and delay mapping database.
The protocol allocates more resources to certain nodes based
on their channel conditions and delays mapping. However,

TABLE 1. Summary of existing work on resource allocation in UAC.

updating the channel allocation matrix and delay mapping
introduces overhead, which impacts scalability in large
underwater networks. Liu et al. proposed dynamic resource
allocation protocols for underwater networks. Firstly, Packet-
Level Slot Scheduling (PLSS) [31], Transmission slots are
allocated according to packet size and propagation delay, with
precedence given to nodes nearer the sink to minimize end-
to-end latency. Secondly, the work focuses on mobile net-
works, introducing Adaptive Broadcasting (AB) scheduling
for Autonomous Underwater Vehicles (AUVs) [32], which
adjusts slot lengths and sequences to handle mobility and
dynamic topologies. Similarly, Gue et al. [33] proposed a
protocol with Adaptive Scheduling (AS) to allocate time slots
dynamically based on packet accumulation, transmission
needs, and network conditions. It optimizes slot lengths
and sequencing to reduce end-to-end delays and ensure
efficient, collision-free communication in mobile underwater
networks. While PLSS, AB, and AS protocols ensure effi-
cient scheduling to avoid collisions, they inherently introduce
longer delays due to the sequential nature of transmissions.
Nodes must wait until the current packet transmission is
completed and reaches its destination, which can increase the
overall transmission time in a large network. Yang et al. [21]
proposed a Traffic Aware (TF) protocol that allocates time
slots based on depth-layer traffic load, assigns subchannels to
reduce collisions, and uses SINR-based power control with
adaptive packet lengths. This approach improves fairness,
throughput, and energy efficiency. However, it does not
consider data priority levels. Mei et al. proposed the Efficient
Distributed (ED) protocol [34] and Dynamic High-Load
(DHL) [35] to handle dynamic high-load scenarios according
to the anticipated data load, ensuring nodes with higher data
requirements are prioritized to reduce delays. Both protocols
focus on enhancing efficiency and minimizing delays in
high-load underwater networks. However, scalability remains
an issue in large or highly dense networks due to increasing
complexity and overhead. Yun [36] proposed Underwater
Multi-Channel MAC with Cognitive Acoustics (UMAC-
CA), which allocates time and frequency resources using
fixed schedules and distributed sensing to avoid interference.
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FIGURE 1. Network topology architecture.

However, it increases power consumption due to frequent
sensing by idle nodes. Zhu et al. [37] proposed a Delay-
aware, Collision-free (DC) MAC protocol for underwater
networks that uses game theory and cluster-based scheduling.
It reduces collisions and energy consumption by dynamically
adjusting access probability and prioritizing transmissions
based on network topology and delay, resulting in higher
throughput and lower end-to-end delay. However, the pro-
tocol’s performance may degrade in dynamic environments
with topology changes.

As Table 1 indicates, although various existing protocols
prioritize nodes according to their data demands, they still
fall short of meeting the stringent requirements of mission-
critical applications. To bridge these gaps, our protocol closes
them by dynamically assigning extra RBs to mission-critical
traffic, meeting its strict delay and throughput targets while
utilizing range-aware, energy-efficient allocation. To our
knowledge, it is the first optimization framework expressly
tailored to mission-critical workloads in underwater acoustic
networks, addressing a previously unfilled research need.

III. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
As shown in Figure 1. The system involves the distribution
of acoustic nodes in a 3D arrangement with central topology
(communication between nodes and sink (Access Point) only,
there is no communication between nodes). To facilitate data
collection and transmission, Each sensor node receives a
unique identifier to enable precise identification and tracking.
The surface sink communicates with submerged sensor nodes
through an acoustic modem and relays the aggregated data
to the base station via an integrated radio modem. Its power
supply is provided either by onboard solar panels or through a
cabled connection to a proximate support vessel. This power
flexibility ensures continuous sink operation and supports the
system’s communication.

In our established framework, we presume that all sensor
nodes are randomly distributed within the communication
radius of the sink node. The sink node is positioned at the
central point of this defined region. In addition, we opt to
exclude any potential variations in node positions brought
about by movement. This is due to the negligible nature of

such fluctuations when compared to the distances covered
within the communication range. This assumption is based
on the observation that movements within the network are
generally minor relative to the larger scale of communication
ranges.

B. APPLICATION TYPES
Underwater wireless acoustic communication system is
designed to provide a wide range of sensors with various
applications. Certain applications, such as critical missions,
may be negatively affected by traffic management. To adapt
to this diversity of applications, the proposed approach
considers the following applications,

1) MISSION CRITICAL APPLICATION
This category includes applications that require real-time
data transmission without delay. To ensure superior quality
and performance, these applications demand increased data
rates and ample bandwidth for rapid, low-latency information
transmission. Examples include underwater intrusion detec-
tion, surveillance, and human activity. Therefore, allocating
additional network resources to these applications signifi-
cantly improves the QoS.

2) NON-CRITICAL APPLICATION
This class covers applications that do not need real-time
data transfer, for instance, scientific studies parameters. Such
workloads are inherently delay-tolerant, so assigning them
fewer network resources has no detrimental impact on their
performance or results.

IV. MATHEMATICAL MODEL
A. UNDERWATER ACOUSTIC CHANNEL MODEL
UAC channels exhibit distinctive characteristics that affect
signal propagation. Unlike typical wireless channels, in UAC
channels, the path loss is affected both by distance and
signal frequency [38]. Higher frequencies experience more
pronounced attenuation due to absorption loss, which inten-
sifies with both frequency and distance, thereby constraining
the available bandwidth [39]. Absorption arises from the
conversion of acoustic energy into alternative forms of
energy, such as heat, during the transmission of the acoustic
wave through a medium [40]. This conversion emerges
because of interactions between the acoustic wave and the
particles or molecules present within the medium. Whereas
spreading loss refers to the scattering of energy transmitted
by a source as the wavefront propagates across a significant
surface area [41]. The shape of the wavefront, spherical
or cylindrical, depends on the propagation distance. For
extended ranges, cylindrical modeling is used to account
for spreading loss, as the propagation is constrained by the
sea surface and seabed boundaries. The combined effects
of spreading loss and absorption loss contribute to the
phenomenon of path loss in UAC. Path loss can be calculated
using a mathematical model, which considers factors such as
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FIGURE 2. Influence of frequency and transmission range on acoustic
channel attenuation [46].

distance and frequency [42] as shown in (1).

A (d, f ) = A0dk α (f )dkm (1)

where A0 is a normalization constant that incorporates
baseline losses, dk is the spread loss over the distance d, k is
the spread factor and α(f) denotes the acoustic absorption
coefficient (dB/km) across a propagation distance expressed
in kilometres.

Equation (1) shows that the attenuation in an underwater
acoustic channel increases with both propagation distance
and signal frequency.

In UAC, overall path loss is typically quantified and
reported in decibels (dB) [43].

10 logA(d, f ) = 10 logA0 + k · 10 log d

+ dkm · 10 log a(f ). (2)

The absorption coefficient α (f) (in dB per kilometer) is
given by Thorp’s formula [44], [45] as follows:

α(f ) =
0.11 f 2

1 + f 2
+

44 f 2

4100 + f 2
+ 2.75 × 10−4 f 2 + 0.003

(3)

The communication range is significantly influenced by
the carrier signal frequency. At low frequencies, path loss
remains nearly constant over varying distances, whereas at
higher frequencies the attenuation coefficient rises sharply,
dominating overall path loss and significantly shortening
the viable communication range. Figure 2 highlights this
relationship, underscoring its importance when choosing a
suitable carrier frequency for communication.

The UAC spectrum is subdivided into several frequency
bands of equal width (F). Furthermore, the network is divided
into three distinct distance tiers. Each tier contains a group
of nodes and is assigned one or more dedicated frequency
sub-bands from the available spectrum. Accordingly, the
following sets are introduced to formalize these divisions.

F= [f1 , f2 , f3 ,. . . ,f|F|] be the set of all frequency segments,
Rn = [SR, MR , LR]: be the set of distance range.
where
SR is short distance range,
MR is medium distance range,
LR islong distance range,

FIGURE 3. Resource blocks structure.

RF = [LF , MF , HF ]: denotes the set of frequency
ranges. Accordingly, three corresponding subsets, one for
each frequency range are specified:

LF = [ lf1 , lf2 , lf3 ,. . . ,l|LF| ]: be the set of channels with low
frequencies,

MF = [mf1 , mf2 ,mf3 ,. . . ,m|MF| ]: be the set of channels with
medium frequencies,

HF = [ hf1 , hf2 , hf3 ,. . . ,h|HF| ] be the set of channels with
high frequencies.

Efficient channel allocation is pivotal in our model for
minimizing attenuation and maximizing spectrum utilization.
Accordingly, we define binary decision variables that specify
whether each channel is occupied.

αF =

{
1, if all channels in F are occupied,
0, otherwise.

(4)

αMF =

{
1, if all channels inMF are occupied,
0, otherwise.

(5)

αHF =

{
1, if all channels in HF are occupied,
0, otherwise.

(6)

B. RESOURCE BLOCK MODEL
In our model for UAC, as shown in Figure 3, we combine
frequency-division multiplexing (FDM) with time-division
multiplexing (TDM). Time is partitioned into T uniform slots,
and the pairing of each frequency segment with a time slot
yields RB. This method helps us efficiently use the available
spectrum by breaking it down into smaller, manageable parts
for distribution among various nodes.

Therefore, the aggregate count of RBs for a specific
network can be calculated as;

|4| = |F| × |T| . (7)

where |4| denotes the total number RBs on the network, |F|

is the the number of frequency and |T| is the number of time
slots.

Equation (7) quantifies the network’s aggregate capacity,
the total number of distinct transmission opportunities. The
corresponding sets are defined below.

T = [t1, t2, t3, . . . ,t|T| ]: be the set of all time slots,
4 = {ξ (f ,t)| f ∈ F, t ∈ T }: be the set of RBs available

for the network,
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Moreover, in this research, we categorize applications into
two primary types: mission-critical applications and non-
critical applications. Consequently, we have defined two
corresponding sets of nodes:

I = [i1, i2, i3, . . . , i|I| ]: be the set of nodes assigned to
mission-critical applications in the underwater network.

J = [j1, j2, j3, . . ., j|J|]: be the set of nodes assigned to
non-critical applications in the underwater network.

The total number of active mission-critical and active
non-critical nodes is represented by equations (8) and (9),
respectively:

NMCA =

∑|I|

i=1
xi (8)

NNCA =

∑|J|

j=1
yj (9)

where xiand yj are the usage status of a mission-critical and
non-critical application node, respectively, corresponding to
the following values of the associated binary variables:

xi =

{
1, if node i utilize 1 RB or more,
0, otherwise.

(10)

yj =

{
1, if node j utilize 1 RB or more,
0, otherwise.

(11)

Equations (12) and (13) specify the total number of
RBs assigned to mission-critical and non-critical nodes,
respectively.

RBc =

∑|I|

i=1
x(f ,t)
i (12)

RBnc =

∑|J|

j=1
y(f ,t)j (13)

where:

x(f ,t)i =

{
1, if x(f ,t)i is assigned to node i,
0, otherwise.

(14)

y(f ,t)j =

{
1, if y(f ,t)j is assigned to node j,

0, otherwise.
(15)

The data rate delivered by each RB over a given time
duration is (λ(f ,t)) in bits per second is calculated as follows:

λ(f ,t)
=

Nb
|T| × (τ + τg)

(16)

where:
Nb represents the number of bits carried by each RB.
τ denotes the length of a single time slot.
τg indicates the guard time separating adjacent time slots.

V. OPTIMIZATION MODEL
A. PROBLEM FORMULATION
Our system distinguishes between mission-critical and
non-critical applications. Mission-critical nodes necessitate
higher data rates or more RBs than non-critical nodes due
to their urgent nature and the limited resources available.
Our objective is to optimize the utilization of available RBs

to support both mission-critical and non-critical application
nodes. This requires an allocation strategy that prioritizes
mission-critical applications for RB access while ensuring
efficient utilization of the remaining RBs for non-critical
applications. The optimization problem, along with its
objective function and constraints, can then be expressed as
follows:

Maximize Z = α
∑|I|

i=1
xi + β

∑|J|

j=1
yj (17)∑|I|

i=1
x(f ,t)
i +

∑|J|

j=1
y(f ,t)j ≤ 1, ∀ (f , t) (18)

xi ≤

∑
f ∈F

∑
t∈T

x(f ,t)
i , ∀ i ∈ I (19)

xi ≥ x(f ,t)
i , ∀i ∈ I , ∀ f ∈ F , ∀t ∈ T (20)

yj ≤

∑
f ∈F

∑
t∈T

y(f ,t)j , ∀ j ∈ J (21)

yj ≥ y(f ,t)j , ∀j ∈ J , ∀ f ∈ F , ∀t ∈ T (22)
|I|∑
i=1

∑
f ∈F

∑
t∈T

x(f ,t)i +

∑|J|

j=1

∑
f ∈F

∑
t∈T

y(f ,t)j ≤ |4|

(23)∑
f ∈F

∑
t∈T

x(f ,t)
i λ(f ,t) ≥ di , ∀i ∈ I (24)

αF =

(∑|I|

i=1
x(f ,t)
i +

∑|J|

j=1
y(f ,t)j

)
, ∀f ∈ F (25)

αMF ≥

∑
f ∈MF

αf − |MF | + 1 (26)

αMF ≤ αf , ∀f ∈ MF (27)

αHF ≥

∑
f ∈HF

αf − |HF | + 1 (28)

αHF ≤ αf , ∀f ∈ HF (29)

x(f ,t)
i = 0 : ∀i ∈ LR, ∀f ∈ {HF ,MF } , ∀t ∈ T (30)

y(f ,t)j = 0 : ∀j ∈ LR, ∀f ∈ {HF ,MF } , ∀t ∈ T (31)

x(f ,t)
i = 0 : ∀i ∈ MR, ∀f ∈ {HF } , ∀t ∈ T (32)

y(f ,t)j = 0 : ∀j ∈ MR, ∀f ∈ {HF } , ∀t ∈ T (33)

x(f ,t)
i ≤ αMF : ∀i ∈ MR, ∀f ∈ {LF } , ∀t ∈ T (34)

y(f ,t)j ≤ αMF : ∀j ∈ MR, ∀f ∈ {LF } , ∀t ∈ T (35)

x(f ,t)
i ≤ αHF : ∀i ∈ SR, ∀f ∈ {MF ,LF } , ∀t ∈ T (36)

y(f ,t)j ≤ αHF : ∀j ∈ SR, ∀f ∈ {MF ,LF } , ∀t ∈ T (37)

x(f ,t)
i ≤ αMF : ∀i ∈ SR, ∀f ∈ {LF } , ∀t ∈ T (38)

y(f ,t)j ≤ αMF : ∀j ∈ SR, ∀f ∈ {LF } , ∀t ∈ T (39)

where (17) is the objective function of the optimization
problem, which maximizes the number of active node appli-
cations (both mission-critical and non-critical) by effectively
managing the allocation of the limited RBs in the network.
The first summation term in (17) is total mission-critical
application nodes weighted by factor α, and the second term
in (17) is total non-critical application nodes weighted by
factor β. Constraint (18) guarantees no RB is simultaneously
assigned to multiple nodes. Additionally, Constraints (19)
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through (22) guarantee that a node is designated as active
only if it has been assigned at least one RB. Constraint (23)
enforces that the cumulative allocation of RBs across both
mission-critical and non-critical nodes does not surpass the
overall RB capacity of the network. Constraint (24) ensures
that each mission-critical node is allocated a sufficient
number of RBs to satisfy its required data rate di. The
subsequent constraints are designed to optimize spectrum
utilization minimize transmission power and assign suitable
frequency bands to each node according to its transmission
range, while ensuring efficient monitoring of channel usage
across all frequency bands. More specifically, Constraint (25)
ensures that the indicator variable αF is set to 1 only when
all channels within the set F are fully occupied. Similarly,
constraints (26) and (27) guarantee that αMF is set to
1 solely when all constituent channels in MF are allocated.
Constraints (28) and (29) ensure that αHF is activated only
when all individual channels within the set HF are fully
occupied.

Constraints (30) and (31) restrict nodes in the LR region
to exclusively use RBs from the low-frequency set LF .
Constraints (32) and (33) prohibit nodes within the RM
region from utilizing high-frequency RBs (HF ), as these
nodes primarily rely on RBs with (MF ). If MF RBs become
unavailable, constraints (34) and (35) allow the use of (LF )
RBs as an alternative.

Constraints (36) and (37) prioritize RB allocation (HF )
to nodes within (SR) region. However, if these RBs are
unavailable, (MF ) RBs may be used, and (LF ) RBs serve
as the final fallback option, as specified by constraints (38)
and (39).
This optimization problem is formulated as a Binary

Integer Programming (BIP) problem [47], which belongs to
the class of NP-hard problems. Obtaining an exact solution
to this BIP formulation, specifically for constraints (18)
through (39), requires solving a combinatorial optimization
problem with binary decision variables. We utilized IBM
ILOG CPLEX Optimization Studio [48], a robust and
efficient tool designed for addressing complex optimization
challenges.

B. META HEURISTIC
While ILOG CPLEX Optimization Studio can provide
an exact solution to the problem defined by constraints
(18)–(39), the computational cost of doing so is prohibitively
high for large-scale scenarios. To mitigate this complexity,
we propose a suboptimal yet efficient solution strategy,
outlined in Algorithm 1. This method leverages the Whale
Optimization Algorithm (WOA) [49], a nature-inspired
metaheuristic designed to enhance resource allocation in
UAC systems. WOA is modeled after the social behavior of
humpback whales, particularly their bubble-net hunting tech-
nique, which guides the algorithm’s search and exploitation
processes.

The algorithm starts by setting up parameters such as
population of resource allocation (Zm), comprising multiple

3D matrices that represent the allocation of RBs across both
categories of nodes, F, and T. Other key parameters include
the number of iterations and various coefficients including
A, (which manages the balance during the optimization of
the best-found solution, represented by the matrix (Z) and
exploring new solutions), and C, (which adjusts the influence
of the target solution on the current solution). In addition,
it creates arrays for both categories of nodes, their distances
(Ri, Rj), available frequencies, and time slots. A population of
resource allocation, representing potential solutions, is then
created.

The algorithm proceeds using a specified number of
iterations, updating RBs allocation for each node relative
to the best current solution (Z) and constraints allocations
(18)-(39). If the allocation adjustment factor (||A|| < 1), the
allocation progressively converges toward the most effective
solution (Z), simulating an optimization towards the most
efficient resource distribution by updating the current solu-
tion Zm, which is based on the matrix (D) that represents the
element-wise distance matrix between the current solution
Zm and the target solution . Otherwise, it adjusts its allocation
based on a randomly selected solution (Zrand ), mimicking
an exploratory search for better resource allocation. The RB
allocations are further refined using a spiral equation in 24
(where b shapes the spiral, and l introduces randomness to
avoid getting stuck in a local optimum while the solution
Zm is updated). Algorithm 1 simulates iterative refinement
with a probability of less than 0.5. After each update, the
efficiency of each resource allocation is recalculated based on
the constraints (18)-(39) to identify a best solution (Z). The
iteration continues until the maximum number of iterations is
reached or a sufficiently optimal solution is found, at which
point the algorithm returns the optimal resource allocation
strategy (Z), effectively improving resource management
and ensuring reliable communication in underwater mission-
critical applications.

VI. PERFORMANCE EVALUATION
This section provides the outcomes of the simulation study
conducted to verify and analyze the effectiveness of the pro-
posed methodology. The simulations were conducted using
DESERT [28], with our proposed protocol compared against
DHL-MAC [35] and LBTSA [29]. DHL-MAC was selected
for comparison as it is one of the most recent and relevant
centralized protocols. This approach gives priority to nodes
with heavier data loads by assigning them additional time
slots, thus enhancing overall network throughput. However,
it lacks specific mechanisms to accommodate the stringent
requirements of mission-critical applications. LBTSA is a
hybrid CSMA/TDMA scheme: it schedules urgent traffic
using TDMA and non-urgent traffic with CSMA, then
switches to a fair allocation mode whenever collisions
exceed a defined threshold. Furthermore, we conducted a
benchmark with Phorcys, the NATO standard protocol, which
employs basic CSMA without any priority differentiation.
Other protocols, such as AB [32], PLSS [31] and AS [33],
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TABLE 2. Algorithm 1.

while incorporating priority mechanisms, exhibit excessively
high delays due to their scheduling strategies, making
them unsuitable for benchmarking in scenarios requiring
low latency. Consequently, these protocols were excluded
from the analysis because they have significant limitations
regarding mission critical applications requirements.

This study evaluates the proposed protocol against
priority-aware schemes like DHL and LBTSA, as well
as against Phorcys, the NATO-standard protocol, offering
a thorough comparison to demonstrate its effectiveness
in meeting the demands of mission-critical underwater
applications.

A. PERFORMANCE METRICS
The simulation evaluates the performance of the three
protocols using three primary metrics: throughput, average

end-to-end delay, and transmission power consumption,
measured separately for critical and non-critical nodes.

1) THROUGHPUT
Throughput is defined as the amount of data successfully
received by the sink per unit of time. Several factors can affect
throughput, including the data rate of the RB and the overall
network traffic load. In our model, all data is received by a
single sink. The propagation delay (Pd ) in UAC requires an
effective duration (ED) to be accounted for when calculating
throughput for each node. This effective duration considers
both the total transmission time and the propagation delay.
The ED is given by:

ED = T − Pd (40)

where T is total simulation duration used to calculate
throughput.

Thus, the throughput can be calculated using the following
formula:

Throughput =
ED ×N × nb

T × |T| × (τ + τg)
(41)

whereN is the number of RBs allocated to the node, and nb is
the number of bits per RB that carry the actual data (payload).

2) AVERAGE END-TO-END DELAY
(D) is the total time a data packet takes to travel from the
source to the sink node. It includes transmission, propagation,
and queuing delays, with guard times accounted for across
all three simulated protocols. The average end-to-end delay
is computed as follows:

D =
1
Ns

∑Ns

n=1
Dn (42)

where Ns is the total number of successfully received packets
during the simulation period andDn represents the end-to-end
delay of the n-th successfully received packet.

3) AVERAGE TRANSMISSION POWER
(P) We analyze the average transmission power for both
categories of application nodes across different protocols.
The transmission power required for successful communi-
cation is determined based on several factors, including the
target Signal-to-Noise Ratio (SNR), the path loss incurred
due to propagation range and transmission frequency, and the
ambient noise power at the sink.

Assuming a required SNR of 20 dB at the sink, the
transmission power for the nth successfully transmitted
packet is denoted as Pn. The average transmission power
across all successfully transmitted packets is given by:

P =

∑N
n=1 Pn
N

. (43)

In addition to benchmarking the performance of the
proposed protocol against existing solutions such as DHL and
TDMAacross key evaluationmetrics, we further compare our
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TABLE 3. Simulation parameters.

heuristic-based solution with an optimal solution derived via
Integer Linear Programming (ILP) implemented in CPLEX,
employing identical evaluation criteria in Subsection F.
Moreover, an ablation study is conducted to quantify the
performance differences between optimal and suboptimal
configurations of the proposed algorithm, using the same set
of metrics in Subsection G.

B. SIMULATION SETTING
Nodes within the underwater network are randomly
deployed, subject to the constraint that the average distance
for each node category (critical and non-critical) is main-
tained at 6 km. To maximize resource allocation efficiency
for mission-critical applications, the weighting parameters
α and β in (17) serve to control the relative priority
assigned to mission-critical and non-critical applications
during resource allocation. In this study, we select α =

0.9 and β = 0.1 to reflect the operational requirements of
underwater networks, where mission-critical data must be
prioritized to ensure timely and reliable delivery. Increasing
α relative to β further emphasizes the allocation of resources
to mission-critical nodes, resulting in higher throughput
and lower latency for critical applications, as observed in
our performance results. Conversely, assigning the same
weighting factor to both parameters (i.e., α = β) leads to an
equal allocation of resources between critical and non-critical
nodes, as discussed in Subsection G. The parameters used in
our simulations are detailed in Table 3.

C. THROUGHPUT
A comparison is provided in Figure 4 of the average total
throughput of the four different approaches for critical
and non-critical nodes. The results are averaged across
five different network scenarios with 10, 20, 30, 40, and
50 nodes. In the case of critical nodes, the proposed protocol
outperforms DHL, LBTSA and Phorcys significantly. This
illustrates the superior efficiency of the proposed protocol in
managing critical nodes and prioritizing their communication
requirements effectively. Contrary to this, DHL and LBTSA
perform better for non-critical nodes than the proposed
protocol. Phorcys consistently yields the lowest average
throughput for both critical and non-critical nodes, likely due
to its reliance on CSMA, which suffers from high collision
rates. Accordingly, the proposed protocol excels at managing

critical nodes, but at the cost of non-critical throughput,
demonstrating a clear priority strategy.

Figure 5 compares the total throughput for critical nodes
across different numbers of nodes for four approaches. The
proposed protocol consistently achieves the highest through-
put across all node counts. On the other hand, the DHL
protocol remains consistent, showing a throughput increase
only at higher network node densities. This pattern highlights
its comparatively less efficient resource utilization when
measured against our proposed approach. In contrast, LBTSA
maintains nearly constant low throughput, emphasizing its
limitations in handling increased network loads. Phorcys,
meanwhile, experiences a decline in total throughput as
node density grows, a consequence of excessive RTS/CTS
handshakes that aggravate collision rates. The results confirm
that the proposed protocol manages critical nodes’ network
resources more efficiently than DHL, LBTSA and Phorcys.
Further, our approach demonstrates robustness and scalability
under varying network loads. However, efficiency comes at
the cost of limited resources allocated to non-critical nodes
because this application is not urgent.

Figure 6 illustrates a comparative analysis of average
throughput per node for critical and non-critical data
transmissions across various network sizes using protocols
that provide priority only: proposed, DHL, and LBTSA.
The proposed protocol consistently achieves superior average
throughput for critical nodes at all evaluated network sizes,
demonstrating its robust capability in dynamically prioritiz-
ing mission-critical communications. In contrast, the DHL
protocol exhibits delayed prioritization, significantly bene-
fiting critical nodes only when the network size surpasses
40 nodes. Consequently, its critical node throughput remains
lower in smaller networks, indicating limited effectiveness for
scenarios that necessitate continuous prioritization. LBTSA
displays initial prioritization for critical nodes at small
network scales (approximately 10 nodes). However, this
prioritization diminishes as network size increases due to its
hybrid channel access mechanism, transitioning from CSMA
to TDMA, thus resulting in comparable throughput between
critical and non-critical nodes. The results underscore the
proposed protocol’s effectiveness in consistently delivering
high throughput to critical applications across varying
network scales, reinforcing its scalability and resilience under
fluctuating network conditions. Nonetheless, this advantage
is accompanied by comparatively lower throughput for
non-critical nodes, where DHL consistently outperforms
our proposed protocol across all network sizes. At the
same time, LBTSA surpasses our proposed protocol’s non-
critical node throughput only at larger network scales once
channel contention issues are mitigated through the TDMA
mechanism.

D. END-TO-END DELAY
Figure 7 illustrates a comparative analysis of the average end-
to-end delay for mission-critical and non-critical nodes under
three communication protocols: Proposed, DHL, LBTSA and
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FIGURE 4. Average throughput comparison for critical and non-critical
nodes (Averaged over networks of 10, 20, 30, 40, and 50 nodes).

FIGURE 5. Critical nodes throughput across different numbers of nodes.

Phorcys. The results are averaged over network scenarios
with 10, 20, 30, 40, and 50 nodes.

This highlights that the proposed protocol consistently
achieves the lowest average end-to-end delay across all node
types and configurations. For mission-critical nodes, the
proposed protocol demonstrates a significant reduction in
end-to-end delay, achieving approximately 27.41% relative
to DHL, by 23.13% relative to LBTSA and by 75.87%
to Phorcys. Similarly, for non-critical nodes, the proposed
protocol reduces the end-to-end delay by approximately 21%
relative to DHL, 16.35% relative to LBTSA and by 73.89%
relative to Phorcys. It is clear from this comprehensive
analysis that the proposed protocol minimizes end-to-end
delays, thereby improving the performance of mission-
critical systems.

Figure 8 compares the average end-to-end delay for critical
nodes across the Proposed, DHL, LBTSA and Phorcys
protocols under varying network sizes, with node counts
ranging from 10 to 50. The proposed protocol consistently
achieves the lowest end-to-end delay across all tested
network densities, highlighting its robustness and ability to
maintain low latency for mission-critical applications as the

FIGURE 6. Analysis of average throughput per node for critical and
non-critical nodes across priority protocols.

network scales. The proposed protocol shows significant
improvements over DHL, LBTSA and Phorcys in terms
of end-to-end delay, where the proposed protocol shows
the end-to-end delay reduction of approximately between
13.12% to 36.8% relative to DHL and between 17.72% to
20.3% in comparison to LBTSA and between 31.11% to
84.2% relative to Phorcys. Although the end-to-end delay of
the proposed protocol increases slightly as the node count
grows from 10 to 50, its rate of increase remains substantially
lower than that of the competing schemes.

Figure 9 illustrates the end-to-end delay for critical and
non-critical nodes under protocols that provide priority only,
Proposed, DHL, and LBTSA protocols. A pronounced and
consistent gap between critical and non-critical performance
is evident only with our proposed scheme, which maintains
both lower and more stable delays for critical traffic as the
network size increases. By contrast, DHL only begins to
distinguish between critical and non-critical delays once the
network exceeds forty nodes, indicating a delayed and limited
prioritization effect. LBTSA shows a slight prioritization for
critical nodes at ten nodes, but beyond that point, when it
reverts to pure TDMA allocation, critical and non-critical
delays converge, revealing no sustained clear differentiation.

As a result of these comparisons, the proposed protocol
is superior at prioritizing mission-critical communications
and managing performance under varying loads. The pro-
posed protocol demonstrates a more effective allocation of
resources to critical nodes, where the differentiation between
critical and non-critical node delays is more pronounced.

E. AVERAGE TRANSMISSION POWER
In this section, we analyze the average transmission power
for critical and non-critical nodes across different protocols.
The transmission power for both critical and non-critical
nodes is computed, and the results are averaged over network
scenarios with 10, 20, 30, 40, and 50 nodes. Figure 10
illustrates the average transmission power of critical and non-
critical nodes. The proposed protocol consistently demon-
strated the lowest transmission power required for critical
nodes and non-critical nodes. Other protocols require higher
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FIGURE 7. Average end-to-end delay comparison for critical and
non-critical nodes (Averaged over networks of 10, 20, 30, 40, and
50 nodes).

FIGURE 8. Critical nodes end-to-end delay across different number of
nodes.

FIGURE 9. Analysis of end-to-end delay per node for critical and
non-critical nodes across priority protocols.

transmission power than the proposed protocol for critical
and non-critical nodes. In particular, Phorcys’s reliance on
RTS/CTS handshakes and the resulting collisions further
elevate its transmission power requirements.

Although both DHL and LBTSA allocate the full band-
width to each time slot, DHL requires slightly lower trans-
mission power than LBTSA at both critical and non-critical
nodes. This difference stems from LBTSA’s use of CSMA
contention at the beginning of each slot, which increases
its overall power expenditure. These results underscore the
superior performance of the proposed protocol in required
transmission power for both critical and non-critical nodes.
The proposed approach efficiently allocates RBs with HF to
near nodes and RBs with LF to far nodes, optimizing power
usage across the network.

F. META-HEURISTIC SIMULATION RESULTS
This subsection presents a comparison between our heuristic
and the ILP solution, generated using CPLEX, in terms
of average throughput per node, end-to-end delay, average
transmission power and execution time.

Figure 11 shows that the average throughput per node for
critical nodes in theMeta-Heuristic solution is approximately
6.6% to 8% lower than the ILP solution. For non-critical
nodes, the average throughput per node decreases with the
Meta-Heuristic solution, with approximately 6.4 % and 7.8%
reduction compared to the ILP solution.

In Figure 12, the Meta-Heuristic solution in term of
end-to-end delay for critical nodes is approximately 6% to
7.5% larger than the ILP solution. For non-critical nodes,
the increases in the end-to-end delay of the Meta-Heuristic
solution are approximately 6.1% to 7.4% compared to the ILP
solution.

Figure 13 presents the average transmission power for both
the proposed ILP and Meta-Heuristic solutions, averaged
over networks with 10, 20, 30, 40, and 50 nodes. While
the figure displays results in dB, the percentage difference
in performance is calculated based on power in watts. The
results consistently show that the average transmission power
of the Meta-Heuristic solution is approximately 7.6% higher
than that of the proposed ILP solution for the critical scenario
and 7.8% higher for the non-critical scenario when calculated
in watts.

Figure 14 shows that the Meta-Heuristic solution con-
sistently outperforms the ILP solution in execution time.
While ILP execution time increases sharply with node count,
reaching 70 ms at 50 nodes, the Meta-Heuristic approach
maintains significantly lower times, with a reduction of
approximately 48.6% to 61.5%.

On the other hand, our Meta-Heuristic performs with
less execution time than ILP. Therefore, our Meta-Heuristic
can be effectively exploited to attain near-optimal results,
offering a viable alternative to ILP with potentially reduced
computational complexity.

G. ABLATION STUDIES RESULTS
This ablation study systematically evaluates the impact
of relaxing resource allocation constraints and weighting
parameters on both mission-critical and non-critical nodes
under two distinct scenarios. In the first scenario, resources
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FIGURE 10. Average transmission power for critical and non-critical
nodes (Averaged over networks with 10, 20, 30, 40, and 50 nodes).

FIGURE 11. Average throughput per node across several nodes
comparison between the optimum results and our heuristic results.

FIGURE 12. End-to-end delay across several nodes comparison between
the optimum results and our Meta-Heuristic results.

were equally allocated to all nodes with the same weighting
parameters (i.e., α = β). When constraints were relaxed for
critical nodes, throughput decreased by 64.2%, and network

FIGURE 13. Average transmission power per node across several nodes
comparison between the optimum results and our heuristic results.

FIGURE 14. Execution time comparison between the optimum results and
our Meta-Heuristic results.

delay increased by 62.7%. Conversely, non-critical nodes
experienced a 67.2% increase in throughput and with latency
increased by 61.2% as shown in Figures 15 and 16. In the
second scenario, RBs were allocated without consideration
of distance or frequency, leading to a substantial increase in
average transmission power consumption across both critical
and non-critical nodes. Specifically, critical nodes exhibited a
sharp escalation in power consumption, rising from 16.34 dB
to 62.2 dB, while non-critical nodes experienced a similarly
pronounced increase from 17.93 dB to 51.23 dB as illustrated
in Figure 17.

These findings reveal that relaxing both constraints ben-
efits non-critical nodes in throughput but severely degrades
critical node performance, with both node types facing
significant power inefficiencies and increased delays. This
emphasizes the need for priority-based and distance-aware
resource allocation for our proposed algorithm.

H. REMARKS AND DISCUSSION
The performance analysis demonstrates that the proposed
mechanism, which is based on RB allocation, is significantly
better tailored to mission-critical underwater applications
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FIGURE 15. Average total throughput for optimal and non-optimal
configurations of critical and non-critical nodes (Averaged across
networks with 10, 20, 30, 40, and 50 nodes).

FIGURE 16. Average end-to-end delay for optimal and non-optimal
configurations of critical and non-critical nodes (Averaged across
networks with 10, 20, 30, 40, and 50 nodes).

than the benchmark protocols. By leveraging both frequency
and time dimensions, it maximizes the use of the scarce
acoustic spectrum and minimizes end-to-end latency and
maximizes throughput even as network density rises. This
improvement is attributed to the model’s prioritization of
mission-critical nodes, enabling timely and reliable data
delivery for high-priority applications. In contrast, DHL
follows a pure TDMA strategy: expanding the frame
to accommodate extra slots for critical traffic inevitably
lengthens the cycle and, hence, the delay increases. LBTSA
is likewise dominated by TDMA and offers no enduring dif-
ferentiation between critical and non-critical data. Its initial
CSMA support for non-critical packets collapses as collisions
grow, forcing a reversion to fair allocation by TDMA.
Phorcys, which is entirely CSMA-based, performs the worst
contention back-offs, repeated RTS/CTS exchanges, and high
collision rates inflate latency, throughput and transmission
power. Our algorithm dynamically assigns high-frequency
RBs to nearby critical nodes and low-frequency RBs to
distant nodes, minimizing transmit power while ensuring that
mission-critical data reaches the sink swiftly and reliably
without draining the limited batteries of underwater sensors.
However, the current resource-allocation framework assumes
non-mobile nodes, a premise that breaks down in networks

FIGURE 17. Average transmission power for optimal and non-optimal
configurations of critical and non-critical nodes (Averaged across
networks with 10, 20, 30, 40, and 50 nodes).

comprising mobile sensors or AUVs. Mobility introduces
Doppler frequency offsets that shift carriers and generate
inter-carrier interference between adjacent RBs, thereby
suppressing throughput and inflating end-to-end delay.
To retain the protocol’s efficacy under such conditions, the
current mechanism should incorporate adaptive guard bands
together with mobility-aware RB reallocation. Concretely,
guard intervals must be elastically widened for RBs assigned
to rapidlymoving nodes and narrowed as their relativemotion
subsides, mitigating Doppler-induced spectral overlap while
preserving overall spectral efficiency.

VII. CONCLUSION AND FUTURE DIRECTIONS
As the IoUT technology develops rapidly, it has become
increasingly important tomanage underwater communication
resources efficiently. With this expansion of connected sys-
tems, there is an increasing need for communication frame-
works that are energy-efficient, highly reliable, and capable
of supporting high data rates, low latency, and seamless oper-
ation in complex and resource-constrained environments.
In this paper, an innovative resource allocation framework for
UAC is proposed, specifically designed to support mission-
critical applications. A proposed framework employs RBs
to optimize the limited underwater acoustic spectrum by
leveraging frequency and time division multiplexing. This
approach prioritizes mission-critical applications to ensure
high availability and low latency, while also accommodating
non-critical applications. Simulations demonstrate that the
proposed framework significantly increases throughput and
minimizes end-to-end delays and required transmitted power
compared to existing protocols. Furthermore, the implemen-
tation of a Meta-Heuristic algorithm achieves near-optimal
solutions with reduced complexity, thereby addressing the
unique challenges inherent in underwater communications.

Future research will modeling ambient acoustic noise and
related impairments. Addressing these factors will require
reformulating the optimization problem so that RB allocation
and transmission power control are solved jointly under
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SINR-based noise constraints to ensure reliable communi-
cation. The framework will also be generalized to support
mobile nodes, incorporating Doppler-aware RB reassignment
and adaptive guard bands to counteract mobility-induced
interference.

To enhance adaptability, we plan to fuse multi-modal
sensing data with reinforcement-learning (RL) techniques,
enabling real-time resource optimization in dynamic under-
water environments. Moreover, ecological considerations
will be embedded by integrating marine-mammal habitat
maps into the allocation policy, thereby facilitating environ-
mentally sensitive and interference-aware RB scheduling that
minimizes acoustic impact on vulnerable species.

ACKNOWLEDGMENT
The authors would like to thankMohammadAl-Fawa’reh and
MuhammadWaqas for their support and guidance throughout
the development of this work. Their insights and feedback
were crucial in refining the ideas. They deeply appreciate
their contributions and encouragement.

REFERENCES
[1] A. M. Almuhaideb and D. M. Al-Khulaifi, ‘‘An efficient authentication

and key agreement scheme for the Internet of Underwater Things (IoUT)
environment,’’ IEEE Access, vol. 12, pp. 175773–175789, 2024.

[2] M. Albekairi, ‘‘A comprehensive mutable analytics approach to distinguish
sensor data on the Internet of Underwater Things,’’ IEEE Access, vol. 12,
pp. 95007–95019, 2024.

[3] R. W. L. Coutinho, A. Boukerche, and A. A. F. Loureiro, ‘‘A novel
opportunistic power controlled routing protocol for Internet of Underwater
Things,’’ Comput. Commun., vol. 150, pp. 72–82, Jan. 2020.

[4] M. Jahanbakht, W. Xiang, L. Hanzo, and M. Rahimi Azghadi, ‘‘Internet
of Underwater Things and big marine data analytics—A comprehensive
survey,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 904–956,
2nd Quart., 2021.

[5] United Nations Office for Disaster Risk Reduction (UNDRR), Better Data
for Water-Related Disasters, Sustainable Development Goals, Jan. 2025].

[6] E. S. Ali, R. A. Saeed, I. K. Eltahir, and O. O. Khalifa, ‘‘A systematic
review on energy efficiency in the Internet of Underwater Things (IoUT):
Recent approaches and research gaps,’’ J. Netw. Comput. Appl., vol. 213,
Apr. 2023, Art. no. 103594.

[7] Z. Fang, J. Wang, J. Du, X. Hou, Y. Ren, and Z. Han, ‘‘Stochastic
optimization-aided energy-efficient information collection in Internet of
Underwater Things networks,’’ IEEE Internet Things J., vol. 9, no. 3,
pp. 1775–1789, Feb. 2022.

[8] Y. Kang, Y. Su, and Y. Xu, ‘‘ACGSOR: Adaptive cooperation-based
geographic segmented opportunistic routing for underwater acoustic
sensor networks,’’ Ad Hoc Netw., vol. 145, Jun. 2023, Art. no. 103158.

[9] K. Y. Islam, I. Ahmad, D. Habibi, and A. Waqar, ‘‘A survey on energy
efficiency in underwater wireless communications,’’ J. Netw. Comput.
Appl., vol. 198, Feb. 2022, Art. no. 103295.

[10] O. Bello and S. Zeadally, ‘‘Internet of Underwater Things communication:
Architecture, technologies, research challenges and future opportunities,’’
Ad Hoc Netw., vol. 135, Oct. 2022, Art. no. 102933.

[11] R. Kumar, S. Shekhar, H. Garg, M. Kumar, B. Sharma, and S. Kumar,
‘‘EESR: Energy efficient sector-based routing protocol for reliable data
communication in UWSNs,’’ Comput. Commun., vol. 192, pp. 268–278,
Aug. 2022.

[12] X. Hou, J. Wang, Z. Fang, X. Zhang, S. Song, X. Zhang, and Y. Ren,
‘‘Machine-learning-aidedmission-critical Internet of Underwater Things,’’
IEEE Netw., vol. 35, no. 4, pp. 160–166, Jul. 2021.

[13] S. Yang, Y. Su, X. Wang, and R. Fan, ‘‘Resource allocation for cognitive
underwater acoustic downlink OFDMA system with a practical spectrum
sensing scheme,’’ IEEE Internet Things J., vol. 11, no. 5, pp. 8731–8745,
Mar. 2024.

[14] C. Tan, X. Zhang, P. Yang, and M. Sun, ‘‘A novel sub-bottom profiler
and signal processor,’’ Sensors, vol. 19, no. 22, p. 5052, Nov. 2019, doi:
10.3390/s19225052.

[15] X. Zhang, P. Yang, and D. Cao, ‘‘Synthetic aperture image
enhancement with near-coinciding nonuniform sampling case,’’
Comput. Electr. Eng., vol. 120, Dec. 2024, Art. no. 109818, doi:
10.1016/j.compeleceng.2024.109818.

[16] H. Farag, M. Gidlund, and P. Osterberg, ‘‘A delay-bounded MAC protocol
for mission- and time-critical applications in industrial wireless sensor
networks,’’ IEEE Sensors J., vol. 18, no. 6, pp. 2607–2616, Mar. 2018.

[17] G. Sakya and V. Sharma, ‘‘ADMC-MAC: Energy efficient adaptive MAC
protocol for mission critical applications in WSN,’’ Sustain. Comput.,
Informat. Syst., vol. 23, pp. 21–28, Sep. 2019.

[18] W. K. Hasan, I. Ahmad, D. Habibi, Q. V. Phung, M. Al-Fawa’reh,
K. Y. Islam, R. Zaheer, and H. Khaled, ‘‘A survey on energy efficient
medium access control for acoustic wireless communication networks in
underwater environments,’’ J. Netw. Comput. Appl., vol. 235, Mar. 2025,
Art. no. 104079.

[19] M. Zheng, W. Ge, X. Han, and J. Yin, ‘‘A spatially fair and low conflict
medium access control protocol for underwater acoustic networks,’’ J. Mar.
Sci. Eng., vol. 11, no. 4, p. 802, Apr. 2023.

[20] W. Zhang, X. Wang, G. Han, Y. Peng, M. Guizani, and J. Sun, ‘‘A load-
adaptive fair access protocol for MAC in underwater acoustic sensor
networks,’’ J. Netw. Comput. Appl., vol. 173, Jan. 2021, Art. no. 102867.

[21] S. Yang, X. Liu, and Y. Su, ‘‘A traffic-aware fair MAC protocol for layered
data collection oriented underwater acoustic sensor networks,’’ Remote
Sens., vol. 15, no. 6, p. 1501, Mar. 2023.

[22] Y. Qiuling, C. Yanxia, D. Wei, L. Tian, Z. Rongxin, and H. Xiangdang,
‘‘Cluster-based spatial–temporal MAC scheduling protocol for underwater
sensor networks,’’ IEEE Sensors J., vol. 23, no. 15, pp. 17690–17702,
Aug. 2023.

[23] X. Liu, X. Du, M. Li, L. Wang, and C. Li, ‘‘A MAC protocol of concurrent
scheduling based on spatial–temporal uncertainty for underwater sensor
networks,’’ J. Sensors, vol. 2021, no. 1, Jan. 2021, Art. no. 5558078.

[24] X. Jin, Z. Liu, and K. Ma, ‘‘FCFS: A dual-channel and reservation-based
MAC protocol for underwater acoustic networks,’’ IEEE Internet Things
J., vol. 12, no. 4, pp. 3980–3990, Feb. 2025.

[25] N. Hao, Y. Su, R. Fan, and L. Li, ‘‘FDBUL: A delay-aware full-duplex
MAC protocol for underwater acoustic sensor networks,’’ IEEE Sensors
J., vol. 23, no. 16, pp. 18738–18751, Aug. 2023.

[26] J. Potter, J. Alves, D. Green, G. Zappa, I. Nissen, and K. McCoy,
‘‘The Janus underwater communications standard,’’ in Proc. Underwater
Commun. Netw. (UComms), Sep. 2014, pp. 1–4.

[27] J. Davies, P. Randall, J. Neasham, B. Sherlock, and A. Hamilton, ‘‘Phorcys
waveform architecture,’’ in Proc. 6th Underwater Commun. Netw. Conf.
(UComms), Aug. 2022, pp. 1–4.

[28] F. Campagnaro, R. Francescon, F. Guerra, F. Favaro, P. Casari,
R. Diamant, and M. Zorzi, ‘‘The DESERT underwater framework v2:
Improved capabilities and extension tools,’’ in Proc. IEEE 3rd Underwater
Commun. Netw. Conf. (UComms), Aug. 2016, pp. 1–5.

[29] Z. Zhang, W. Shi, Q. Niu, Y. Guo, J. Wang, and H. Luo, ‘‘A load-based
hybrid MAC protocol for underwater wireless sensor networks,’’ IEEE
Access, vol. 7, pp. 104542–104552, 2019.

[30] P. Rahman, A. Karmaker, M. S. Alam, M. A. Hoque, and W. L.
Lambert, ‘‘CUMAC-CAM: A channel allocation aware MAC protocol for
addressing triple hidden terminal problems in multi-channel UWSNs,’’
Social Netw. Appl. Sci., vol. 1, no. 7, p. 805, Jul. 2019.

[31] M. Liu, X. Zhuo, Y. Wei, Y. Wu, and F. Qu, ‘‘Packet-level slot scheduling
MAC protocol in underwater acoustic sensor networks,’’ IEEE Internet
Things J., vol. 8, no. 11, pp. 8990–9004, Jun. 2021.

[32] M. Liu, X. Zhuo, Y. Yuan, Y. Lu, Y. Wei, X. Tu, and F. Qu,
‘‘Adaptive scheduling MAC protocol in underwater acoustic broadcast
communications for AUV formation,’’ IEEE Internet Things J., vol. 10,
no. 8, pp. 6887–6901, Apr. 2023.

[33] J. Guo, S. Song, J. Liu, M. Pan, J.-H. Cui, and G. Han, ‘‘AS-MAC:
An adaptive scheduling MAC protocol for reducing the end-to-end delay
in AUV-assisted underwater acoustic networks,’’ IEEE Trans. Mobile
Comput., vol. 24, no. 2, pp. 1197–1211, Feb. 2025.

[34] H. Mei, H. Wang, X. Shen, Z. Jiang, W. Bai, C. Wang, and Q.
Zhang, ‘‘An efficient distributed MAC protocol for underwater acoustic
sensor networks,’’ IEEE Sensors J., vol. 23, no. 4, pp. 4267–4284,
Feb. 2023.

151694 VOLUME 13, 2025

http://dx.doi.org/10.3390/s19225052
http://dx.doi.org/10.1016/j.compeleceng.2024.109818


W. K. Hasan et al.: Energy-Efficient Resource Allocation for Mission-Critical Applications

[35] H. Mei, H. Wang, X. Shen, Z. Jiang, W. Bai, C. Wang, and Q. Zhang,
‘‘An adaptive MAC protocol for underwater acoustic sensor networks
with dynamic-high load,’’ IEEE Sensors J., vol. 24, no. 6, pp. 9059–9072,
Mar. 2024.

[36] C. Yun, ‘‘Underwater multi-channel MAC with cognitive acoustics for
distributed underwater acoustic networks,’’ Sensors, vol. 24, no. 10,
p. 3027, May 2024.

[37] R. Zhu, L. Liu, P. Li, N. Chen, L. Feng, and Q. Yang, ‘‘DC-MAC: A
delay-aware and collision-free MAC protocol based on game theory for
underwater wireless sensor networks,’’ IEEE Sensors J., vol. 24, no. 5,
pp. 6930–6941, Mar. 2024.

[38] N. Morozs, W. Gorma, B. T. Henson, L. Shen, P. D. Mitchell, and
Y. V. Zakharov, ‘‘Channel modeling for underwater acoustic network
simulation,’’ IEEE Access, vol. 8, pp. 136151–136175, 2020.

[39] M. Stojanovic and J. Preisig, ‘‘Underwater acoustic communication
channels: Propagation models and statistical characterization,’’ IEEE
Commun. Mag., vol. 47, no. 1, pp. 84–89, Jan. 2009.

[40] Y. Sun, X. Yuan, Z. Jin, G. Hong, M. Chen, M. Zhou, W. Li, and
D. Fang, ‘‘An effectivemethod to enhance the underwater sound absorption
performance by constructing a membrane-type acoustic metamaterial,’’
J. Phys. D, Appl. Phys., vol. 55, no. 43, Oct. 2022, Art. no. 435302.

[41] A. Toky, R. P. Singh, and S. Das, ‘‘Localization schemes for underwater
acoustic sensor networks—A review,’’ Comput. Sci. Rev., vol. 37,
Aug. 2020, Art. no. 100241.

[42] K. Saraswathi, K. Netravathi, and S. Ravishankar, ‘‘A study on channel
modeling of underwater acoustic communication,’’ Int. J. Res. Comput.
Commun. Technol., vol. 3, no. 1, pp. 143–147, 2014.

[43] S. Han, Y. Noh, R. Liang, R. Chen, Y.-J. Cheng, andM. Gerla, ‘‘Evaluation
of underwater optical-acoustic hybrid network,’’ China Commun., vol. 11,
no. 5, pp. 49–59, May 2014.

[44] W. H. Thorp, ‘‘Analytic description of the low-frequency attenuation
coefficient,’’ J. Acoust. Soc. Amer., vol. 42, no. 1, p. 270, Jul. 1967.

[45] Y. Lou, N. Ahmed, Y. Lou, N. Ahmed, ‘‘UWAC challenges and
research trends,’’ in Underwater Communications and Networks. Cham,
Switzerland: Springer, 2022, pp. 99–115.

[46] C. M. G. Gussen, P. S. R. Diniz, M. L. R. Campos, W. A. Martins,
F. M. Costa, and J. N. Gois, ‘‘A survey of underwater wireless
communication technologies,’’ J. Commun. Inf. Syst., vol. 31, no. 1,
pp. 242–255, 2016.

[47] M. Conforti, G. Cornuéjols, and G. Zambelli, ‘‘Integer programming
models,’’ in Integer Programming. Cham, Switzerland: Springer, 2014,
pp. 45–84.

[48] User’s, ILOGCPLEXOptimization Studio User’sManual, vol. 8, Armonk,
New York, NY, USA, 2017.

[49] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

WALID K. HASAN received the Bachelor of
Electrical and Electronic Engineering degree from
Gharyan University, Libya, in 2006, and the Mas-
ter of Telecommunication and Network Engineer-
ing degree from La Trobe University, Australia, in
2012. He is currently pursuing the Ph.D. degree
in electrical and electronic engineering with Edith
Cowan University, Australia. He has also received
a Postgraduate Certificate of Network with Swin-
burne University, Australia, in 2013. His research

areas include underwater wireless communication, the IoT, and computer
networks.

IFTEKHAR AHMAD (Senior Member, IEEE)
received the Ph.D. degree in communication net-
works fromMonashUniversity, Australia, in 2007.
He is currently an Associate Professor with
the School of Engineering, Edith Cowan Uni-
versity, Australia. His research interests include
5G technologies, green communications, QoS in
communication networks, software-defined radio,
wireless sensor networks, and computational
intelligence.

QUOC VIET PHUNG (Member, IEEE) received
the Ph.D. degree in communication engineering
from Edith Cowan University, Australia, in 2010.
He is currently a Lecturer with the School
of Engineering, Edith Cowan University. His
research interests include smart sensors, 5G tech-
nologies, underwater communication, software-
defined radio, data analytics, network security, and
applied artificial intelligence.

YUE RONG (Senior Member, IEEE) received the
Ph.D. degree (summa cum laude) in electrical
engineering from Darmstadt University of Tech-
nology, Darmstadt, Germany, in 2005. He was a
Postdoctoral Researcher with the Department of
Electrical Engineering, University of California
at Riverside, Riverside, CA, USA, from February
2006 to November 2007. Since December 2007,
he has been with Curtin University, Bentley, WA,
Australia, where he is currently a Professor. His

research interests include signal processing for communications, underwater
acoustic communications, underwater optical wireless communications,
machine learning, speech recognition, and biomedical engineering. He has
published over 200 journal and conference papers in these areas.

HAITHAM KHALED received the Bachelor of
Science degree in electrical and electronic engi-
neering and the Master of Engineering and Ph.D.
degrees from Edith Cowan University, Australia,
in 2006, 2016, and 2021, respectively. He is cur-
rently a casual Lecturer with the School of Engi-
neering, Edith Cowan University. His research
interests include green communications, wireless
networks, and the evolution of 5G technologies.

DARYOUSH HABIBI (Senior Member, IEEE)
received the Bachelor of Engineering degree
in electrical engineering (Hons.) and the Ph.D.
degree from the University of Tasmania, in
1990 and 1995, respectively. He has over 200
refereed publications in journals, conference pro-
ceedings, and book chapters. His research inter-
ests include engineering design for sustainable
development, renewable and smart energy sys-
tems, environmental monitoring technologies, and

reliability and quality of service in engineering systems and networks. He is
a fellow of Engineers Australia and the Institute of Marine Engineering,
Science and Technology.

VOLUME 13, 2025 151695


