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A B S T R A C T

The leading cause of mortality and morbidity worldwide is cardiovascular disease (CVD), with coronary artery
disease (CAD) being the largest sub-category. Unfortunately, myocardial infarction or stroke can manifest as
the first symptom of CAD, underscoring the crucial importance of early disease detection. Hence, there is a
global need for a cost-effective, non-invasive, reliable, and easy-to-use system to pre-screen CAD. Previous
studies have explored weak murmurs arising from CAD for classification using phonocardiogram (PCG)
signals. However, these studies often involve tedious and inconvenient data collection methods, requiring
precise subject preparation and environmental conditions. This study proposes using a novel data acquisition
system (DAQS) designed for simplicity and convenience. The DAQS incorporates multi-channel PCG sensors
into a wearable vest. The entire signal acquisition process can be completed in under two minutes, from
fitting the vest to recording signals and removing it, requiring no specialist training. This exemplifies the
potential for mass screening, which is impractical with current state-of-the-art protocols. Seven PCG signals
are acquired, six from the chest and one from the subject’s back, marking a novel approach. Our classification
approach, which utilizes linear-frequency cepstral coefficients (LFCC) as features and employs a support vector
machine (SVM) to distinguish between normal and CAD-affected heartbeats, outperformed alternative low-
computational methods suitable for portable applications. Utilizing feature-level fusion, multiple channels are
combined, and the optimal combination yields the highest subject-level accuracy and F1-score of 80.44% and
81.00%, respectively, representing a 7% improvement over the best-performing single channel. The proposed
system’s performance metrics have been demonstrated to be clinically significant, making the DAQS suitable
for practical use. Moreover, the system shows promise in post-procedural monitoring for subjects undergoing
percutaneous transluminal coronary angioplasty (PTCA) or coronary artery bypass grafting (CABG), effectively
identifying cases of restenosis following intervention.
1. Introduction

According to the World Health Organization, cardiovascular dis-
ease (CVD) stands as the foremost cause of morbidity and mortality
globally, contributing to 31% of all worldwide deaths in 2012 [1].
Over the past few decades, developing countries have borne 80%
of CVD-related deaths, with atherosclerotic coronary artery disease
(CAD) accounting for half of these reported cases [2]. This number is
projected to reach 23.4 million by 2030 [2]. Coronary artery narrowing
results from plaque deposition on the interior artery walls, leading to
a diminished supply of oxygenated blood to the heart muscles. This
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process, known as stenosis, results in the gradual death of myocardial
cells [3]. Symptoms of CAD include chest pain, weakness, nausea, light-
headedness, arm pain, and shortness of breath. A completely blocked
coronary artery can cause myocardial infarction. It is noteworthy that
CAD may also be present in patients with no symptoms [4]. Without
proper treatment, CAD can progress to congestive heart failure and
ischemic heart disease [5]. Therefore, early disease detection is crucial
to prevent this irreversible state. Lifestyle changes or surgical mea-
sures, such as stent insertion and bypass surgery, can be performed
to manage CAD [6]. Presently, the gold standard for CAD diagnosis is
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Fig. 1. PCG of a normal and a typical CAD subject with two blocked vessels.
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coronary angiography [7], an invasive and expensive procedure that is
often inaccessible to marginalized populations, especially in developing
countries. Moreover, doctors typically recommend this technique only
for patients experiencing symptoms, making early disease detection
challenging. Alternative standard diagnostic tools include nuclear and
exercise stress tests, which are costly and carry inherent risks [8,9].
Unfortunately, a heart attack, stroke, or other extreme symptoms often
become the first indicators of CAD long after its onset. Therefore, there
is a pressing need for a low-cost and non-invasive method for pre-
creening and early detection of CAD, which poses minimal risk to
atients.

Blood flow through a non-stenosed artery is streamlined and flows
moothly, exhibiting laminar characteristics [10]. Plaque buildup

causes disturbances leading to turbulent flow, characterized by high-
frequency vibrations known as murmurs [10]. The right coronary
rtery (RCA), left anterior descending artery (LAD) and left circumflex
Cx) are the primary arteries where blood flow becomes constricted
ue to stenosis [7]. Heart auscultation, a physician’s interpretation of
eart sounds, remains a common method for diagnosing cardiovascular

disease (CVD) [11]. Despite being cost-effective and non-invasive, heart
auscultation is challenging to learn, requiring years of training. Many
physicians are documented to have poor skills in this area; however, it
remains a primary method for pre-screening in healthcare [12–14]. The
iterature reflects the growing popularity of computer-aided diagnosis,
ith machine-learning techniques adapted to identify normal and
iseased patients through phonocardiogram (PCG) signals. Signal ac-
uisition is often laborious and inconvenient, rendering mass screening
mpractical in terms of efficiency. CAD induces changes in the power
pectral density (PSD) shape of PCG signals [15] due to murmurs. We
im to exploit these differences by extracting linear-frequency cepstral
oefficients (LFCC) for classification, using signals acquired from a
earable vest integrated with PCG sensors. In this study, we challenge

tate-of-the-art DAQS and data collection methods, emphasizing ease
nd convenience for practical use. The main contributions of this paper
re summarized below.

• The utilization of a wearable vest integrating six PCG signals from
anterior positions and one PCG signal from a posterior position
marks a novel approach in our study. To our knowledge, we
are the first to implement this unique sensor combination and
the first to investigate PCG signals acquired from the back, with
performance demonstrating its benefit in CAD detection.

• Our data collection method introduces unparallelled ease and
convenience, surpassing current state-of-the-art techniques. This
approach is directly applicable to practical use without specialist
training, and preliminary results indicate clinical significance.

• A low-computational approach of combining LFCC features from
multiple PCG channels to classify CAD using a support vector
machine (SVM) classifier renders the system suitable for portable
applications.

• A novel system evaluation on subjects who have undergone per-
cutaneous transluminal coronary angioplasty (PTCA) or coro-
nary artery bypass grafting (CABG) indicates the potential for
post-procedural monitoring.
2 
The subsequent sections of this paper are structured as follows:
Section 2 provides a concise background on the acquired biosignals,
Section 3 critically evaluates the literature on CAD detection, Section 4
details the DAQS and novel data collection methodology, Section 5
covers pre-processing and feature extraction for classification, and the
results are discussed in Section 6. Comparisons are made to other fea-
ure types in Section 7, and in Section 8, additional experimentation on
TCA and CABG subjects is conducted. Comparisons to existing studies

are presented in Section 9, and a discussion of practical implementation
s delivered in Section 10. The conclusion and future direction are in
ections 11 and 12, respectively.

2. Background

2.1. Phonocardiogram

As venous blood returns to the heart’s right atrium from the body’s
organs, it is sent to the lungs for reoxygenation from the right ventricle
and then circulates back through the pulmonary veins to the left atrium.
The oxygenated blood is subsequently pumped from the left ventricle
through the aortic valve to be distributed among the body’s organs.
Additionally, blood is supplied to the heart through coronary arteries
branching from the aorta. Heart sounds are generated throughout this
process, with PCG signals providing acoustic representations. Vibra-
tions resulting from the closure of the atrioventricular valves produce
the S1 sound, marking the onset of systole when the heart contracts
to propel blood through arteries from its chambers. The S2 sound, on
the other hand, originates from the closure of the aortic and pulmonic
valves at the beginning of diastole, when the cardiac muscle relaxes,
facilitating the filling of the heart chambers with blood [16]. The
revalence of CAD can cause variations in the PCG signal, previously
tated as murmurs [10]. These are predominately noticed during systole

and diastole as the blood flows in and out of the heart chamber,
ndicating the turbulent flow of blood [16]. Fig. 1 displays a PCG

from a normal and CAD-affected subject with two blocked arteries,
with an annotated S1, systole, S2 and diastole. Murmurs present in
heartbeats are not always due to CAD. Other valvular diseases can cause
these high-frequency sounds. Hence, it is important to distinguish these
other sources when detecting CAD to prevent misdiagnosis. Murmurs
associated with valvular pathology exhibit greater intensity than those
arising from CAD. Consequently, the primary emphasis of this study is
irected towards detecting murmurs specifically attributable to CAD,

acknowledging the heightened complexity inherent in this investigative
task. Subjects with identifiable murmurs from pre-screening should be
referred to other standard diagnostic tools mentioned previously.

3. Literature survey

Since 1992, numerous studies have been published in the literature
elevant to computer-aided heart disease detection. Accuracy, sensi-
ivity, and specificity stand as the three primary quantifiable metrics
ndicating the efficacy of a machine-learning classifier. Factors such as
ataset size, quality, feature selection, and the choice and number of

features significantly influence the design of an optimal classifier [17].
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In some cases, a mixture of multiple classifier types can be fused to
produce better results [18]. This literature survey aims to delineate
the evolution of literature concerning CAD detection, commencing with
single-channel PCG and progressing to multi-channel PCG analysis.
Subsequently, a critical evaluation of the DAQS and data collection
methods is provided, emphasizing the novelty of our proposed method.

3.1. Single-channel PCG

Makaryus et al. [19] used an advanced digital electronic stethoscope
to capture heartbeats measured at nine precise positions on the chest
for 40 s each. Patients were seated, and an elastic strap held the
stethoscope in place during recording, with a separate acoustic sensor
monitoring background noise and electrocardiographic leads attached
for heartbeat segmentation. A generated microbruit score from 142
non-CAD and 19 CAD subjects was used to train a logistic regression
model. The accuracy, sensitivity, and specificity achieved were 61.5%,
89.5%, and 57.7%, respectively. Schmidt et al. [20] investigated fre-
uency and non-linear features from 133 patients comprising 63 CAD
nd 70 normal. 8-s bedside recordings were made with an electronic
tethoscope placed on the fourth intercostal (IC) space left of the ster-
al border from normal-breathing patients. The accuracy, sensitivity,

and specificity achieved were 68.4%, 72%, and 65.2%, respectively,
sing features from five overlapping frequency bands. Li et al. [21]
nvestigated the fusion of handcrafted and deep learning features on a

single-channel PCG. 120 CAD and 55 non-CAD patients (confirmed via
angiography) were instructed to lie in a temperature-controlled room
(25◦) for 15 min between 2–6 pm before 5-min heartbeat signals were
ecorded by a piezoelectric sensor placed in the third IC space, left of
he sternal border. An accuracy, sensitivity, and specificity of 85.03%,
0.50% and 73.09%, respectively, were reported using handcrafted fea-
ures. The accuracy increased to 90.4% when fused with deep learning
eatures. The authors of this study did not specify how breathing sounds
ffected the PCG recordings. In future studies, it would be of interest to
bserve how the classifier performs when the subjects are in a breath-
eld state, as it is clear that breathing noise corrupts PCG signals [22].

Huang et al. [23] collected data from 206 CAD and 348 non-CAD
subjects. A high-cost, non-invasive cardiovascular detector (DR-A-1)
acquired signals from the sternum parallel to the third rib space from
supine subjects placed in a temperature-controlled room 5 min prior
with low noise. A two-branch CNN and LSTM model resulted in 96.05%
accuracy, where high-cost equipment and precise sensor location con-
tributed to the high performance. Iqtidar et al. [24] designed a classifier
to identify the severity of CAD in patients. The dataset consisted of 19
ingle vessel CAD (SVCAD), 24 double vessel CAD (DVCAD), 35 triple
essel CAD (TVCAD), and 75 normal subjects. An expert cardiologist
abelled the PCG signals acquired from the mitral position in a clinical
nvironment. This is a disadvantage since the gold standard angiogram
id not confirm the subject diagnosis. Mel-Frequency Cepstral Coeffi-
ients (MFCC) and 1D-Adaptive Local Ternary Patterns produced binary
nd multiclass accuracies of 98.3% and 97.2%, respectively. Although
he results were high, only the CAD patients were collected in a hospital
nvironment, and multiple samples per subject were taken. As subject-
evel accuracy was not reported, it appears that samples from the same
ubject could appear in both the training and test sets, contributing to
ata leakage and high performance. Many studies have analysed the
hysioNet/CinC Challenge 2016 database [25–28]. However, subjects
ith valvular pathologies, as well as CAD, are also included. Here, data
as collected in both clinical and non-clinical environments.

3.2. Multi-channel PCG

Pathak et al. [29] collected multi-channel PCG signals from 40 CAD
nd 40 normal subjects. Four stethoscopes with condenser microphones
laced in the plastic tubing were taped to the left second IC space, the
eft fifth IC space on the mid-clavicular line, the left fourth IC space
 m

3 
and the left fourth IC space on the midaxillary line. Heart sounds were
ecorded for 10 s in the supine position while the patient was breath-
eld. Each recording was split into three epochs containing two full
eart cycles; thus, epoch-level and subject-level metrics were reported.
he synchrosqueezing (SST) transform of each epoch was obtained,

which is computationally expensive. Sub-band entropy features were
extracted from the SST matrix across different time frames, and 5-
old cross-validation with SVM-linear was utilized for classification. A
ubject-level accuracy of 84.81% was reported. Liu et al. [30] collected

synchronous PCG signals from 21 CAD and 15 non-CAD subjects using
five electronic stethoscopes placed in precise positions for 5 min. After
preprocessing, the signals were segmented to produce 533 CAD and
438 non-CAD samples. Entropy features from single channels and cross-
entropy features from paired channels resulted in 90.92% accuracy;
however, all CAD subjects had left anterior descending stenosis, favour-
ng classification as similar characteristics will be present in the data.
n real-life scenarios, CAD patients with different affected vessels will
e present. For example, the system developed in this study may not
eneralize to CAD patients with stenosis in their right coronary artery.

3.3. Critical evaluation of literature: Common practical limitations

The reviewed studies and others available in the literature share
a common objective: to assist physicians in the early detection of
CAD. However, implementing these studies in practical scenarios poses
challenges. The data collection process tends to be tedious and incon-
venient, making mass screening impossible in an efficient manner. In
each study, sensors are precisely positioned on subjects, which requires
specialist training, typically using tape [29,31], elastic bands [19],
or without specified attachment methods [20,21,23,24,30,32,33]. It is
easonable to assume that studies involving multi-channel PCG data
ithout explicit sensor attachment details had the sensors taped to

the subject’s chest, extending the time needed to prepare each patient.
Single-channel PCG studies likely employed hand-held sensors, poten-
tially introducing friction noise due to tremors. Subjects are typically
required to be in a supine position, [20,21,23,29,31,33,34]; thus, a
hospital bed is required. In some studies, subjects are instructed to
remain in a temperature-controlled and quiet room for 5-10 min during
a specified time of day [21,23,33,34], which may not be feasible
n rural or busy settings. However, some studies have collected data
n a clinical setting [24], introducing realistic noise to the collected

signals. It is common to observe the use of high-cost equipment for
data acquisition. For example, [21,33,34] employs a CVFD-II cardio-
vascular function detector, while [23] utilizes a DR-A-1 detector. This
enables the acquisition of high-quality and clean signals. Recent studies
have delved into multi-class classification, whether for determining
the number of blocked vessels [24] or the severity of CAD [33].
However, since this study aims to develop a pre-screening device for
asymptomatic individuals, we have chosen to detect all stages of CAD
using a two-class system, even though our current CAD participants are
symptomatic. This decision stems from the understanding that anyone
flagged by the system will be referred to gold standard methods, where
a more comprehensive diagnosis can be conducted.

While the outlined data collection methods are indeed tedious and
nconvenient, they contribute significantly to achieving high-

performance metrics. A precise set-up of environment, subject posi-
tioning, sensor location, and high-cost equipment reduces the variation
n signals obtained from different subjects, allowing extracted features
o be relatively consistent. This ideal scenario, where signal variation
etween subjects is solely attributed to biological factors while all other
ariables are tightly controlled, greatly facilitates the classification
rocess by reducing the presence of noise within the system. However,
his approach may not be practical in real-world environments such
s hospitals, rural clinics, or home settings. Descriptions of sensor
lacement can be subjective among practitioners, and home users

ay struggle to understand the terminology used to describe sensor
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Fig. 2. (a) Stethoscope (b) Wearable vest fitted with electronic stethoscopes.
positioning. Patient throughput will also be reduced if tape is needed
to ensure precise positioning. Environmental conditions, particularly
temperature, may also vary based on geographical location or setting.
For instance, a home user may experience warmer conditions during
the summer than a patient in a hospital ward, making temperature con-
trol unrealistic. Furthermore, finding a quiet location may not always
be feasible, and low-socioeconomic areas may lack access to high-cost
DAQS. The objective of this study is to attain acceptable accuracy suit-
able for practical and portable applications, employing a convenient,
low-cost, and non-invasive data collection process accessible to both
physicians and the common layperson. No tedious patient preparation
or strict adherence to controlled environmental conditions is required
for our approach. Therefore, direct comparisons with other studies in
the literature, which often prioritize classification performance at the
expense of practicality, may not be appropriate. However, establishing
a baseline for evaluation is essential. According to the criteria outlined
in [35], a medical test is considered useful if the average of sensitivity
and specificity exceeds 75%. We aim to surpass this threshold to ensure
that our system demonstrates clinically significant performance and
is suitable for practical use. The next section of this paper describes
the newly designed DAQS and the methodology of multi-channel PCG
acquisition.

4. Data acquisition system

4.1. Hardware

To bridge the research gap and achieve clinically significant CAD
classification performance with practical ease and convenience, we are
utilizing a DAQS that integrates up to seven electronic stethoscopes
into a vest worn by the subject to capture heart sounds. Multiple
PCG channels can offer a richer representation of heart abnormalities
and provide more information than a single auscultation site [36].
Among the stethoscopes, six are positioned on the front of the body,
while one is placed on the back. To our knowledge, no previous
studies have analysed this multi-channel configuration, especially on
the posterior side. The stethoscopes are fixed to the vest and are
non-adjustable. At the front of each stethoscope, located beneath the
diaphragm, is the heart microphone (HM). Its purpose is to capture
the acoustic signature of the heart. As the diaphragm makes contact
with the skin, any movements result in pressure variations within the
stethoscope-diaphragm cavity, detected by the HM as heart sounds
that penetrate towards the skin surface. All signals captured from the
stethoscopes are channelled to a central data collection board (hub) via
custom-made cables for further signal conditioning before synchronous
digitalization. This setup employs a 24-bit sigma-delta converter with
a sampling frequency of 7.812 kHz. The hub is powered through a
USB connection, and a graphical user interface (GUI) was developed
4 
using MATLAB 2023a. The final recordings are saved and processed
on a laptop equipped with an Intel(R) Core(TM) i7-10510U processor,
16 GB of RAM, and running Windows 10 with a processor speed of
2.3 GHz. The multi-signal data is stored as a multitrack .wav file and
includes all stethoscope HM recordings. Fig. 2(a) displays the upward
and downward-facing electronic stethoscope. This is the wearable vest’s
fundamental building block, as presented in Fig. 2(b). The expected cost
of the vest will be targeted at consumer-level markets, aiming to be
comparable to other at-home health monitoring devices. The hardware
was obtained from a private organization. The sensor placement and
data collection protocol, described in the next sub-section, are novel
aspects of this study.

4.2. Data collection methodology

Between May and June 2023, multi-channel PCG data were gath-
ered at Fortis Hospital, Kolkata, using the wearable vest. In this prelim-
inary investigation, 80 male subjects participated, comprising 40 CAD
patients, 32 non-CAD patients, and 8 male nurses aged 21–29, assumed
to be in good health. We can safely assume the control subjects do
not have CAD, as the risk of developing CAD is significantly higher for
males over 45 years of age, and these subjects have no risk factors [37].
Subjects with valvular pathologies or those who had undergone PTCA
or CABG procedures were excluded from this initial phase of the study.
Verification of CAD and non-CAD patients was conducted through
gold standard coronary angiography, wherein a subject is classified as
CAD if either the RCA, LAD, or Cx exhibits more than 50% stenosis
according to standard guidelines [7]. Thus, an evenly balanced dataset
was obtained by including the 8 male nurses in the non-CAD group.
Within the CAD group, 14 subjects present with single-vessel CAD
(SVCAD), 14 with double-vessel CAD (DVCAD), and 12 with triple-
vessel CAD (TVCAD), each exhibiting varying degrees of stenosis. Given
the nature of this pre-screening device, our objective is to detect CAD
at all stages and in all arteries. The characteristics of the CAD and
non-CAD groups are summarized in Table 1, including age and body
mass index (BMI). There is no statistically significant difference in BMI
between the two groups (𝑝 = 0.3788, two-tailed t-test). Although there is
a difference in age between the groups, experts in the medical domain
have reported that age does not affect systolic left-ventricle and end-
diastolic volumes or cardiac output in normal subjects at rest [38–40].
Therefore, it is assumed that there is no age-related bias. Furthermore,
other datasets in the literature report larger differences in the mean
age between the two groups compared to our dataset [29,41]. This is
expected, as the disease is prone to aged population.

Since the stethoscopes are affixed to the vest, there is inherent varia-
tion in their placement among subjects due to differences in body types
and the fitting process conducted by doctors and nurses. As a result,
signal characteristics from a particular stethoscope may exhibit slight
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Fig. 3. Steps taken to fit the vest on a subject. (i) Select the appropriate vest size based on body dimensions. (ii) Place the neck strap to ensure the middle of the vest aligns with
the sternum. (iii) Wrap the vest tightly around the body, securing it firmly with stitched-on Velcro. (iv), (v), (vi) Wrap the shoulder straps over the shoulders and attach them to
the back of the vest using Velcro. (vii) Position the back stethoscope at the rear of the vest. (viii) Ensure that all stethoscopes make clean contact with the skin.
Table 1
Database description.

Continuous variables presented as mean(std)

CAD subjects (n = 40) Non-CAD subjects (n = 40)

Age [years] 59.73(8.02) 49.7(18.8)
BMI [kg/m2] 24.62(4.19) 23.92(3.03)

variations across subjects that are unrelated to biological variables.
This variability arises from the simplification of the data acquisition
process, which is the primary focus of this study. However, efforts were
made to mitigate this issue by providing multiple vest sizes: medium
(M), large (L), and extra-large (XL), with only L and XL vests utilized
in this study. Despite the presence of placement variation, the seven
stethoscopes are positioned to capture information from approximately
the same areas of the chest and back. Specifically, four stethoscopes are
placed on the left-hand side, two on the right-hand side, and one on
the back. The placement of the vest was carefully selected under the
assumption that subjects would be seated upright or standing during
data acquisition, thus eliminating the necessity for a hospital bed.
Channel 1 is positioned approximately over the midaxillary line on
the left fourth intercostal (IC) space; channel 2 is situated around the
midclavicular line below the fifth IC space near the apex; channel 3 is
positioned near the left fourth IC space; channel 4 is located near the
left second IC space; channel 5 is placed on the opposite side of the
sternum from channel 3; channel 6 mirrors the placement of channel 4
on the right-hand side; and channel 7 is positioned on the left side of
the back along the same horizontal line as channel 4.

Fitting the vest onto a shirtless subject can be done individually
or with the assistance of another person and requires no specialist
training. Once the appropriate-sized vest is selected, a strap is placed
around the neck to prevent the vest from slipping and to ensure
alignment with the sternum. The vest is then wrapped around the
body and securely fastened with Velcro on the back. Two vertical
straps are then wrapped over the shoulders and affixed to the back of
the vest using Velcro strips. This further tightens the vest to ensure
optimal contact between the stethoscopes and the skin. Finally, the
back stethoscope is positioned at the rear of the vest on a designated
marker. If necessary, the stethoscopes are adjusted through the vest to
ensure proper contact with the skin. The entire vest fitting process can
be completed within 30 s. Fig. 3 illustrates the fitting process of the
5 
vest, culminating in the vest being worn by a subject, with stethoscope
numbering corresponding to Fig. 2(b) and the channel placement de-
scription. Additionally, the figure depicts the hub enclosed in a plastic
casing for protection. Ideally, the stethoscopes would capture data
between adjacent ribs to minimize extra dampening. However, due to
subject-to-subject variability and the fixed positioning of stethoscopes
on the vest, achieving this ideal scenario for all cases is not feasible.
This introduces further signal variation between subjects, representing
an additional consequence of the user-friendly system design.

All recordings took place in the angiography ward of Fortis Hospital,
Kolkata, where patients undergo preparation for coronary angiography.
The ward can accommodate up to 12 patients and their family members
simultaneously, with 6–10 nurses and 2–3 ward staff working in the
same area. This clinical setting introduces various types of noise into
the system. Observed noise sources include, but are not limited to,
talking, doors closing, privacy curtains opening and closing, electric
shavers, footsteps, ringing phones, and the sound of tap water flowing
into a metal basin. Occasionally, construction was taking place in
neighbouring rooms or buildings. These types of noise sources will
be expected in real-life scenarios. Patients were invited to participate
in the study before undergoing angiography. Informed consent was
obtained from all patients and healthy volunteers, and data collection
adhered to the code of ethics for conducting research on human sub-
jects as outlined in the Helsinki Declaration [42]. Following the fitting
of the vest on the subject, a brief 5–10 s test recording was performed
to verify that the stethoscopes captured readable signals. This test en-
sured that no loose connections would compromise the final recording
quality. Subjects were instructed to hold their breath for the duration of
the 10-s recording. Once measurements were completed, the vest was
removed in reverse order as depicted in Fig. 3. Fig. 4 compares breath-
held recordings obtained from a Normal, SVCAD, DVCAD, and TVCAD
subject. In a practical scenario, assuming a 10-s recording is obtained,
the entire process of fitting the vest, testing the connections, recording,
and removing the vest can typically be completed within 1-2 min. This
emphasizes the convenience of the system, as no patient preparation is
required before fitting the vest. To the best of our knowledge, no data
collection methodology described in the literature offers this level of
ease and convenience. Table 2 provides a comparison of this study’s
DAQS with others documented in the literature.

Other wearable designs for PCG signal acquisition were also ex-
plored. For example, chest straps were considered since they are similar
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Fig. 4. Typical signal of non-CAD, SVCAD, DVCAD, and TVCAD subject high-pass filtered with 20 Hz cutoff frequency.
Table 2
DAQS Comparison with existing studies.

Study Acquired
biosignal

Patient preparation Sensor positioning Sensor attachment Environment Subject position Cost

Makaryus et al.
[19] (2013)

Single-channel
PCG

4 electro-cardiographic
leads attached for
heartbeat segmentation

Nine precise positions
(multiple Single-channel
recordings)

Elastic Strap Environmental
Noise Present

Seated Lowa

Schmidt et al.
[20] (2015)

Single-channel
PCG

Not Specified Precise-fourth left
intercostal space left of
sternal border

Hand-held Clinical Supine Low

Li et al. [21]
(2020)

Single-channel
PCG

Lie in
temperature-controlled
room (25 ± 3 ◦C) for 15
min between 2 and 6 p.m.
in supine position

Precise-third left intercostal
space left of sternal border

Hand-helda Quiet and
temperature-
controlled room

Supine Higha

Iqtidar et al.
[24] (2021)

Single-channel
PCG

Not Specified Precise-mitral position Hand-helda Clinical Not Specified Low

Huang et al.
[23] (2022)

Single-channel
PCG

Lie in
temperature-controlled
room (25 ± 3 ◦C) for 15
min in supine position

Precise-third rib space on
left side

Tapea Quiet and
temperature-
controlled room

Supine High

Pathak et al.
[29] (2020)

Multi-channel
PCG

Not Specified Four precise positions 3M Transpore Tape Quiet room Supine Lowa

Liu et al. [30]
(2021)

Multi-channel
PCG

Not Specified Five precise positions Tapea Quiet rooma Not Specified Higha

This Study Multi-channel
PCG

No preparation required No precise positing due to
fixed stethoscope-vest
placement

Wearable Vest Clinical Seated or standing Low

a Indicates that the relevant detail was not specified in the paper and an educated assumption has been made.
to heart rate monitors and can be fitted with multiple stethoscopes.
However, multiple straps would be needed to ensure sufficient cov-
erage, increasing the time required for signal acquisition and causing
discomfort to subjects. Ultimately, we chose the wearable vest due to its
good chest coverage and ease of use. It is comfortable for subjects, and
the snug fit reduces motion artifacts. Moreover, the design is scalable
and practical. It can be adjusted to accommodate different body shapes
and sizes, making it suitable for use in diverse patient populations. The
simplicity of the design also aids in mass production and deployment.

5. Data processing methodology

5.1. Overview

Fig. 5 illustrates a block diagram summarizing the methodology of
the LFCC investigation.
6 
5.2. Classification model and performance metrics

SVM has demonstrated strong performance in the classification of
PCG biosignals [29], hence it has been adopted in this study. Let the 𝑀
training samples be denoted as (𝐱𝑖, 𝑦𝑖)𝑀𝑖=1, where 𝐱𝑖 ∈ R𝑑 represents a 𝑑-
dimensional feature vector, and 𝑦𝑖 ∈ [+1,−1] is the corresponding label.
The SVM algorithm aims to find the optimal hyperplane that separates
the two classes, as defined by Eq. (1) [43]:

𝐰𝑇 𝐱 + 𝑏 = 0 (1)

where 𝐰 denotes the weight vector perpendicular to the hyperplane
and 𝑏 is the bias in the 𝑑-dimensional space. An inequality is used to
separate the two classes, given by Eq. (2).

𝐰𝑇 𝐱𝑖 + 𝑏 =

{

≥ +1 then 𝑦𝑖 = +1,
< −1 then𝑦𝑖 = −1. (2)

These equations satisfy 𝑦𝑖(𝐰𝑇 𝐱𝑖 + 𝑏) ≥ 1 for 𝑖 = 1, 2,… , 𝑀 when
the class information is included. This condition holds only in linearly
separable scenarios, as illustrated in Fig. 6
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Fig. 5. Data processing methodology overview.
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Fig. 6. SVM classifier illustration.

does not exist, slack variables, denoted as 𝜉𝑖, are introduced to allow
for misclassifications. The modified condition becomes 𝑦𝑖(𝐰𝑇 𝐱𝑖 + 𝑏) ≥
1 − 𝜉𝑖 for 𝑖 = 1, 2,… , 𝑀 . To improve class separability, linear and
non-linear transformations can be applied to the input features. SVM
training aims to determine the maximum margin hyperplane in the
transformed feature space, which is often high-dimensional or even
infinite-dimensional. However, the kernel trick eliminates the need to
explicitly compute transformations in these domains. This is because
many algorithms depend only on the scalar products between feature
vectors, which can be efficiently computed in the original domain using
a kernel function. In this study, the Radial Basis Function (RBF) kernel
is employed and is defined by Eq. (3) [44].

𝑘(𝐱, 𝐲) = 𝑒𝑥𝑝(−𝛾‖𝐱 − 𝐲‖2) (3)

where 𝛾 is a tunable parameter, set as 1∕𝑑 in this study due to its
ptimal performance on a validation set. Allowing some misclassifica-
ions during training can be beneficial to achieve a wider margin of
eparation. This trade-off is controlled by the error cost, often denoted
s 𝐶 [45].

The objective is to achieve an average sensitivity-specificity (Sens-
Spec) score of 75% or higher, as specified by [35], to establish the
uitability of the system for practical use. Additionally, accuracy (Acc)
nd F1-score, which provide comprehensive performance metrics, are
eported. A stratified 5-fold cross-validation scheme is employed over
0 iterations for classification. Subject indices are randomly shuffled

for each iteration before being divided into five folds. Thus, the results
presented in this section represent the mean obtained over 100 models.
VM with a RBF kernel is implemented using the LIBSVM library in
ATLAB [46]. To help justify the use of SVM in this study, relevant

comparisons have been conducted with other classifiers, including
k-Nearest Neighbours (k-NN), Artificial Neural Network (ANN), and
Random Forest (RF).
7 
5.3. Pre-processing

Each 10-s recording obtained from the 40 CAD and 40 non-CAD
subjects underwent low-pass filtering at 1000 Hz using an 8th-order

utterworth filter before resampling at 2 kHz. The signal was then
segmented into epochs, each containing two complete heart cycles to
increase the number of data points. An epoch began slightly before the
first heart sound (S1) of the first cycle and ended at the end of diastole
of the second heart cycle. For this study, the first three epochs of each
subject were utilized, starting from the second heartbeat. Consequently,
840 CAD and 840 normal PCG epochs (40 subjects per class × 3 epochs

7 channels) were available. Manual segmentation was performed
n channel 3 as its position was directly above the heart on the
eft side of the chest. The same indices were applied to segment all
ther channels to maintain the natural time delay of events captured
rom each transducer. Fig. 7 exhibits the segmented PCG signal from
hannel 3 alongside Normal and CAD patient. During cross-validation,
ach subject’s three epochs consistently appeared in the same fold to
revent data leakage. Majority voting (2 out of 3) was employed to

compute subject-based metrics from epoch-based metrics. For instance,
a subject with two out of three epochs classified as CAD (Normal)
would be categorized as CAD (Normal). Epoch-based metrics provide
nsight into the model’s performance on smaller time segments and its
bility to detect specific patterns. A more comprehensive evaluation
n a larger time scale is provided by subject-based metrics, which are
ritical for real-world applications that require a single decision per
atient. This approach also enhances robustness to noise and short-
erm anomalies. If one epoch is corrupted, such as by a ringing phone
r slamming door, and produces a false prediction, the subject can
till be correctly classified based on the other epochs. Additionally,
ata bias concerns are addressed. If subject-based metrics underperform
ompared to epoch-based metrics, it may suggest that the model is
verfitting to specific fragments of the data and not generalizing over
he entire signal.

Following segmentation, each epoch was z-normalized as per
Eq. (4):

𝑥z−nor m(𝑛) =
𝑥r esampled(𝑛) − 𝜇𝑥

𝜎𝑥
, 𝑛 = 1, 2,… , 𝑁 (4)

where 𝑥r esampled is the segmented epoch after filtering and resampling,
𝜇𝑥 (𝜎𝑥) is the average (std) epoch value, 𝑁 is the total number
of samples in the epoch, and 𝑥z−nor m is the z-normalized signal. Z-
normalization is essential due to variations in signal amplitude caused
by different body characteristics, such as chest thickness. Following
segmentation, the average (standard deviation) epoch length was found
to be 1.79 (0.311) seconds, corresponding to 3583 (623) samples. The
minimum epoch length observed was 1.05 s (2111 samples), while the
maximum epoch length recorded was 2.65 s (5299 samples).

5.4. Power Spectral Density (PSD) feature formulation

For each channel, the PSD was computed for each epoch using the P-
Welch method in MATLAB. A Hanning window, represented by Eq. (5),
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Fig. 7. Each 10-s signal is segmented into three epochs containing two full heart cycles. Only the first three epochs are used in this study.
Fig. 8. Average PSD of 120 CAD and 120 normal epochs from each channel. The shaded regions represent the standard deviation.
consisting of 1024 samples (approximately 0.5 s) with 50% overlap,
was employed to reduce spectral leakage:

𝑤(𝑛) = 0.5
(

1 − cos
( 2𝜋 𝑛

𝑁

))

, 0 ≤ 𝑛 ≤ 𝑁 (5)

where 𝑛 is the relevant sample and 𝑁 is the total number of samples
in the frame (𝑁 = 1024). Fig. 8 displays the average and standard
deviation of 120 CAD and 120 normal epoch PSDs from each channel.
Discrepancies are noticeable in each channel across certain frequency
bands. For instance, in channel 1, the normal curve is elevated between
100–250 Hz, whereas in channel 2, the CAD curve is higher between
300–600 Hz. Notably, the stethoscope on the subject’s back exhibits
significant disparities, with the normal curve being greater between
100–760 Hz. However, the spread between normal subjects in certain
regions was nearly three times as large as that observed among CAD
subjects. All PSD curves were segmented into sub-bands to assess the
feasibility of these differences in classification. Sub-bandwidths (SBW)
ranging from [5.86, 11.72, 17.58, 23.44, 29.30, 35.16, 46.88, 58.6] Hz
were examined, alongside total bandwidths (TBW) of 0 - [300, 400,
. . . 1000] Hz. These non-integer SBW selections ensure that each sub-
band contains a consistent number of frequency bins. The MATLAB
8 
function trapz was employed to calculate the average power within
each band, which served as features in the classification model. Follow-
ing feature extraction, a Minimum-Redundancy Maximum-Relevance
(MRMR) filter is applied to rank the features [47]. This ranking ensures
that the selected features exhibit minimal redundancy with respect to
other features while maximizing their correlation with the class. The
FEAST toolbox [48] was employed to implement this process. Sub-
sequently, various feature dimensions comprising the highest-ranked
features were evaluated using an incremental search approach, with
a step size of 2.

Single-channel analysis was initially conducted to determine the
optimal SBW, TBW, and feature dimension (FD), resulting in the highest
performance. The same process was conducted for multi-channel analy-
sis. In multi-channel analysis, features from respective single channels
were concatenated before passing through the MRMR filter and sub-
sequent SVM model. For instance, when testing an SBW of 5.86 Hz
over a TBW of 0–1000 Hz on channel combination 1-3-6, features
were extracted from each single channel and merged into a single
feature vector. The channel combinations that demonstrated the best
performance are presented.
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Fig. 9. Average LFCC coefficients of 120 Normal and CAD epochs from channel 2. Each epoch was divided into 108 frames with 50% overlap.
Fig. 10. Box plot of LFCCs 0–11 averaged across 108 frames from channel 2. * indicates statistically significant LFCCs, rejecting the null hypothesis that the Normal and CAD
samples are from continuous distributions with equal medians.
5.5. Linear-Frequency Cepstral Coefficient features (LFCC)

Inherent to the PSD function is the loss of all temporal informa-
tion, as power across various frequency bands is averaged over time.
Thus, localized events occurring within an epoch are understated. To
address this limitation, an investigation into LFCC feature extraction
was conducted. LFCC aims to extend the PSD formulation by analysing
a compact spectral envelope representation and introducing temporal
changes into the classifier by dividing the epoch into frames. Fur-
thermore, the motivation behind this approach stemmed from the
opportunity to represent better the human ear’s logarithmic sensitivity
to sound intensity, drawing parallels to heart auscultation with an
acoustic stethoscope.

5.5.1. LFCC feature formulation
Despite the varying lengths of all epochs, each epoch was divided

into a predetermined number of frames. As a result, frame sizes were
dependent on the subject. This framing technique was implemented
to ensure that each frame captured similar cardiac cycle events, re-
gardless of the subject’s heart rate. The following frame numbers were
investigated with a 50% overlap: 20–64 and 100–112 in steps of 2.
Therefore, for the minimum case of 20 frames with 50% overlap,
the size varied from 100–252.38 ms (with an average of 170.48 ms),
and for the maximum case of 112 frames, the variation ranged from
18.92–47.74 ms (with an average of 32.25 ms). A Hanning window
was applied to each frame to prevent spectral leakage, as per Eq. (5).
The power spectrum was computed for each frame by squaring the
magnitude spectrum obtained from the Fast Fourier Transform (FFT).
A triangular filter bank consisting of 12 linearly spaced filters up to
9 
1 kHz was applied to the power spectrum, yielding a set of filter bank
energies. Eq. (6) describes the filter bank, where correlation among
filter bank energies arises from the overlapping filters.

𝐻𝑘(𝑓 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if 𝑓 < 𝑓𝑘−1
𝑓−𝑓𝑘−1
𝑓𝑘−𝑓𝑘−1

, if 𝑓𝑘−1 ≤ 𝑓 < 𝑓𝑘
𝑓𝑘+1−𝑓
𝑓𝑘+1−𝑓𝑘

, if 𝑓𝑘 ≤ 𝑓 < 𝑓𝑘+1
0, if 𝑓 ≥ 𝑓𝑘+1

(6)

where the frequencies corresponding to the edges of the 𝑘th filter are
given by 𝑓𝑘−1, 𝑓𝑘, and 𝑓𝑘+1. The logarithm of the correlated filter bank
energies was acquired. To decorrelate the log-filter bank coefficients,
denoted by 𝑥𝑛, the Discrete Cosine Transformation (DCT) was applied
to them, as seen in Eq. (7).

𝐷 𝐶 𝑇 (𝑖) =
𝑁−1
∑

𝑛=0
𝑥𝑛 cos

[ 𝜋
𝑁

𝑖
(

𝑛 + 1
2

)]

(7)

where 𝑁 is the number of filter banks (N = 12), and 𝑖 is the DCT
coefficient index. A subset of the DCT coefficients was selected to
represent the LFCC features utilized in the classification model. Fig. 9
displays the average LFCC representation of 120 CAD and 120 Normal
epochs from channel 2. Here, coefficients 0–11 are plotted over 108
frames. The LFCC values were averaged across all frames for each epoch
to emphasize the statistical significance, and the Wilcoxon rank sum
test [49] was applied (𝑝 < 0.05). Fig. 10 presents the box plot for
each coefficient, with LFCC 0,2,3,4,6,7,8,9 and 11 marked as statisti-
cally significant, underscoring the importance of time-varying cepstrum
information. The optimal number of coefficients was experimentally
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Table 3
Single-channel performance using PCG PSD sub-band features.

Channel TBW SBW FD Epoch-based [%] Subject-based [%]

[Hz] [Hz] Sens Spec Acc F1 Sens Spec Acc F1

1 500 17.58 25 65.50 58.79 62.15 62.99 68.00 58.75 63.38 64.56
2 600 11.72 43 63.67 66.17 64.92 64.11 63.50 67.00 65.25 64.11
3 700 11.72 59 69.00 59.79 64.40 65.63 71.25 59.25 65.25 66.95
4 700 46.88 5 69.12 58.46 63.79 65.37 72.38 61.50 66.94 68.35
5 800 11.72 55 62.33 54.46 58.40 59.37 64.88 56.88 60.88 61.63
6 1000 46.88 21 68.17 55.00 61.58 63.65 68.25 55.62 61.94 63.66
7 1000 17.58 56 48.75 55.75 52.25 49.61 46.75 58.88 52.81 48.10
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determined, where LFCC subsets {[0-1],[0-2], . . . ,[0-11],[1-2],[1-3],
. . . ,[10-11]} were tested. A feature vector was constructed for each
epoch by concatenating the subset of LFCCs from each frame. As
a result, the feature dimension was considerably higher than in the
previous PSD sub-band investigation. To justify using SVM with RBF
kernel, relevant comparisons were made using different classification
models, including ANN, k-NN and RF.

ReliefF, a feature selection method that evaluates the importance of
features by examining their ability to distinguish between instances of
different classes, was utilized to rank the features [50]. Predictors are
enalized if different values are given between neighbours of the same
lass, and are rewarded if different values are given between neigh-
ours of opposing classes. Eq. (8) outlines the method for assigning a

weight to feature 𝑗, with the 100 nearest neighbours, denoted as {𝑥𝑛},
utilized in this study.

𝑊 [𝑗] =
𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

∑

{𝑥𝑛}∈𝐶𝑥𝑖

−diff(𝑗 , 𝑥𝑖, 𝑥𝑛)
𝑘

.𝑑𝑥𝑖 ,𝑥𝑛 +
∑

{𝑥𝑛}∉𝐶𝑥𝑖

diff(𝑗 , 𝑥𝑖, 𝑥𝑛)
𝑘

.𝑑𝑥𝑖 ,𝑥𝑛

⎞

⎟

⎟

⎠

(8)

where 𝑊 [𝑗] is the weight assigned to feature 𝑗, 𝑁 is the number of
instances, 𝑥𝑖 is the 𝑖th instance, 𝐶𝑥𝑖 ∈ [0, 1] is class of the relevant
instance, and 𝑘 is the number of neighbours. The diff(.) operator com-
putes the absolute difference of feature 𝑗 between 𝑥𝑖 and its neighbour
𝑛, divided by the range of feature values. 𝑑𝑥𝑖 ,𝑥𝑛 is the normalized
istance between 𝑥𝑖 and neighbour 𝑥𝑛; thus, further neighbours have
ess influence on the feature weight. Feature weights can be positive
r negative, with the most discriminating feature having the largest
ositive value. Different feature dimensions comprising the highest-
anked features were examined using an incremental search approach
ith a step size of 2. For LFCC features, we selected ReliefF because

t excels in capturing non-linear relationships between features and
he target label. This is crucial in CAD detection, where complex

physiological factors can influence PCG signals. ReliefF also outper-
ormed other methods, such as Chi-squared tests or mutual information,
hich are less robust to noise. Moreover, its computational efficiency

s noteworthy, especially in high-dimensional datasets, as it imposes
ess computational burden than iterative methods like recursive feature
limination.

The optimal channel combinations were identified through feature-
level fusion, leveraging the performance of the single-channel analysis.
ach channel in the combination had its optimal features concate-
ated into a feature vector. This approach was directly compared with
core-level fusion, achieved by averaging the probability estimates of
ingle-channel predictions based on the distance to the hyperplane.
e replicated the experiments using alternative filter banks to vali-

ate the utilization of a linearly spaced filter bank. Specifically, we
ompared the LFCC feature set against Gammatone Frequency Cep-
tral Coefficients (GFCC) with 14 bell-shaped filters, warped to the
ammatone scale, and Mel-Frequency Cepstral Coefficients (MFCC)
ith 12 triangular filters, warped to the mel scale. We assessed both

single-channel performance and multi-channel performance through
feature-level fusion.
10 
6. Results and discussion

6.1. Performance of PSD sub-band features

Table 3 presents the SBW, TBW, and FD that yielded the highest-
erforming metrics for each single channel using SVM with RBF kernel.
he table displays both epoch-based metrics and subject-based metrics.
ll channels produced underwhelming performance individually. From
poch to subject-based metrics, there was an increase in accuracy
anging from 0.56% to 3.15%, signifying the importance of integrating
ultiple samples per subject into the model. Channels 3 and 4 demon-

trated the best subject-based performance in accuracy and F1-score.
urthermore, sensitivity surpassed specificity in all channels except 2
nd 7. Channel 7 exhibited the poorest performance, registering an F1-
core of 48.10%, the only one to fall below 50%. Traditionally, heart
ounds are not captured from posterior locations because the heart
ignal can become attenuated due to anatomical factors. Additionally,
he back is more prone to muscle activity, which can introduce noise.
SD sub-band features from the back are insufficient for capturing
istinct information between the two classes. This limitation can be
ddressed by extracting features that are more robust to the positional
rawbacks. Conversely, Channel 4, with only five features in its classi-
ication scheme and a 46.88 Hz SBW, achieved the highest F1-score of
8.35%. Following closely, Channel 3 attained the second-highest F1-
core, utilizing the 59 highest-ranked features from an SBW of 11.72 Hz
nd a TBW of 700 Hz. These channels are both collected from the
ubject’s left side of the chest, which are traditional auscultation areas.
he simplicity of the PSD sub-band features enables channels 3 and 4
o capture discriminating information between CAD and normal cases
etter than other channels. The most prevalent SBW yielding optimal
esults was 11.72 Hz, with channels 2, 3, and 5 exhibiting 43, 59,
nd 55 optimal feature dimensions, respectively. The observed low
erformance could stem from several factors, including variations in
tethoscope placement among subjects and external noise sources in
he clinical setting. Additionally, the simplistic nature of the sub-band
eatures might not adequately capture the differences between CAD
nd non-CAD subjects. It will be shown later that further refinement
n feature extraction to include the temporal information such as the
FCC can improve the performance.

Next, we explored combining features from each channel to assess
the robustness of a multi-channel PCG approach. Table 4 presents the
ptimal channel combinations corresponding to each number of chan-
els. Only eight channel combinations achieved above 70% accuracy
nd F1-score; 1-3-6, 2-3-6; 1-2-3-6; 1-3-5-6; 1-3-6-7; 1-2-3-5-6; 1-2-3-6-
; and 1-2-3-5-6-7. Channels 3 and 6 are present in all combinations,
uggesting discriminative information is captured at the left-fourth
nd right-second IC. Channel 4, which has 46.88 Hz as its optimal
BW, is not in any combination despite having the best single-channel
etrics. No combination had 46.88 Hz as its optimal SBW, offering
 possible explanation for why this channel was absent. The com-
ination 1-2-3-6 yielded the highest accuracy and F1-score: 72.25%
nd 73.34%, respectively, which is 5.31% and 4.99% greater than
he best-performing single-channel case in Table 3. This underscores

the significance of integrating multi-channel PCG data into the DAQS.
Features across different auscultation sites provide richer information
that aids classification.



M. Fynn et al.

c
A

Computers in Biology and Medicine 189 (2025) 109904 
Table 4
Multi-channel performance using PCG PSD sub-band features.

Number of TBW SBW FD Epoch-based [%] Subject-based [%]

channels [Hz] [Hz] Sens Spec Acc F1 Sens Spec Acc F1

2 (1-6) 900 11.72 141 68.96 63.38 66.17 66.75 73.75 64.25 69.00 69.85
3 (1-3-6) 1000 29.3 69 73.21 66.13 69.67 70.64 74.50 69.88 72.19 72.67
4 (1-2-3-6) 1000 5.86 635 73.62 63.83 68.73 70.16 77.12 67.38 72.25 73.34
5 (1-2-3-6-7) 1000 35.16 95 73.08 62.67 67.88 69.33 75.00 66.75 70.88 71.77
6 (1-2-3-5-6-7) 1000 35.16 109 70.08 61.46 65.77 66.69 72.75 65.12 68.94 69.60
7 (1-2-3-4-5-6-7) 300 35.16 45 60.46 63.54 62.00 60.88 62.75 63.62 63.19 62.40
Table 5
Single-channel performance using LFCC features.

Single LFCCs No. FD Epoch-based [%] Subject-based [%]

channel frames Sens Spec Acc F1 Sens Spec Acc F1

1 0–2 108 317 69.21 64.17 66.69 67.46 71.75 66.25 69.00 69.59
2 0–7 108 829 69.63 66.62 68.12 68.37 74.62 71.62 73.12 73.33
3 0–6 28 135 65.08 62.83 63.96 64.02 69.50 65.50 67.50 67.76
4 0–6 20 69 68.33 63.83 66.08 66.30 72.50 65.38 68.94 69.53
5 0–7 50 373 60.92 63.12 62.02 60.87 63.38 62.50 62.94 62.12
6 0–4 20 15 61.25 60.50 60.88 60.64 62.88 60.75 61.81 61.73
7 0–5 110 597 63.62 57.42 60.52 60.99 65.50 58.38 61.94 62.36
Table 6
Multi-channel performance using LFCC score-level fusion.

Number of FD Epoch-based [%] Subject-based [%]

channels Sens Spec Acc F1 Sens Spec Acc F1

2 (1-2) 1146 71.21 71.88 71.54 71.41 74.12 73.75 73.94 73.9
3 (2-3-4) 1033 72.88 70.00 71.44 71.47 78.25 71.25 74.75 75.33
4 (1-2-3-7) 1878 73.25 72.21 72.73 72.47 76.62 74.62 75.62 75.4
5 (1-2-3-6-7) 1893 73.71 74.12 73.92 73.46 75.62 76.88 76.25 75.52
6 (1-2-3-5-6-7) 2266 72.79 72.33 72.56 72.16 74.88 74.75 74.81 74.18
7 (1-2-3-4-5-6-7) 2335 74.46 71.88 73.17 73.06 76.38 74.00 75.19 74.92
Table 7
Multi-channel performance using LFCC feature-level fusion.

Number of FD Epoch-based [%] Subject-based [%]

channels Sens Spec Acc F1 Sens Spec Acc F1

2 (2-6) 839 74.08 69.37 71.73 72.23 79.38 73.12 76.25 76.80
3 (2-3-7) 1531 76.08 71.29 73.69 73.96 81.00 76.00 78.50 78.69
4 (2-3-6-7) 1681 79.17 73.04 76.10 76.43 85.25 75.62 80.44 81.00
5 (1-2-3-6-7) 2093 75.38 73.25 74.31 74.32 80.38 75.88 78.12 78.29
6 (1-2-3-5-6-7) 2281 74.79 73.75 74.27 74.14 79.38 75.62 77.50 77.64
7 (1-2-3-4-5-6-7) 2069 73.83 73.13 73.48 73.30 77.50 75.25 76.38 76.36
4
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6.2. Performance of LFCC features

Table 5 presents the performance metrics for single-channel analysis
using LFCC features in the 20 × 5-fold SVM model. It includes the
optimal frame number and LFCC subset for each channel. Channel 2
performed the best in this experiment, with 108 frames and LFCCs 0–
7 as its optimal configuration. Achieving an accuracy of 73.12% and
an F1-score of 73.33%, it outperformed other channels by over 4%.
The sensitivity and specificity were 74.62% and 71.62%, respectively.
The epoch-based accuracy of channel 2 was 68.12%, again supporting
the synopsis of majority voting from multiple subject samples. While
Channel 7 continued to exhibit the lowest performance, its accuracy
improved significantly by 9.13% compared to the PSD sub-band feature
investigation, aligning it more closely with the performance of other
channels. Six out of seven channels showed enhanced performance
compared to the simple PSD analysis, signifying the importance of
analysing temporal variations, and PSD shapes comprehensively.

Combining channels remains essential to achieve clinical signifi-
ance. Table 6 presents the results obtained via score-level fusion.
dditionally, Table 7 showcases the performance metrics achieved

through feature-level fusion. The presentation outlines the optimal
combination for each channel count, ranging from two channels to the
maximum available, seven.
 s

11 
Feature-level fusion consistently outperforms score-level fusion for
all channel counts, demonstrating clinical significance regardless of
the total number of channels. The four-channel combination (2-3-6-
7) using feature-level fusion achieves an accuracy of 80.44%, which is
.82% higher than the score-level fusion between four channels (1-2-

3-7). Additionally, the epoch sensitivity-specificity average is 76.10%,
rendering the DAQS clinically significant both at an epoch and sub-
ject level. A five-channel combination (1-2-3-6-7) yielded the highest
performance in the score-level fusion method, achieving 76.25% accu-
racy. Notably, it was the only combination where the specificity sur-
passed the sensitivity. In all other scenarios, the sensitivity outweighed
specificity. Moreover, all subject-based metrics showed improvement
compared to the epoch level. We also note the high FD in each case,
resulting from the agglomeration of sensors. This investigation un-
erscores the necessity of multiple sensors to address the challenges
 convenient DAQS poses. Compared to the best-performing single
hannel, there was a 7.32% increase in accuracy when utilizing four
hannels via feature-level fusion. Channels 2, 3, 6, and 7 were in the

top three performing channel combinations. This study marks the first
instance where a PCG acquired from the subject’s back (channel 7) has
emonstrated effectiveness in CAD classification. To further justify this
tatement, we compare the performance of each single channel with the
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Table 8
Performance comparison when channel 7 is fused with each single channel.

Channel Epoch-based [%] Subject-based [%]

combination Sens Spec Acc F1 Sens Spec Acc F1

1 69.21 64.17 66.69 67.46 71.75 66.25 69.00 69.59
1–7 68.58 66.29 67.44 67.37 71.63 69.38 70.50 70.34

2 69.63 66.62 68.12 68.37 74.62 71.62 73.12 73.33
2–7 70.83 69.13 69.98 69.79 73.63 75.38 74.50 73.65

3 65.08 62.83 63.96 64.02 69.50 65.50 67.50 67.76
3–7 73.33 65.29 69.31 69.93 76.75 67.63 72.19 72.71

4 68.33 63.83 66.08 66.30 72.50 65.38 68.94 69.53
4–7 68.54 66.54 67.54 67.33 71.50 67.12 69.31 69.45

5 60.92 63.12 62.02 60.87 63.38 62.50 62.94 62.12
5–7 65.46 60.75 63.10 63.26 67.75 60.38 64.06 64.83

6 61.25 60.50 60.88 60.64 62.88 60.75 61.81 61.73
6–7 67.29 61.17 64.23 64.55 70.88 63.50 67.19 67.49
Table 9
Performance of the channel combination 2-3-6-7 (feature-level fusion) under various classification schemes.

Classifier FD Epoch-based [%] Subject-based [%]

Sens Spec Acc F1 Sens Spec Acc F1

SVM-LINEAR 1589 71.66 72.00 71.83 71.30 78.00 75.38 76.69 76.22
SVM-CUBIC 775 67.5 78.5 73.00 70.92 70.88 79.50 75.19 73.55
SVM-SIGMOID 1353 71.80 73.17 72.48 71.82 76.88 76.50 76.69 76.08
k-NN EUCLIDEAN 1421 58.21 71.08 64.64 61.62 59.75 72.50 66.13 62.89
k-NN COSINE 1771 81.63 60.67 71.15 73.63 84.63 62.50 73.56 76.00
k-NN CITYBLOCK 1431 57.58 70.58 64.08 61.02 59.63 72.38 66.00 62.95
k-NN CORRELATION 1801 80.88 59.71 70.29 73.01 85.75 61.25 73.50 76.20
ANN 1501 71.54 75.08 73.31 72.32 77.75 78.38 78.06 77.25
RF 1101 71.25 71.38 71.31 70.68 74.12 74.00 74.06 73.24
SVM-RBF (Proposed) 1681 79.17 73.04 76.10 76.43 85.25 75.62 80.44 81.00

k-NN : 11 neighbours. ANN : No. hidden layers: 1; hidden nodes: 700; Activation Function: ReLU, Sigmoid; learning-rate: 0.0001; Adam Optimizer;
Batch Size: 64; Epochs: 150; L2 Regularization: 0.01; Loss Function: Binary Cross Entropy. RF : Criterion: Gini Impurity; No. Estimators: 500;
Max depth: 100; Max features: ‘sqrt’: Min samples/split: 6; Max leaf nodes: 20. SVM-RBF : Gamma: 1/num_features; C: 1.
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performance when channel 7 is fused with it. We observe a performance
improvement in each case, displayed in Table 8.

The LFCC encapsulates the spectrum shape while incorporating tem-
poral changes through framing, an element not utilized in the previous
PSD investigation. In Fig. 8, we previously observed the average PSD
of CAD and non-CAD subjects, clearly illustrating differences in certain
frequency bands and distinct shapes. However, the process of LFCC
extraction is more complex as it requires additional steps, such as filter
bank application and cepstral computation, and typically produces
higher-dimensional data because they capture more information about
the frequency content. The impact on classification performance is
greater, as LFCCs provide a richer signal representation. This helps
handle inter-subject variability better, contributing to a more robust
and accurate performance. Further, LFCC feature extraction coupled
with SVM is not computationally expensive, rendering the system
suitable for portable applications. Per previously stated guidelines, the
wearable vest demonstrates suitability for practical implementation.
Optimal performance is achieved by utilizing only four of the available
seven stethoscopes, reducing computational complexity by processing
fewer signals and enhancing device portability. Pre-processing and
LFCC feature extraction took 0.139 s per subject on the computer
mentioned in Section 4.1. We tested the methodology used in [29],
where entropy features are extracted from the SST matrix for each
subject across 3 epochs. It took 37 s per subject on the same machine—
approximately 266 times slower than our method. This highlights the
computational efficiency of our proposed method, making the system
suitable for mass screening where fast processing is necessary.

The best-performing channel combination underwent testing with
arious other classifiers. Table 9 compares the performance among

SVM with different kernels, k-NN with varying distance metrics, ANN,
and RF. Grid search was conducted on a validation set (24 epochs) to
determine the optimal hyperparameters for the k-NN, ANN, and RF
12 
classifiers, as detailed in the footnote of Table 9. The ANN structure
was also tuned using the validation set. Among the tested classification
schemes, ANN outperformed all others, achieving a relatively balanced
sensitivity and specificity, with accuracy reaching 78.06%. However,
the SVM with the RBF kernel demonstrated the highest performance,
as previously reported.

7. Comparison with GFCC and MFCC

We systematically reproduced previous experiments using GFCC
nd MFCC-based features, conducting a comparative analysis to justify

our selection of LFCC as the primary feature set. Fig. 11 presents the
ox plots of the GFCC and MFCC coefficients across channel 2, using
he same configuration as Fig. 10. We observe that the statistically

significant coefficients differ due to the different filter banks employed.
Tables 10 and 11 present the single-channel performance results

using GFCC and MFCC features, respectively, indicating the optimal
cepstral coefficients and frame numbers. Tables 12 and 13 display the

ulti-channel performance of GFCC and MFCC feature sets, respec-
ively, showcasing the best channel combinations for each total number
f channels, achieved through feature-level fusion of each singular
hannel’s optimal counterparts.

In our assessment of individual channel performance, we consis-
tently observed that both the GFCC and MFCC feature sets outper-
formed the LFCC feature set across the majority of channels. Notably,
exceptions were found in channel 2 for both GFCC and MFCC, and in
channel 3 specifically for the GFCC scenario. Significant improvements
were particularly notable in channels 6 and 7. Channel 6 demonstrated
exceptional performance, with GFCC features yielding a subject-level
accuracy of 70.44%, significantly surpassing the 61.81% achieved using
LFCC features, thus establishing it as the highest-performing channel.

Similarly, in channel 7, GFCC features achieved the highest accuracy
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Fig. 11. Box plot of GFCC and MFCCs 0–11. * indicates statistically significant LFCCs, rejecting the null hypothesis that the Normal and CAD samples are from continuous
distributions with equal medians.
Table 10
Single-channel performance using GFCC features.

Single GFCCs No. FD Epoch-based [%] Subject-based [%]

channel frames Sens Spec Acc F1 Sens Spec Acc F1

1 2–10 100 871 67.42 65.67 66.54 66.55 70.62 69.38 70.00 69.61
2 0–11 100 1187 69.67 64.00 66.83 67.30 73.38 65.00 69.19 70.01
3 1–6 24 143 63.12 65.17 64.15 63.57 65.62 68.38 67.00 66.19
4 0–6 30 59 68.92 66.00 67.46 67.34 70.00 68.25 69.12 68.81
5 0–6 64 439 65.79 62.42 64.10 64.01 68.62 63.00 65.81 65.88
6 2–7 20 109 70.33 67.79 69.06 69.23 72.50 68.38 70.44 70.77
7 0–8 108 953 63.33 62.83 63.08 62.36 66.38 65.25 65.81 64.96
Table 11
Single-channel performance using MFCC features.

Single MFCCs No. FD Epoch-based [%] Subject-based [%]

channel frames Sens Spec Acc F1 Sens Spec Acc F1

1 0–2 24 55 70.62 61.00 65.81 67.35 75.75 64.50 70.12 71.64
2 0–6 108 756 68.33 66.46 67.40 67.16 70.25 68.62 69.44 69.12
3 0–4 28 135 66.58 62.88 64.73 65.13 69.75 67.38 68.56 68.70
4 0–3 28 111 67.75 67.79 67.77 67.05 68.12 70.25 69.19 68.20
5 0–9 64 631 63.58 61.88 62.73 62.33 64.75 62.50 63.62 63.28
6 0–2 62 123 62.83 62.46 62.65 62.09 64.88 64.88 64.88 64.11
7 0–10 62 675 63.54 57.21 60.38 61.06 68.25 58.62 63.44 64.61
Table 12
Multi-channel performance using GFCC feature-level fusion.

Number of FD Epoch-based [%] Subject-based [%]

channels Sens Spec Acc F1 Sens Spec Acc F1

2 (1-7) 1871 72.25 67.42 69.83 70.02 75.88 71.00 73.44 73.30
3 (1-3-7) 2016 74.79 68.42 71.60 71.95 77.62 71.50 74.56 74.62
4 (1-3-6-7) 2121 74.75 68.12 71.44 71.83 78.75 70.88 74.81 75.09
5 (1-3-5-6-7) 2266 73.29 68.96 71.13 71.21 77.00 70.62 73.81 74.02
6 (1-2-3-5-6-7) 3416 73.37 69.62 71.50 71.57 75.00 71.75 73.38 73.21
7 (1-2-3-4-5-6-7) 3961 72.29 68.50 70.40 70.42 74.12 69.75 71.94 71.94
Table 13
Multi-channel performance using MFCC feature-level fusion.

Number of FD Epoch-based [%] Subject-based [%]

channels Sens Spec Acc F1 Sens Spec Acc F1

2 (1-2) 827 72.54 69.58 71.06 71.20 73.62 71.38 72.50 72.41
3 (1-2-5) 1251 72.12 70.62 71.38 71.30 73.50 73.88 73.69 73.27
4 (2-3-6-7) 1566 77.38 72.50 74.94 75.10 79.75 72.50 76.12 76.45
5 (1-2-3-6-7) 1774 77.54 72.92 75.23 75.53 79.25 74.75 77.00 77.09
6 (1-2-3-5-6-7) 2216 76.42 73.67 75.04 74.95 77.75 75.12 76.44 76.19
7 (1-2-3-4-5-6-7) 2441 74.67 72.00 73.33 73.14 75.50 73.75 74.62 74.09
y
l
c
C

of 65.81% among all experiments conducted. For the MFCC feature set,
channel 1 exhibited the most promising results, achieving an accuracy
f 70.12%, an improvement of 1.12% over the LFCC case. However,

both GFCC and MFCC features fell short in channel 2, with subject-
level accuracies lower by 3.93% and 3.68%, respectively, compared to
LFCC.
 r

13 
Despite the promising performance observed in single-channel anal-
sis, the results from multi-channel metrics obtained through feature-
evel fusion were underwhelming when compared to LFCC. None of the
ombinations yielded clinically significant results with GFCC features.
ombining channels 1-3-6-7 produced the highest subject-level accu-
acy and F1-score of 74.81% and 75.09%, respectively. However, the
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Fig. 12. Average PSD of post-operative subjects with and without restenosis.
utilization of MFCC features showed improved results, with the combi-
nation 1-2-3-6-7 demonstrating the highest performance. This combina-
tion achieved epoch-level and subject-level accuracies of 75.23% and
77%, respectively, indicating clinical significance at both levels. Nev-
ertheless, these achievements did not match the performance attained
with the LFCC feature set.

Channels 3, 6, and 7 consistently appear in all the top-performing
channel combinations across LFCC, GFCC, and MFCC feature sets, indi-
cating their significance. Channel 1 is featured in the GFCC and MFCC
top combination, while channel 2 is found in the LFCC and MFCC top
combination, suggesting their importance. Conversely, channels 4 and
5 are less important based on our findings. The approximate positions
of channels 3 (left fourth IC space) and 6 (right second IC space),
which align with the heart’s natural slant, could lead to richer signals
stemming from these sites. Although the heart is predominantly on the
left side of the body, the right atrium slightly overlaps the right side,
where channel 6 captures heart sounds. Additionally, the left side of the
heart is positioned more posteriorly, where the left circumflex coronary
artery wraps around, potentially explaining the significance of channel
7 (posterior position) in classification. Channels 1 (left midaxillary line)
and 2 (near the apex) are also directly over the heart’s natural position
in a sitting posture. Channels 4 (left second IC space) and 5 (right
fourth IC space) are not positioned directly over the heart, offering an
explanation as to why these channels are less important. This aligns
with the findings in [29], where the lowest single-channel performance
was observed in the left second IC space out of four channels on the left
side of the chest.

8. Observations on subjects with PTCA or CABG

Our data set includes additional subjects that were excluded from
the initial study, comprising six individuals who have undergone PTCA
and four who have had CABG. [51] computed power ratios for CAD,
Normal, and post-PTCA subjects by determining the ratio of total power
above to below 150 Hz from the FFT of the PCG. Their analysis revealed
no statistically significant difference between patients post-stenting and
those without coronary stenosis, indicating a reduction in murmur
sounds. In CABG, occluded arteries may still exist; however, blood flow
to the myocardium is redirected through the new arteries, reducing
flow through the occluded areas [52]. Consequently, we anticipate
a decrease in murmurs. Ideally, our model would classify post-CABG
and PTCA subjects as Normal, assuming they have no restenosis. How-
ever, training a model that includes these subject types is essential
in practice. Nevertheless, we have only assessed our best-performing
model (LFCC PCG, channel combination 2,3,6,7) on these subjects to
demonstrate the potential for post-monitoring with the wearable vest.
Fig. 12 shows the average PSD of subjects with no restenosis and those
with recurrent CAD from the four channels, and Fig. 13 illustrates the
LFCC coefficients from channel 2 for these groups. Notable differences
in the PSD shapes are observed, exhibiting similar behaviour to what
was noted in the studied dataset. We trained the model using the entire
dataset, comprising 120 CAD and 120 Normal epochs. Subsequently,
we applied the trained SVM model to post-procedural subjects, with
preprocessing identical to that described in Section 5.3. Table 14
displays the results and compares them to the ideal outcome.
14 
Fig. 13. Average LFCC coefficients of post-operative subjects without restenosis and
redeveloped CAD.

Out of ten additional subjects, our best-performing model predicted
seven cases that matched the ideal outcome. While this test set was
relatively small, it highlights the potential of the wearable vest in
post-procedural monitoring, particularly in flagging individuals where
restenosis has occurred after CABG or PTCA. However, there were
two cases in which the model failed to predict restenosis: one CABG
and one PTCA subject. This may be attributed to the fact that our
model achieved slightly above 80% accuracy and that post-procedural
subjects were not included in the model training. Moving forward, we
aim to collect data from a larger sample of such subjects to assess
post-procedural monitoring capabilities better.

9. Comparison with existing literature

As we have collected a new and realistic dataset, comparing perfor-
mance metrics with other studies that prioritize classification accuracy
using different databases is not fair. Nevertheless, Table 15 compares
our subject-based metrics with those reported in the literature. We
emphasize that the goal of this study is not to surpass the performance
of existing studies but rather to analyse data recorded under realistic
clinical settings in an easy and convenient manner. We outline the
disadvantages of each existing study and assess their practicality for
real-world implementation.

10. Practical implementation

Implementing the wearable vest in a real-world scenario will incor-
porate challenges. We outline the main challenges and outline how the
system can adapt to provide solutions in Table 16.

11. Conclusion

This study has pushed the boundaries of state-of-the-art DAQS and
data collection methodologies by employing a wearable vest equipped
with seven electronic stethoscopes all synchronously sampling from the
subject. The process of fitting the vest, testing the connections, record-
ing a 10-s measurement, and removing the vest can be completed in un-
der two minutes, emphasizing the ease and convenience of the system.
This contrasts existing literature, where laborious subject preparation,
precise sensor placement, and stringent environmental conditions make
it difficult for practical implementation. While the wearable vest offers
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Table 14
System evaluation on subjects previously undergone PTCA or CABG.

Subject Previous procedure New diagnosis Ideal outcome Model prediction

1 CABG No restenosis Normal Normal
2 3x CABG No restenosis Normal Normal
3 CABG Post CABG Stenosis CAD CAD
4 CABG Post CABG Stenosis CAD Normal
5 LAD PTCA No restenosis Normal CAD
6 LAD PTCA In-Stent Restenosis CAD CAD
7 3x PTCA TVCAD CAD CAD
8 PTCA SVCAD CAD CAD
9 PTCA DVCAD CAD Normal
10 2x PTCA TVCAD CAD CAD
Table 15
Performance comparison with existing studies.

Study Database Feature type,
Classifier

Result [%] Remarks

Makaryus et al. [19] 19 CAD
142 normal

Microbruit score,
Logistic Regression

Sens: 89.50
Spec: 57.70
Acc: 64.50

- Results are not clinically significant
Concl: Not practical ✗

Schmidt et al. [20] 63 CAD
70 normal

Frequency and
nonlinear features,
multivariate
classifier

Sens: 72.00
Spec: 65.20
Acc: 68.40

-Results are not clinically significant
Concl: Not practical ✗

Li et al. [21]a 120 CAD
55 normal

Multi-domain
features and deep
learning features,
MLP

Sens: 93.00
Spec: 83.40
Acc: 90.40

- Unrealistic patient preparation
(15 min in temp controlled room)
- Precise sensor position, supine
- Quiet, non-clinical setting
- High cost
Concl: Not practical ✗

Iqtidar et al. [24]a 78 CAD
75 normal

MFCC and 1D-ALTP
features, SVM-cubic

Sens: 98.20
Spec: 93.50
Acc: 98.30

- Precise sensor placement
- Only CAD group collected
in clinical setting
- Angiogram not used for labelling
(PCG
signals labelled)
- Samples from same subject can
appear
in train and test groups
Concl: Not practical ✗

Huang et al. [23]a 206 CAD
348 normal

MFCC deep learning
(CNN+LSTM), RF

Sens: 96.12
Spec: 96.12
Acc: 96.05

- Unrealistic patient preparation
(15 min in temp controlled room)
- Precise sensor position, supine
- Quiet, non-clinical setting
- High cost
Concl: Not practical ✗

Pathak et al. [29] 40 CAD
40 normal

Entropy features
from SST matrix,
SVM-linear

Sens: 84.38
Spec: 85.25
Acc: 84.81

- Four stethoscopes held with tape
- Precise sensor position, supine
- Quiet, non-clinical setting
Concl: Not practical ✗

Liu et al. [30]a 21 CAD
15 normal

Multi-domain
features with
entropy
and XEntropy,
SVM-RBF

Sens: 88.00
Spec: 93.00
Acc: 90.92

- Five precise sensor positions, supine
- Non-clinical setting
- All CAD subjects have left anterior
descending stenosis (system may not
generalize well to right artery CAD)
Concl: Not practical ✗

This Studyb 40 CAD
40 normal

LFCC, SVM-RBF Sens: 85.25
Spec: 75.62
Acc: 80.44

- No patient preparation
- No specialist training required
- No precise stethoscope placement
- Easy and convenient wearable vest
- Seated (no hospital bed required)
- Clinical environment
- Low Cost
- Post procedural monitoring
demonstrated
Concl: Suitable for real-life use ✓

a Subject-level accuracy not reported. Fragment/epoch-level metrics reported.
b Our method can be implemented in a real-life and non-controlled environment. Hence, we expect our results to underperform those of existing studies that were conducted in
a controlled and non-realistic manner.
15 
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Table 16
Challenges/limitations and solutions for real-world implementation of wearable PCG vest.

Challenge/limitation Description How the system can adapt

Variations in stethoscope placement Ensuring consistent and accurate placement of
multiple stethoscopes across different subjects and
sessions can be challenging. Variations in placement
can lead to inconsistencies in signal quality and affect
the model’s performance. Although LFCC features
produce clinically significant results, extreme position
differences can lead to poor generalization

∙ Ergonomic designs to ensure standard placements can be
incorporated.

∙ Feedback mechanisms or indicators to assist users in
achieving optimal sensor placement can be implemented.

∙ Machine learning models can be trained that are robust to
sensor placement.

Interference and external noise PCG signals can be corrupted by external noise
sources, including ambient room noise, movement
artifacts, and physiological factors. Poor signal-to-noise
ratio can result in erroneous feature extraction and
affect the reliability of the classification model.

∙ Implement real-time monitoring and adjustment to enhance
signal quality during acquisition.

User comfort and compliance Wearable devices must be comfortable. Vest fit,
material comfort, and sensor size are factors that can
influence user compliance and data quality.

∙ Design wearable with a Human Factors and Ergonomics
(HFE) team that focuses on designing products that optimize
user comfort, efficiency and safety
∙ Incorporate user-feedback schemes to continuously improve
user experience
(

d
S

remarkable ease of use, it also presents challenges. As the sensors are
fixed to the vest, variations in body shapes can lead to inter-subject
placement variability. Additionally, the clinical environment in which
data collection takes place introduces noise into the system. Despite
hese obstacles, the system has demonstrated performance suitable for
ractical use, aiming to achieve a sensitivity-specificity average of
reater than 75%.

The initial investigation of PSD sub-band features proved ineffec-
tive in meeting the target threshold. Various sub-band widths across
specified total bandwidths were extracted and utilized as features
in a 20 × 5-fold cross-validation SVM with RBF kernel. Employing
MRMR, the features were ranked to identify the most relevant ones.
The optimal channel combination was 1-2-3-6, achieving an accuracy
of 72.25% and an F1-score of 73.34%. To enhance the results, features
with higher complexity were required. LFCC features were extracted,
where each single channel’s optimal frame number and LFCC subset
were established through the same 20 × 5-fold SVM model. These
optimum features from each channel were concatenated to study the
performance of combining channels at a feature level. A combination
of 2-3-6-7 produced the best performance metrics and verified the
system’s practical viability. It was the first study to show the effec-
iveness of PCG signals acquired from the back in CAD detection.
he sensitivity-specificity average was 80.44%, and the F1-score was
1.00%. The epoch-based accuracy and F1-score were 76.10% and
6.43%, respectively, accentuating the need for multiple samples per
ubject. Moreover, it was found that channels 3, 6, and 7 consis-
ently appear in the most effective combinations for LFCC, GFCC, and
FCC feature sets, underscoring the importance of these auscultation

reas. The best-performing, clinically significant model was evaluated
n post-PTCA and post-CABG subjects, with initial results suggesting
otential for post-procedural monitoring.

12. Future direction

The popularity of deep and transfer learning involving biosignals
has recently grown. This study focused on hand-crafted features due to
he small data set available and the desire to offer greater interpretabil-
ty and explainability to the obtained results. As more data is collected
sing the wearable vest, there will be ample opportunity to delve
nto deep and transfer learning techniques, leveraging the expanded
ataset for more effective exploration and analysis. A synchronous
lectrocardiogram signal that can be captured with the multi-channel
CG data will be investigated in future work. This can assist heart
ycle segmentation and provide more discriminating information to aid
lassification.
 s
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Currently, all CAD-positive subjects who participated in the study
presented with symptoms. In the future, we aim to conduct a study
on detecting CAD in asymptomatic patients, which is the ultimate goal
of the pre-screening device. Additionally, we will extend the study to
incorporate female subjects to investigate the generalizability of the
wearable vest design.
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