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Abstract. Coronary artery disease (CAD) remains one of the lead-
ing causes of mortality worldwide. Phonocardiogram (PCG) signals of-
fer a non-invasive, affordable, and accessible means for early detection
of CAD. However, the diverse acoustic manifestations of the disease
across different auscultation sites make accurate diagnosis using a single-
channel stethoscope challenging. Moreover, the scarcity of large anno-
tated datasets further limits the development of robust diagnostic mod-
els. This work presents a multichannel CAD detection framework using
transfer learning that leverages both early/late fusion from multiple aus-
cultation sites. A lightweight pretrained deep learning model is designed
to address data scarcity and enable computationally efficient deploy-
ment. We explore early and late fusion strategies to extract the channel-
wise collective information in detecting the CAD. The proposed system
achieves a 9.46% improvement in accuracy over its single-channel coun-
terpart, highlighting its potential for practical and scalable CAD screen-
ing. Clinically, it provides an affordable, accessible, and efficient tool for
CAD detection, especially in low-resource settings.
Keywords: Coronary artery disease · Phonocardiogram · Transfer learn-
ing · Embedding fusion · Multichannel Stethoscope

1 Introduction
Cardiovascular diseases (CVDs) represent the foremost global health concern,
accounting for approximately 31% of deaths worldwide [14]. Among the diverse
spectrum of CVDs, coronary artery disease (CAD) is the primary contributor to
CVD-related deaths and often serves as a precursor to other life-threatening dis-
eases. Early detection of CAD is crucial to mitigate its progression and associated
complications. Conventional diagnostic techniques such as coronary angiography
require specialized medical infrastructure, are expensive, and invasive [1]. An-
giography is typically reserved for symptomatic patients. However, CAD can be
present without symptoms, highlighting the need for a global pre-screening tool
for early detection. Heart auscultation is a cost-effective preliminary screening
tool for detecting CAD by identifying abnormal heart murmurs, which are due
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to turbulent blood flow caused by coronary artery blockages. Phonocardiogram
(PCG) graphically represent heart sounds and reflect cardiac activity, which can
change with disease [1].

Early research in CAD detection primarily focused on handcrafted and non-
linear features [6, 11]. These spectral-based studies often assumed heart sound
signals to be stationary, which contradicts the literature. With advancements
in deep learning, researchers have shifted towards automated feature extractors
using convolutional neural networks (CNN) [9]. The need for extensive feature
engineering was eliminated by extracting representations directly from raw sig-
nals [6, 4, 10]. Early studies on CVD detection predominantly relied on single-
channel PCG signals, using only one auscultation site to predict disease sig-
natures. However, recent research indicates that analyzing data from multiple
auscultation sites is crucial for identifying robust disease markers [8, 13, 5, 4].
Furthermore, studies utilizing multi-channel PCG have explored advanced fea-
tures, including entropy-based features and cross-entropy analysis [5, 10]. These
investigations collectively underscore the importance of dataset diversity in mul-
tichannel PCG. Pathak et al. [10] applied the synchrosqueezing transform to
extract entropy features using four stethoscopes and used a support vector ma-
chine classifier to detect the CAD. Zhao et al. [15] proposed a hybrid convolution
transformer neural network for extracting local features. However, the method
relies on a separate algorithm to segment the PCG signals, adding preprocessing
overhead and deployment constraints. Fynn et al. [1] proposed a seven-channel,
wearable, non-invasive vest-based data acquisition system that enables enhanced
data collection without the need for special assistance, used linear frequency
cepstral coefficient (LFCC) features, and achieved an accuracy of 80.44%, how-
ever, relied on manual PCG signal segmentation. Therefore, current CAD detec-
tion methods often depend on cardiac cycle segmentation, requiring extensive
preprocessing and occasionally human oversight. Deep learning-based methods
often involve computationally intensive transformations that increase complex-
ity. While multichannel techniques have a strong potential, current literature
typically selects optimal channel combinations based on test results, limiting
real-world applicability.

This study presents a novel approach for CAD detection using transfer learn-
ing to extract embeddings from multichannel PCG signals recorded at seven
distinct auscultation sites. Instead of relying on computationally intensive car-
diac cycle segmentation, we extract fixed-length fragments directly from time-
frequency (TF) representations. A lightweight, pretrained deep learning model
is used for embedding extraction, reducing system complexity while maintain-
ing performance. To ensure unbiased and generalizable results, embedding-level
fusion is performed by combining channels based on their individual validation
performance. Furthermore, score-level fusion of predictions from various channel
combinations is applied to reinforce the effectiveness of multichannel integration.

2 Database description
Seven-channel PCG data was collected using a wearable vest equipped with
multiple stethoscopes, worn by each subject to record PCG signals from vari-
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ous auscultation sites [1]. A pictorial representation of the stethoscopes used for
data collection is shown in Figure 1. The data was acquired at Fortis Hospital,
Kolkata, India. For this study, 60 s recordings were obtained in noisy hospital en-
vironment from 71 normal and 119 CAD male patients in a seated position who
were breathing normally, excluding individuals with valvular pathologies. Diag-
nosis was confirmed using coronary angiography. The mean (standard deviation)
age of CAD and normal patients was 60(15) years and 50(10) years.

Fig. 1. Wearable vest during data collection (left) and vest fitted with electronic stetho-
scopes (right) [1].

3 Methodology
3.1 Preprocessing and feature extraction

We applied an 8th-order Butterworth bandpass filter with cutoff frequencies of
25 Hz and 400 Hz to remove low and high-frequency noise, respectively [7]. This
was followed by z-score normalization across all channels to standardize ampli-
tude variations and mitigate inter-recording variability. To extract discriminative
TF features that capture the non-stationary nature of PCG signals, we employed
a log mel spectrogram and a continuous wavelet transform (CWT) based scalo-
gram (Figure 2). For the mel-spectrogram, we use 64 mel filter banks, and for the
scalogram, we employ the Morlet (Gabor) wavelet as the mother wavelet [10].

Fig. 2. Time-frequency representations of PCG signals for normal and CAD cases.

3.2 Classification framework

The YAMNet model [12] is an efficient, lightweight deep learning architecture
specifically designed for audio classification. It employs depthwise separable con-
volution layers based on the MobileNet architecture and significantly reduces
computational complexity and model size (15.5 MB) [12, 3]. It is pre-trained on
a vast corpus of 1.2 million YouTube audio segments (AudioSet), provides a rich
repository of acoustically relevant features [2, 6]. In this work, transfer learning
with the YAMNet architecture is used to overcome the inherent challenges of
low-resource datasets, primarily the risk of overfitting and the inability to learn
robust, generalizable features.
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Early fusion: Since multichannel heart-sound recordings are collected from
different auscultation sites, they capture diverse information reflecting the func-
tional characteristics of the human heart. We hypothesize that embeddings
extracted from these channels contain discriminative information that can be
leveraged for CAD detection. Thereby, we propose an early embedding fusion
approach with deep feature representations extracted from each channel. The in-
put x ∈ RC×T×F consists of TF representations from C channels, where T and
F represent the time frames and frequency bins, respectively. For each selected
channel fi = xi ∈ R1×T×F , features are extracted using a frozen YAMNet back-
bone up to its penultimate convolutional block. The convolution block consists of
the last five convolutional layers of the YAMNet architecture, specifically those
following the frozen layers and preceding the final fully connected (FC) layer.
Each channel’s output is processed through a global average pooling (GAP) layer
followed by flattening, yielding embeddings ei ∈ RD, where D = 1024. These
embeddings are then fused by computing their mean across all n selected chan-
nels, resulting in a single representation E = 1

n

∑n
i=1 ei, E ∈ RD. Finally, E is

passed through a common FC layer to produce the output prediction ŷ ∈ RK ,
where K is the number of target classes. The convolutional block, along with the
FC layer, is unfrozen for fine-tuning. Selective unfreezing helps adapt high-level
features for CAD detection while retaining YAMNet’s general acoustic knowl-
edge [6]. The mean is used instead of concatenation to control model complexity
and avoid increasing feature dimensionality. This strategy preserves the original
embedding size, keeps the classification lightweight, and reduces the number of
trainable parameters. Also, averaging promotes more robust representations by
reducing overfitting due to limited data. For single-channel operation, there will
be no fusion. A schematic representation of this method is shown in Figure 3.
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Fig. 3. Block diagram of the multi-channel embedding fusion using the YAMNet model.

Late fusion: We further enhance diagnostic robustness through a late score-
level fusion strategy. The goal is to combine outputs from multiple model configu-
rations trained on different subsets of input channels (Sc ⊆ {1, 2, . . . , 7}, Sc ̸= ∅)
at the decision level to avoid the risk of misclassification by any single configura-
tion. Let S = [S1, S2, . . . , Sn] denote the set of selected channel subsets, and let
s[Sc] ∈ RK represent the confidence score vector produced by the model trained
on subset Sc, where K is the number of classes. The final fused prediction is com-
puted as sfused = 1

n

∑n
c=1 s[Sc] ∈ RK . This approach aggregates complementary

information and provides a more reliable and generalized prediction.

Input preparation: CNNs typically require fixed-size inputs for effective fea-
ture extraction. However, TF representations of PCG signals vary in length due
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Table 1. Channel-wise performance comparison across different features

Channel log-mel spectrogram Scalogram

Acc. Sens. Spec. Acc. Sens. Spec. F1 score UAR Valid. Acc. Rank

1 59.96 78.15 28.96 64.17 79.83 37.7 73.46 58.81 65.74 4
2 59.96 74.79 35.06 58.37 70.59 38.05 67.01 54.32 67.35 3
3 61.56 73.11 41.82 67.86 81.51 44.94 76.11 63.22 70.99 1
4 71.03 85.71 46.36 66.84 88.24 30.78 76.68 59.51 68.93 2
5 60.54 73.95 38.31 61.58 74.79 39.48 70.45 57.14 63.13 6
6 63.68 73.95 46.75 64.76 81.51 36.75 74.38 59.13 62.07 7
7 61.55 73.11 42.34 62.09 79.83 32.08 71.34 55.95 65.25 5

to differences in signal duration. Prior studies addressed this using cardiac cycle-
wise segmentation with zero-padding. Extracting individual cycles demands a
separate algorithm, adding complexity to preprocessing. This work segments
the TF matrix into fragments of uniform length using Variable Hop Fragment
Selection (VHFS) proposed in [7]. VHFS extracts multiple overlapping fragments
of fixed duration (2.5 s), covering at least one full cardiac cycle, from the TF
representation of PCG signals by varying the hop length. The number of frag-
ments per sample is determined by the fragment selection factor (nf ), ensuring
balanced class distributions and increased training data. VHFS bypasses the
computationally intensive and error-prone step of precise heart sound localiza-
tion and segmentation, reducing system complexity and computational overhead.
For both validation and test datasets, an equal number of fragments is selected
from each sample, regardless of its length or label.

4 Results and discussion
The accuracy, sensitivity, specificity, F1 score, and unweighted average recall
(UAR) are calculated to assess the system’s performance [7]. We implemented
the stratified 7-fold cross-validation by splitting the dataset into seven distinct
folds. We perform the experiment with Adam optimizer over (30 epochs, batch
size 64, and learning rate 0.001). To avoid overfitting, we implement an early
stopping criterion with a patience of five epochs. To evaluate subject-level perfor-
mance, a majority voting is applied to the predictions of all fragments belonging
to a subject. The label assigned to the subject is determined by the most fre-
quently predicted label among its fragments.

4.1 TF feature-based performance comparison on single channel

Table 1 presents the channel-wise performance comparison for two input TF fea-
tures. The scalogram achieves 3.36% higher average sensitivity across channels
than log-mel spectrograms. Scalograms provide a richer TF representation by
preserving both fine-grained temporal and spectral variations, which are criti-
cal in detecting subtle pathological cues in PCGs. In all further experiments,
we have considered the scalogram as an input feature to the model. To ana-
lyze channel relevance, we ranked the channels based on their validation perfor-
mance, ensuring the most informative channels are emphasized. This approach
guides the multi-channel feature fusion. Validation accuracy was chosen instead
of test accuracy to ensure unbiased evaluation targeting real-time implementa-
tion. Channel 3 stands out as the most informative, with the highest validation
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Table 2. Performance comparison for embedding level fusion of multiple channels
based on different combination types

Combn. type Ch. combn. Validation Test
Acc. Sens. Spec Acc. Sens. Spec. F1 score UAR

Type I
[3,4] 75.23 87.39 54.68 75.23 88.24 52.99 81.79 70.61
[3, 4, 2] 73.09 84.87 53.25 66.23 75.63 50.26 73.52 62.94
[3, 4, 2, 1] 72.54 84.03 53.12 69.46 80.67 50.91 76.72 65.79
[3, 4, 2, 1, 7] 71.54 82.35 53.12 71.52 83.19 51.82 78.10 67.51
[3, 4, 2, 1, 7, 5] 74.70 86.55 54.55 69.01 84.87 42.47 77.26 63.67
[3, 4, 2, 1, 7, 5, 6] 66.86 77.31 49.48 74.42 63.40 71.01 83.19 50.26

Type II
[2, 4] 70.46 82.35 50.52 67.35 79.83 46.36 75.24 63.10
[2, 4, 3] - - - - - - - -
[2, 4, 3, 6] 66.25 80.67 42.08 68.41 78.15 51.95 75.47 65.05

Type III [3,4] - - - - - - - -
Type IV [1, 3, 7] 74.17 88.24 50.39 67.88 81.51 45.06 76.18 63.29
Type V [3, 4, 5, 6, 7] 63.61 67.23 57.40 68.94 62.31 67.84 71.43 61.69

accuracy (70.99%), test accuracy (67.86%), and UAR (63.22%), indicating its
superior ability to capture diagnostically relevant patterns.
4.2 Embedding level fusion of multiple channels

We now perform embedding-level fusion across multiple channels, based on indi-
vidual channels’ ranking indicated in Table 1. Different auscultation sites across
the chest exhibit site-specific acoustic characteristics, providing a multi-view
perspective on pathological patterns. Table 2 represents the performance of the
different channel combinations. Multi-channel fusion consistently outperforms
single-channel models, highlighting the value of integrating information from
different auscultation sites. The combination of channels 3,4 has the highest im-
pact with 75.23% test accuracy. However, not all combinations lead to improved
performance, as seen with [3, 4, 2] and [2, 4]. This highlights the complexity of
selecting the optimal set of PCG channels. With seven available channels, there
are (27−1)−7 = 120 non-trivial combinations (excluding single channels), mak-
ing exhaustive evaluation impractical in real-world scenarios. We categorized the
channel combinations into different types to guide the selection process. We se-
lected a representative subset of combinations for further analysis based on the
following criteria: Type I: Based on single channel ranking (Table 1), Type
II: Based on the anatomical and physiological relevance of channels, Type III:
Based on highest validation accuracy, Type IV: Based on highest validation
sensitivity, and Type V: Based on highest validation specificity. Type I channel
combinations are the most effective, achieving higher performance compared to
single channels. Type II combinations, selected based on the clinical relevance of
auscultation sites, partially overlap with Type I, further reinforcing the clinical
significance of the selected channels. Type III, Type IV, and Type V combina-
tions are included for score-level fusion strategies in subsequent stages.
4.3 Score level fusion of single/multiple channels combinations

We integrate the output scores of individual models trained on different chan-
nel combinations to further enhance the insight. We used a selected channel
combination from the combination types to perform the score-level fusion as
indicated in Table 2. Table 3 demonstrates that the score-level fusion strategy
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achieved a 2.09% better accuracy and 2.93% better UAR over feature-level fu-
sion alone, particularly when using top channel combinations from all five types
[3, [34], [24], [137], [34567]]. The sequential application of early (embedding-level)
and late (score-level) fusion enhances the interpretability of the model and rein-
forces the diagnostic potential of multichannel PCG analysis.

Table 3. Score level fusion on the different single and multi-channel combinations

Criterion Ch. combns. Acc. Sens. Spec. F1 UAR

Single ch. [3, 4] 70.48 90.76 36.36 79.43 63.56
[2, 3, 4] 68.90 88.24 36.49 77.78 62.37

Multi ch. [[34], [24], [137], [34567]] 73.64 84.03 55.97 79.82 70.01
[[34], [24], [234], [137], [34567]] 75.21 85.72 57.40 81.25 71.56

Single & multi ch. [3, [34], [24], [137], [34567]] 77.32 88.24 58.83 82.93 73.54

Signals from the left fourth and second intercostal (IC) spaces (channels 3 and
4) are most informative. Fusion across channels enhanced disease classification,
with feature-level fusion capturing local patterns and score-level (late) fusion
further boosting performance. Also, the use of a computationally lightweight
model supports the feasibility of deployment in portable or edge devices. How-
ever, the relatively low specificity observed indicates a tendency toward false
positives, likely due to limited variability in normal signals. The data was col-
lected in a real-world hospital environment, where substantial ambient noise and
operational constraints affected signal quality. In particular, the wearable sensor
vest was not optimally fitted for each patient, leading to inconsistent contact
and motion-induced artifacts. This suggests a need for better data balancing
and adaptive denoising in future studies.

5 Conclusion
This study proposes a robust framework for classifying CAD using multichannel
PCG signals. Two TF feature representations, log-mel spectrogram and scalo-
gram, are used to extract discriminative patterns from the signals. Pretrained
YAMNet model in a transfer learning setup served as a lightweight embedding
extractor. We first performed embedding-level fusion by combining representa-
tions from multiple PCG channels. Then, we applied score-level fusion by in-
tegrating prediction scores from models with single and multi-channel inputs.
The proposed system achieved a 7.37% gain in accuracy over the best single-
channel model by fusing multichannel embeddings, underscoring the benefit of
using heart sounds from multiple auscultation sites. Building on this, the addi-
tion of score-level fusion further enhanced the accuracy by an additional 2.09%.
The proposed system achieved an accuracy of 77.32%, sensitivity of 88.24%, and
UAR of 73.54%. In future work, controlled data collection, more advanced feature
extraction, and model architectures can be explored to improve generalizability
further.
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