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Relay Communication Systems

Muhammad R. A. Khandaker, Student Member, IEEE, and Yue Rong, Senior Member, IEEE

Abstract—In this paper, we address the optimal source, relay,
and receive matrices design for linear non-regenerative uplink
multiuser multiple-input multiple-output (MIMO) relay commu-
nication systems. The minimum mean-squared error (MMSE) of
the signal waveform estimation at the destination node is adopted
as our design criterion. We develop two iterative methods to solve
the highly nonconvex joint source, relay, and receiver optimization
problem. In particular, we show that for given source precoding
matrices, the optimal relay amplifying matrix diagonalizes the
source-relay-destination channel. While for fixed relay matrix and
source matrices of all other users, the source matrix of each user
has a general beamforming structure. Simulation results demon-
strate that the proposed iterative source and relay optimization
algorithms perform much better than existing techniques in terms
of both MSE and bit-error-rate.

Index Terms—MIMO relay, MMSE, multiuser, two-hop relay.

I. INTRODUCTION

I N next generation wireless systems, multiple users
equipped with multiple antennas will transmit simultane-

ously to the base station with multiple receive antennas and
vice versa [1], [2]. Transceiver design for multiuser MIMO
systems has been studied in [1]. The capacity of multiuser
MIMO systems was investigated for flat fading channels in [2]
using real channel measurement data.
Incorporating relays in a MIMO network can significantly

extend the coverage and improve the link reliability of the
network [3], [4]. MIMO relaying schemes can be categorized
into two general groups: non-regenerative and regenerative
schemes [3]. Compared with regenerative schemes, non-re-
generative scheme has lower computational complexity and
shorter delay, thus it has attracted much research interest
[4]–[11]. The capacity of a single-user non-regenerative MIMO
relay channel has been studied in [4]. In [5] and [6], the optimal
relay amplifying matrix maximizing the mutual information
(MI) between source and destination was derived assuming
that the source covariance matrix is an identity matrix. In [7]
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and [8], minimum mean-squared error (MMSE)-based ap-
proaches for MIMO relay systems have been studied. In [9], an
iterative tri-step source precoder, relay amplifying matrix and
destination equalizer design algorithm has been proposed for
a single-user MIMO relay system with channel uncertainties.
A unified framework was developed in [10] and [11] to jointly
optimize the source precoding matrix and the relay amplifying
matrices for a broad class of frequently used objective functions
in MIMO relay system design.
For a multiuser MIMO relay system, the achievable sum

rate has been derived in [12] using non-regenerative relaying
scheme. In [13], both non-regenerative and regenerative relays
have been considered in a multiuser MIMO network without
optimizing the power loading schemes at the relay and the
source nodes. An adaptive relay power allocation algorithm
has been developed in [14] to mitigate the self-interference.
An MMSE-based joint filter design has been proposed for
a multiuser non-regenerative MIMO relay system in [15].
All these works [12]–[15] assume that each user is equipped
with a single antenna. Several recent works have addressed
multiuser MIMO relay systems where users also have mul-
tiple antennas. In [16], the optimal source and relay matrices
were developed to maximize the source-destination MI. The
non-regenerative MIMO relay technique has been applied to
multi-cellular (interference) systems in [17]. The joint source
and relay optimization problem has been addressed in [18] for
multiple-antenna users using the MMSE criterion. The authors
in [19] addressed the joint transceiver and relay design problem
in a downlink (broadcast) multiuser system.
The main contribution of this paper is the joint source,

relay, and receiver optimization for multiuser MIMO relay
communication systems under the MMSE criterion where all
nodes (users, relay, and destination) are equipped with possibly
different number of multiple antennas. In contrast to [19],
we consider an uplink (multiaccess) multiuser MIMO relay
system. Note that although we consider the joint transceiver
design problem for an uplink system, transceivers in a down-
link system can be obtained by exploiting the uplink-downlink
duality of MIMO relay channel [20], [21]. This problem has not
been addressed in [3]–[17]. In particular, [3]–[11] considered
the transceiver and/or relay design problems for single-user
MIMO relay systems whereas [12]–[15] considered multiuser
MIMO relay design problems with single-antenna transmitters.
The problems addressed in [16] and [17] are also different from
our problem. In this paper, we derive the optimal structure of the
source precoding matrix of each user and the relay amplifying
matrix to jointly minimize the MSE of the signal waveform
estimation at the destination node in a multiuser MIMO relay
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system. The original optimization problem is highly nonconvex
and a closed-form solution is intractable. To overcome this
difficulty, we develop a Tri-Step iterative algorithm to jointly
optimize the source, relay, and receive matrices through solving
convex subproblems. It is shown that this algorithm is guaran-
teed to converge to (at least) a locally optimal solution. Note
that the Tri-Step algorithm is not presented in [18].
To reduce the computational complexity of the Tri-Step

algorithm, we develop a simplified Bi-Step algorithm, where
the source and relay matrices are optimized in an alternating
fashion. The receive matrix is not updated in each iteration,
and instead, it is obtained as an MMSE receiver after the
convergence of the Bi-Step algorithm. We show that for given
source precoding matrices, the optimal relay amplifying matrix
diagonalizes the source-relay-destination channel. While for
fixed relay matrix and source matrices of all other users, the
source matrix of each user has a beamforming structure. Simu-
lation results demonstrate that both the proposed Tri-Step and
Bi-Step iterative algorithms perform much better than existing
techniques in terms of both MSE and bit-error-rate (BER).
Moreover, it is shown that compared with the Tri-Step algo-
rithm, the Bi-Step algorithm requires less number of iterations
till convergence with only a small degradation in MSE and
BER. Such performance-complexity tradeoff is very important
for practical multiuser MIMO relay communication systems.
We would like to mention that such Bi-Step algorithm is not
considered in [19].
The rest of this paper is organized as follows. In Section II, the

systemmodel of a multiuserMIMO relay network is introduced.
The iterative source, relay, and receive matrices optimization
algorithms are developed in Section III. Section IV shows the
simulation results which justify the significance of the proposed
algorithms under various scenarios. Conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider a two-hop multiuser MIMO relay communi-
cation system as illustrated in Fig. 1 where users transmit
information to the same destination node with the aid of one
relay node. The user, , the relay and the
destination nodes are equipped with , , and antennas,
respectively. We denote as the total number
of independent data streams from all users, and assume that

, since otherwise the system cannot support
independent data streams simultaneously. For simplicity, as

in [5]–[16], a linear non-regenerative strategy is applied at the
relay node to process and forward the received signal.
We assume that the relay node works in the practical half-

duplex mode. Thus, the communication between the users and
the destination is completed in two time slots. In the first time
slot, the modulated signal vector is linearly precoded
at the user by the source precoding matrix . The
precoded signal vector

(1)

Fig. 1. Block diagram of a -user linear non-regenerative MIMO relay com-
munication system.

is transmitted to the relay node from the user. The received
signal vector at the relay node can be written as

(2)

where is the MIMO channel matrix between the
user and the relay, and are the received signal and the

additive Gaussian noise vectors at the relay node, respectively.
Substituting (1) into (2), we have

(3)

where is the equivalent mul-
tiaccess MIMO channel matrix of the source-relay link,

is the equivalent transmitted signal vector,
and denotes matrix (vector) transpose. We assume that

, where is an identity matrix,
denotes matrix (vector) Hermitian transpose, and stands
for the statistical expectation.
In the second time slot, the users remain silent and the relay

node multiplies (linearly precodes) the received signal vector
by an relay amplifying matrix and transmits the

signal vector

(4)

to the destination node. The received signal vector at the desti-
nation node can be written as

(5)

where is the MIMO channel matrix between the
relay and the destination nodes, and are the received
signal and the additive Gaussian noise vectors at the destina-
tion node, respectively.
Substituting (3) and (4) into (5), we obtain

(6)
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where is the
equivalent MIMO channel matrix of the source-relay-destina-
tion link, and is the equivalent noise vector at
the destination. We assume that the channel matrices

, and are all quasi-static, i.e., the channel matrices
are constant throughout a block of transmission and known to
the relay and the destination nodes. In practice, the channel state
information (CSI) of can be obtained at the destination node
through standard training method. The relay node can have the
CSI of through channel training, and ob-
tain the CSI of by a feedback from the destination node. The
quasi-static channel model is valid in practice when the mobility
of all communicating nodes is relatively slow. As a result, we
can obtain the necessary CSI with a reasonably high precision
during the channel training period. The relay node calculates
the optimal source matrices , and
the relay matrix , and forwards to the source node and
forwards and to the destination node. Note
that individual users do not require any channel knowledge. This
is a very important assumption for multiuser communication
since in a multiuser scenario the users are distributed and cannot
cooperate.We assume that all noises are independent and identi-
cally distributed (i.i.d.) complex circularly symmetric Gaussian
noise with zero mean and unit variance.
Due to its simplicity, a linear receiver is used at the destination

node to retrieve the transmitted signals. Denoting as an
weight matrix, the estimated signal vector is given by

(7)

III. PROPOSED SOURCE, RELAY, AND RECEIVE MATRICES
DESIGN ALGORITHM

In this section we develop the optimal source precoding ma-
trices , the relay amplifying matrix , and the destination
receive matrix to minimize the MSE of the signal waveform
estimation. Using (6) and (7), the MSE of the signal waveform
estimation at the destination is given by

(8)

where is the trace of a matrix, and is the equivalent
noise covariance matrix given by

From (4), the power of the signal transmitted by the relay node
can be expressed as

(9)

From (8) and (9), the joint source, relay, and receive matrices
optimization problem for the linear non-regenerative multiuser
MIMO relay system can be formulated as

(10)

(11)

(12)

where (11) and (12) are the constraints for the transmission
power at the relay and the user, respectively, and
, are the power budget available at the relay and
the source node, respectively. The optimization problem
(10)–(12) is highly nonconvex and a closed-form solution to
this problem is intractable. In the following, we develop two
iterative algorithms namely the Tri-Step and the Bi-Step algo-
rithms to optimize the source, relay, and receive matrices. In
the Tri-Step algorithm, the source, relay, and receive matrices
are optimized iteratively through solving convex sub-problems.
In the Bi-Step algorithm, the source and relay matrices are op-
timized alternatingly and the MMSE receive matrix is calcu-
lated after the convergence of the source and relay matrices. In
particular, the relay matrix is optimized by the Lagrange mul-
tiplier method in the Tri-Step algorithm, and by the majoriza-
tion theory in the Bi-Step algorithm. The optimal source ma-
trices are obtained by solving semi-definite programming (SDP)
problem in the Bi-Step algorithm, and by solving quadratically
constrained quadratic programming (QCQP) problem in the Tri-
Step algorithm.

A. Iterative Optimization of Source, Relay, and Receive
Matrices (Tri-Step Algorithm)

This algorithm starts at a random and satisfying (11)
and (12). In each iteration, the source, relay, and receive ma-
trices are updated alternatingly through solving convex sub-
problems. Firstly, with given and , the optimal is ob-
tained by solving the unconstrained convex problem (10), since
does not appear in constraints (11) and (12). The solution is

the well-known MMSE receiver given by [22]

(13)

where denotes matrix inversion.
Secondly, with given and , can be updated by

solving the following problem

(14)

(15)

where is the equivalent relay-destination MIMO
channel. Using the Lagrange multiplier method, we obtain
from (14)–(15) as

(16)
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where is the Lagrange multiplier associated with the
power constraint (15). Interestingly, (16) can be viewed as

, where is the weight
matrix of the MMSE receiver for the equivalent first-hop
multiaccess MIMO channel at the relay node given in (3),
and can be viewed as the
transmit precoding matrix for the effective second-hop MIMO
system , where is the transmitted signal
vector with , and is the noise vector with
covariance matrix . In this MIMO system, the
MSE of estimating is given by

. The optimal
that minimizes the MSE can be obtained by solving the

following problem

where is the transmission power constraint. Using the La-
grange multiplier method to solve the problem above, we obtain

.
The Lagrange multiplier in (16) can be found from the fol-

lowing complementary slackness condition

(17)

Assuming , we have the following from (16)

(18)

Since in this case (17) is already satisfied, if in (18) satis-
fies the constraint (15), then (18) is the solution to the problem
(14)–(15). Otherwise, there must be , and from (17) we
can see that must hold. In this
case, can be obtained from (15) by solving the following non-
linear equation

(19)

Let us now define the singular value decomposition (SVD) of
, where the dimensions of , , are ,

, and , respectively. Then we have from (19)
that

(20)

Denoting , (20) can be
equivalently written as

(21)

where and are the main diagonal elements of and
, respectively. Since the left-hand side of (21) is a monotoni-
cally decreasing function of , it can be efficiently solved
using the bisection method [23].

Thirdly, with given and , we reformulate the problem
(10)–(12) as a QCQP problem [23] to update ,
where stands for a vector obtained by
stacking all column vectors of on top of each other.
Let and be a matrix containing the

-th to -th rows of . Using the
identity of [24], where
denotes the matrix Kronecker product, we obtain that

Thus the MSE in (8) can be expressed as

(22)

where

and forms a block-diagonal matrix. Now the MSE in (22)
can be equivalently rewritten as

where and . Note that we can ignore
the term while optimizing with given and ,
since it is free of the optimization variable . Assuming
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TABLE I
PROCEDURE OF SOLVING THE PROBLEM (10)–(12) BY THE

TRI-STEP ALGORITHM

, the relay transmit power constraint in (11)
can be rewritten as

where .
Thus the optimization problem (10)–(12) can be equivalently
rewritten as the following QCQP problem

(23)

(24)

(25)

where with and
, . The QCQP problem (23)–(25)

can be efficiently solved by the disciplined convex program-
ming toolbox CVX [25] where interior-point method-based
solvers such as SeDuMi and SDPT3 are called internally. Since
all subproblems (10), (14)–(15), and (23)–(25) are convex,
the solution to each subproblem is optimal. Thus, the value of
the objective function (10) decreases (or at least maintains)
after each iteration. Moreover, the objective function is lower
bounded by at least zero.
Now, assuming that , , and are the optimal so-

lution for each subproblem, we have

(26)

(27)

(28)

where and is the gra-
dient of the objective function (10) along the direction of

at . Summing up (26)–(28), we obtain
, indicating that is a stationary

point of (10). Moreover, it can be seen that must be on the
edge of the feasible set specified by inequalities in (11) and
(12) (i.e., (11) and (12) must be satisfied with equality at ,
since otherwise, one can simply scale and such that
the value of (10) is decreased without violating (11) and (12).
This indicates that cannot be a saddle point and is indeed
the local-optimal solution. Therefore, the proposed iterative al-
gorithm monotonically converges to (at least) a locally optimal
solution. The procedure of solving the problem (10)–(12) using
the proposed Tri-Step iterative algorithm is listed in Table I,
where denotes the matrix maximum absolute column
sum norm, is a small positive number close to zero and the
superscript denotes the number of iterations.

B. Simplified Source and Relay Matrices Design (Bi-Step
Algorithm)

In this subsection, we propose an iterative source and relay
matrices design algorithm which has a smaller computational
complexity than the Tri-Step algorithm developed in the pre-
vious subsection. In particular, using the MMSE receiver (13)
at the destination node, the MSE of the signal waveform esti-
mation (8) becomes a function of and as

(29)

Thus, the joint source and relay optimization problem is given
by

(30)

(31)

(32)

In this Bi-Step algorithm, we update the source and the relay
matrices in an alternating fashion. In each iteration, for given
source matrices satisfying (32), we optimize the relay ma-
trix by solving the following problem

(33)

(34)

Then using this , we solve the problem (30)–(32) (with only
as the optimization variables) to obtain optimal source

precoding matrices . Finally, the receive matrix is ob-
tained as (13) using the value of and at the convergence
point.
Let us now define the following SVDs

where the dimensions of , , are , ,
, respectively, and the dimensions of , , are

given as , , , respectively. We assume
that the main diagonal elements of and are arranged in
a decreasing order. Based on Theorem 1 in [10], the optimal
structure of obtained from solving the problem (33)–(34) is
given by

(35)

where is an diagonal matrix, and contain
the leftmost columns from and , respectively.
It can be seen from (35) that the optimal diagonalizes the

equivalent source-relay-destination MIMO channel . Substi-
tuting (35) back into (33) and (34), we obtain the problem of
optimizing as

(36)

(37)
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where , , and are the main diagonal elements
of , , and , respectively. The problem (36)–(37) has a
water-filling solution which is given by

(38)

where for a real-valued number , , and
is the solution to the nonlinear problem of

(39)

Since (39) is a monotonically decreasing function of , it can be
efficiently solved using the bisection method [23].
Using the identity of

, for a given fea-
sible , the objective function (29) can be rewritten as

where and is the source covari-
ance matrix of the user. In the following, we focus on op-
timizing . Once we obtain the optimal , the optimal is

calculated as , where is the eigenvalue
decomposition (EVD) of , and is an arbitrary uni-
tary matrix. Considering the transmission power constraints in
(31) and (32), the source covariance matrices

can be optimized by solving the following problem

(40)

(41)

(42)

where , , and for a
matrix , means that is a positive semi-definite (PSD)
matrix.
Let us now introduce a PSD matrix that satisfies

(43)

TABLE II
PROCEDURE OF SOLVING THE PROBLEM (30)–(32) BY THE BI-STEP ALGORITHM

where for two matrices and , means that
. By using (43) and the Schur complement [23], the problem
(40)–(42) can be equivalently converted to the following SDP
problem

(44)

(45)

(46)

(47)

We use the CVX software package [25] to solve the problem
(44)–(47). Now the original source and relay matrices optimiza-
tion problem (30)–(32) can be solved by an iterative technique
as shown in Table II.
Since the problem (36)–(37) is a convex optimization

problem, the conditional update of will not increase (36)
and hence the objective function (30). Similarly, the problem
(44)–(47) is also convex, and the conditional update of
cannot increase (44) and hence the value of (30). Therefore,
each conditional update of and may either decrease
or maintain but cannot increase the objective function (30).
Note that the constraints in the problem (30)–(32) are always
satisfied with every conditional update. Similar to the justifi-
cation for the Tri-Step algorithm, a monotonic convergence
of and towards (at least) a locally optimal solution
follows directly from this observation.
The numerical solution to the problem (44)–(47) does not

provide sufficient insight to the structure of the optimal . In-
terestingly, by solving the problem (40)–(42) applying the La-
grange multiplier method, we obtain the following theorem for
the structure of the optimal .
Theorem 1: The optimal source covariance matrix for

the user as the solution to the problem (40)–(42) has the
following general beamforming structure

(48)

where , stands
for the projection to the set of PSD matrices,

and
are the SVDs of and , respec-

tively, and . Here ,
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, are the Lagrange multipliers, and is an
diagonal matrix.

Proof: See Appendix A.
The unknown Lagrange multipliers and in (48) can

be found by solving the dual optimization problem associated
with the problem (49)–(51) in Appendix A. Note that the op-
timal structure of the source covariance matrices in (48) can
be viewed as where

denotes matrix pseudo-inverse and
is the power-loading matrix. Note that (48) indicates that the
power distribution at each user needs to be adapted to the current
power levels of all other users. The pseudo-inverse in

, indicates that the source covariance matrix of the
user needs to match the corresponding source-relay-destination
channel.
In summary, matrices , , and are optimized in each

iteration of the Tri-Step algorithm, where themajor computation
task lies in solving the QCQP problem (23)–(25). The amount of
computation required for updating and is negligible com-
pared with that of solving the QCQP problem. The complexity
order of solving the problem (23)–(25) using the interior point
method [26] is .
In each iteration of the Bi-Step algorithm, and

are optimized. Here the major computation task is solving
the SDP problem (44)–(47), which has a complexity order
of using the interior point method [26].
Therefore, the per iteration computational complexity of the
Bi-Step algorithm is slightly higher than that of the Tri-Step
algorithm. However, the overall computational complexity
of both iterative algorithms also depends on the number of
iterations they need till convergence, which will be studied in
Section IV (see Table III).

IV. SIMULATIONS

In this section, we study the performance of the proposed op-
timal multiuser MIMO relay algorithms through numerical sim-
ulations. For simplicity, we consider a system with two users.
The extension to users is straight-forward. The two
users, relay and destination nodes are all equipped with multiple
antennas.We simulate a flat Rayleigh fading environment where
the channel matrices have entries with zero mean and variances
, , for , , , respectively. We define

as the signal-to-noise ratio (SNR) of the relay-destination and
user- -relay links, , respectively. For simplicity, we as-
sume and
throughout the simulations. All simulation results are averaged
over 1000 independent channel realizations.
We compare the performance of the proposed Tri-Step

and Bi-Step algorithms with the naive amplify-and-forward
(NAF) algorithm, and the pseudo match-and-forward (PMF)
algorithm in terms of both MSE and BER. For the Tri-Step
algorithm, the procedure in Table I is carried out to obtain the
optimal relay and source matrices, whereas for the Bi-Step

Fig. 2. Example 1: Normalized MSE versus . , ,
, .

Fig. 3. Example 2: Normalized MSE versus . , ,
, .

algorithm, the steps defined in Table II are followed. For both
algorithms, we use the CVX Matlab toolbox for disciplined
convex programming [25] to find the optimal source precoding

matrices. For the NAF scheme, we use ,

, and . For the PMF al-

gorithm, the same in the NAF algorithm is taken and
. Both the NAF and

the PMF algorithms use the MMSE receiver at the destination
node.
In the first two examples, we compare the performance of

the proposed algorithms with the other two approaches in terms
of MSE normalized by the number of data streams (NMSE)
for , , and . Fig. 2 shows the MSE
performance of all tested algorithms versus with

, whereas Fig. 3 illustrates the MSE per-
formance of tested algorithms versus for an
fixed at 20 dB. Our results clearly demonstrate the better per-
formance of the proposed iterative joint source and relay opti-
mization algorithms. It can be seen that the proposed optimal
algorithms consistently yield the lowest MSE over the entire

and region. The NAF and PMF algorithms
have much higher MSE compared with the proposed schemes
even at very high SNR. Note that the MSE performance of
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Fig. 4. Example 3: BER versus . , , ,
.

Fig. 5. Example 4: BER versus . , , ,
.

both the Tri-Step algorithm and the Bi-Step algorithm are al-
most similar to each other.
In the next example, we compare the performance of the four

algorithms in terms of BER. QPSK signal constellations are
used to modulate the transmitted signals. We set ,
, , and transmit 3000 randomly generated bits from
each user in each channel realization. Fig. 4 shows the BER
performance of all algorithms versus for

.
In the fourth example, we compare the BER performance of

the algorithms varying the SNR in the relay-destination channel.
This time we set , , , and transmit 3000
randomly generated bits from each user in each channel realiza-
tion using QPSK signal constellations. Fig. 5 shows the BER
performance of the algorithms versus for

. Note that in contrast to other three schemes, the PMF
algorithm requires , and thus, its performance cannot
be included in Fig. 5.
It can be seen from Figs. 4 and 5 that the proposed joint source

and relay optimization algorithms obtain the lowest BERs com-
pared with the other approaches. Interestingly, the BER per-
formance of the Tri-Step algorithm is slightly better than that
of the Bi-Step algorithm, especially at the high SNR region.
The reason is that in the Tri-Step algorithm, we update the re-
ceiver weight matrix at each iteration in addition to the source

TABLE III
ITERATIONS REQUIRED TILL CONVERGENCE IN THE PROPOSED ALGORITHMS.

Fig. 6. Example 5: BER versus . Varying number of antennas,
.

and relay matrices. Although the Tri-Step algorithm performs
better than the Bi-Step algorithm, the former algorithm requires
a larger number of iterations than the latter one to converge to
the same . For comparison, the number of iterations both al-
gorithms require in a typical run to converge up to
are listed in Table III. Here we set , ,
and . Therefore, based on the per iteration
complexity of two algorithms discussed in Section III and the
number of iterations they need to converge, the overall com-
putational complexity of the Bi-Step algorithm is smaller than
that of the Tri-Step algorithm when the number of antennas at
each user is small (which is the case in practical uplink mul-
tiuser communication systems). Such performance-complexity
tradeoff is very important for practical multiuser MIMO relay
communication systems.
In the last example, we compare the BER performance of

the proposed algorithms for different number of antennas at the
relay and the destination nodes with a fixed number of antennas
at the source nodes. Fig. 6 compares the BER performance of
the proposed algorithms versus for
with different number of antennas. It can be clearly seen from
Fig. 6 that as we increase the number of antennas at the relay
and/or destination node(s), the performance of the proposed al-
gorithms improve significantly.

V. CONCLUSIONS

We developed the optimal structure of the source precoding
matrices and the relay amplifying matrix in a multiuser MIMO
relay network to jointly minimize the MSE of the signal wave-
form estimation. We proposed two iterative algorithms to op-
timize the source, relay, and receive matrices. Simulation re-
sults demonstrate that the proposed algorithms outperform the
existing techniques in terms of both MSE and BER.
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APPENDIX
PROOF OF THEOREM 1

To determine the structure of the optimal source covariance
matrix for the user, we rewrite the problem (40)–(42)
with given as

(49)

(50)

(51)

where . The Lagrangian func-
tion associated with the problem (49)–(51) is given by

where and are the Lagrange multipliers. Making
the derivative of with respect to be zero, we obtain

(52)
By introducing an invertible matrix with

, (52) becomes

(53)

Obviously, (53) is valid if and only if

(54)

where is an semi-unitary matrix with .
Let us introduce the following SVD and EVD

(55)

where the dimensions of , , are , , and
, respectively, and contain the leftmost

columns and the rightmost columns of , respectively,
and , , are , , and

diagonal matrices, respectively. Substituting (55) back into
(54), we have

(56)

Equation (56) holds if and only if , , and
. Thus, from (55) we have that

(57)

where . Let us introduce the SVD of as

(58)

where the dimensions of , , are ,
, and , respectively,

is an diagonal matrix. By substituting (58)
back into (57) and solving (57) for , we have

. Finally,
taking into account the constraint (51), we obtain (48).
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