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ABSTRACT Following major accidents or illness, some patients may lose partially or completely some of
their mental or physical function. Rehabilitation approaches and systems play an important role in patients’
recovery. This manuscript focuses on rehabilitation systems. We provide insights on major and recent
approaches, signals, and systems used to assist patient recovery. In order to help researchers, engineers,
or physicians, this paper provides a comprehensive survey on recent approaches and systems used in the
rehabilitation process. By highlighting the advantages and drawbacks of existing rehabilitation systems, this
contribution can support initial studies or projects and encourage young researchers, as well as biomedical
companies, to investigate and invest in new technologies. We hope that our study will participate in the
global efforts paid to reduce patient suffering and help health care centers in their activities. To achieve
this goal, we consider in our study recent technologies such as machine learning, artificial intelligence,
signal processing, without missing to highlight various biomedical signals and exploring several developed
systems.

INDEX TERMS Artificial Intelligence, Blind Source Separation (BSS), Dedicated Hardware and Software,
Electrocardiogram (ECG), Electroencephalography (EEG), Electromyography (EMG), Empirical Mode
Decomposition (EMD), Extra Training, Image Processing, Independent Component Analysis (ICA),
Machine Learning, Myoelectric Signals, Rehabilitation, Signal Processing, Singular Value Decomposition
(SVD), Surface Electromyography (sEMG), Wearable Devices.

I. INTRODUCTION

HUMANITARIAN reasons are our first motivation to
conduct this study. Indeed, during the recent Covid-19

pandemic episode, many countries, societies, organizations,
and definitely individuals have been more or less affected
severely during that period. Following this pandemic,
many healthcare centers were exhausted or overwhelmed,
resulting in increased heavy burden for physicians and
increased suffering for patients. A large number of patients
from all over the world have been unable to access health
centers or receive adequate care. Among them, patients
with disability were the most affected in their everyday
activities. Patients with complex chronic diseases (CCDs)
become very vulnerable in such situations. Following major

trauma caused by an accident or a severe illness, a long and
hard rehabilitation procedure can be prescribed by doctors.
According to [1], around 1.7 billion people from 204
countries suffer from musculoskeletal disorders. According
to the World Health Organization [2], globally, an estimated
2.4 billion people are currently (April 2025) living with a
health condition that may benefit from rehabilitation. The
authors of [3] found that in 2016, the highest modeled
spending was musculoskeletal disorders with an estimated
$380.9 billion in the USA. The authors of [4] highlighted
the fact that the number of people suffering from a stroke
will increase to 1.5 million per year just in Europe. They
also mentioned the effectiveness of rehabilitation after a
stroke, and that rehabilitation is the main cost of post-stroke
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FIGURE 1. Scientific publications on Rehabilitation Advanced Technologies Mind Map publications.

care. In addition, they found that the rehabilitation cost for
inpatients is about three times that of outpatients.

TABLE 1. Rehabilitation technologies by application domains.

Rehabilitation
domains

Technologies

neuromuscular non-invasive brain simulation, brain-machine
interface (BMI) system, magnetic resonance
imaging (MRI), machine learning, radiomics,
neuromuscular and muscular electrical stim-
ulation (NMES)

motor exoskeleton, prosthesis, EMG, robotic glove,
serious game system, inertial measurement
unit (IMU)

post-stroke care sEMG sensors, EEG sensors, physiotherapy,
speech therapy, irtual reality, brain simula-
tions

brain disorder EEG sensors, virtual and augmented reality,
neuroprostheses, BMI system, neurostimula-
tion, neurodevices

This study is a joint project between four senior
researchers coming from research centers in different
countries. We should highlight that during their long
careers, the authors have been involved in various research
or industrial projects related to biomedical systems. In
fact, they published several original papers related to
different biomedical applications. We can mention a few
of them, such as the ones considering: coronary artery
disease [5], [6], bone tumor [7], analyzing electromyography
(EMG) signals [8]–[11], Alzheimer detection [12], non-
invasive health systems [13], monitoring electrocardiogram
(ECG) signals [14]–[16], electroencephalography (EEG)
signals [17], carotid atheroma risk stratification [18],

diagnosis of deep vein thrombosis (DVT) [19], detection
of the Gougerot-Sjögren syndrome [20], diagnostic of skin
cancer [21], impact of corona virus [22], and burden of
non-communicable diseases [23].

This paper focuses on recent and advanced technologies
used in rehabilitation, including wearable devices and sen-
sors, hardware and software for rehabilitation. Table 1 lists
typical rehabilitation domains and associated technologies.
Signal processing algorithms and techniques for these de-
vices are reviewed. Machine learning and deep learning
models and approaches for rehabilitation are presented.
This paper is intended for a wide range of readers, in-
cluding researchers, physicians, electronics and biomedical
engineers. As there is a plethora of papers in the area
of rehabilitation, it is impossible and not the intention of
the paper to compile an exhaustive list of them. Instead,
by highlighting the advantages and drawbacks of existing
rehabilitation systems, we hope that this contribution can
support initial studies and encourage young researchers as
well as biomedical companies to investigate and invest new
technologies, contributing to global efforts in improving the
efficiency of the rehabilitation process and reducing patients
suffering.

This paper’s mind map information and organization is in
Fig. 1.

The remainder of the paper is organized following the
sequential order of signal flow and functional modules of
advanced technologies for rehabilitation. Firstly, we review
various hardware sensors and devices for acquiring biomed-
ical signals from human bodies such as EMG, ECG, and
EEG sensors in Section 1. These sensors are key components
of any wearable medical device and are fundamentally
the physical enablers of the overall rehabilitation system
architecture. Then, Section 2 presents wearable devices and
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the training of these devices. Section 3 discusses a range of
biomedical signal processing approaches and technologies
for various signals including ECG, EEG, and EMG signals.
These algorithms are core of rehabilitation systems. This
section also introduces complex systems using the combina-
tion of several biomedical signals. In Section 4, we present
the application of machine learning models and algorithms
for rehabilitation, including both classical machine learning
and deep learning. Finally, the paper is ended by general
conclusions. We should highlight that our study focuses on
recent references. Indeed, in our statistical study, curves or
tables we only consider references published between 2007
and 2024. However, less than 10% of all cited references in
this manuscript are published earlier than 2007 mainly for
some reasons, such as: references well-known or with high
citation, mathematical approaches, survey papers, or papers
targeting specific research areas.

II. HARDWARE: WEARABLE SENSORS AND SYSTEMS
Recently, due to the pandemic situation that has hit the
world in the last three years, home rehabilitation has become
increasingly popular due to the safety and familiarity of the
home environment, as well as the ease of potential long-
term rehabilitation training. In addition to the advantage of
reducing the financial burden, the need to relieve the pressure
of public hospitals and private clinics, the home environ-
ment also has the advantage of flexibility of training time.
Evaluation of the effectiveness of rehabilitation procedures
has been limited to the laboratory context, and relatively
little is known about rehabilitation at home or in real life
situations. Therefore, this new rehabilitation scenario has
become a research topic for many scientific and academic
institutions that are involved in finding new methodologies
and technological systems to reduce the burden on hospitals
and healthcare systems with physical rehabilitation therapies
and monitoring processes.

Recent advances in signal processing, electronics, and
wireless networks [24] (particularly with 5G and the in-
coming 6G) have provided the means to help overcome
these challenges. Wireless wearable systems have appeared
as gold standard solutions to aid in continuous monitoring
as part of a diagnostic procedure, optimal maintenance of
a chronic condition, or during supervised recovery from an
acute event or surgical procedure, or more in general, in
cloud-based or edge-based remote rehabilitation therapies
such as rehabilitation for myocardial infarction, rehabilita-
tion after stroke, rehabilitation for traumatic brain injury,
and physical rehabilitation after hip or knee surgery [25],
[26]. By implementing these technologies, the rehabilitation
process can be performed remotely, from home or during
normal daily activities, with the virtual supervision of a doc-
tor/therapist. By definition, wearable medical devices should
be worn by patients to monitor their daily living activities
without interfering with or limiting the patient’s normal
range of action/motion. The use of wearable devices for

medical therapies can help reduce costs in healthcare systems
and hospitals and reduce the number of excess patients.
Furthermore, these should allow patients to perform the
required rehabilitation exercises comfortably at home, with-
out compromising their daily routine. Using cutting-edge
communication technologies to provide healthcare services,
patients’ conditions can be assessed remotely and doctors
can provide the necessary help [27]. Doctor records can also
be stored for later use or for more complex data analysis to
understand health trends within the same community.

Biomedical sensors are key components of any wearable
medical device and are basically the physical enablers that
play a fundamental role in the overall eHealth architecture.
The accuracy of the acquired data depends on the sensors.
Therefore, they are responsible for the overall performance
of wearable devices. Physiological signals are acquired from
various sensors such as ECG, EEG, phonocardiography
(PCG), surface electromyography (sEMG) [28]–[32], pho-
toplethysmography (PPG), and inertial measurement unit
(IMU) [33]. Recently, optical fiber-based sensors have been
developed for smart health monitoring [34], detecting and
quantifying cortisol [35], detecting tyramine [36] and afla-
toxin [37]. In a physical rehabilitation scenario, aimed at the
healthy locomotion of the patients, gait (walking) pattern
analysis is of utmost importance. Understanding how we
walk and why we walk the way we do can reveal several
postural and musculoskeletal disorders, which need to be
addressed before they become a pathology. This analysis
can be carried out through the use of video technologies
or detection platforms. However, the most accurate ones are
those worn by patients, which reflect the correct movement
of their limbs, hands or fingers, especially when applied
during normal daily activities [28], [38]–[42]. Over the last
two decades the use of wearable sensors, placed on the
body for rehabilitation purposes, has gained more and more
interest due to the lowering of their cost, the increase in
their miniaturization in terms of weight and size, and finally
thanks to their long autonomy linked to low-power circuits
with which they are built [24], [43], [44]. Furthermore,
wearable textile electrodes have proven to be a decisive
component of such sensors in the acquisition of critical
bio-potential signals for routine monitoring, assessment, and
exploitation of cardiac and neural muscle functions [45],
[46].

To show the diffusion of wearable technologies for sensing
body signals in rehabilitation activities, we used Scopus and
Web of Science (WoS) servers to conduct a statistical study
on indexed published papers related to these topics using
keywords. To this goal, we plotted in Fig. 2 the number
of published items (journal articles, book chapters, and
conference proceedings) with respect to their publishing year
from to 2007 and 2024 and considering different sensors.
As can be easily observed from Fig. 2, starting from 2012
there has been a rapid increase in the number of articles in
the scientific literature which reflects the growing research
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for wearable sensors for rehabilitation purposes enabled by
the progress in circuit integration and miniaturization. Based
on Fig. 2, we can see the growing number of published
scientific articles focusing on the design of wearable sensory
devices for rehabilitation purposes for the most common type
of signals. Therefore, in this section we classify ongoing
research on wearable sensors applied to rehabilitation into
six categories. The first four categories consider sensors
capable of capturing different biomedical signals: EMG,
EEG, ECG and PPG. The remaining last two categories are
related to accelerometer sensors and inertial sensors, also
known as IMUs, which are popular today due to their easy
implementation and integration into existing wearable sensor
devices.
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FIGURE 2. Scientific publications on different wearable sensors used for
rehabilitation purposes with respect to year. The search was limited to
peer reviewed journal papers, book chapters, and conference
proceedings published between 2007 and 2024 and indexed in the a)
Scopus and b) WoS database, last accessed: April 14, 2025.

However, to sake of completeness, in the rest of this
section we performed our keyword-based searches using
different well-known databases such as Scopus, WoS, IEEE
Xplore, PubMed Central and the Google Scholar search
engine. Finally, some commercial websites describing pro-
totypes, systems, and devices were included when the pub-

lished scientific literature did not offer adequate descriptions
of these relevant or well-known products.

A. sEMG and Multimodal sEMG-Based Sensors
The sEMG signal is well suited for monitoring person’s body
posture, physical performance, and fitness level due to the
fact that it can be obtained using intrinsically non-invasive
measurement devices and is relatively easy to acquire [47]–
[52]. Indeed, sEMG signals are generated from electrical
potentials produced during muscle contractions [53], [54]
and can be collected simply by placing electrodes on the
skin surface. However, these electrical signals have relatively
low amplitudes and, for processing, they need carefully
designed high input-impedance, low-noise amplifiers [55].
In [56] and [57], [58], a couple of human activity detection
systems based on sEMG signals and inertial data have been
proposed that can be used in a variety of scenarios like
in the rehabilitation settings. In particular Fig. 3 reports
the flow chart and the hardware as printed circuit boards
(PCBs) of the sEMG system presented in [55], [57], [58]
called WiSE and consisting of several ultralight wireless
sensing nodes that are able to acquire, process and efficiently
transmit the sEMG and inertial data to one or more base
stations through a 2.4 GHz radio link using a communication
protocol customized on top of the IEEE 802.15.4 physical
layer. The base stations are connected through a USB link to
a personal computer (PC) on which a user interface software
was implemented to view, record and analyze the data. Fig. 4
displays for the proposed system the placement of the mobile
nodes on the right arm for the recognition of some daily
human activities.

In [59], a waterproof wearable device with sEMG sensor
and an IMU sensor was designed and tested to help therapists
and trainers in aquatic rehabilitation. More in general, many
systems and wearable devices based on sEMG sensors and
inertial sensors have been implemented in the last decade for
rehabilitation.

On the one hand, sEMG sensors are useful for exoskeleton
technology which has proven crucial in helping patients with
stroke, incomplete spinal cord injuries, and other deficits that
impair walking functions. For exoskeleton technology, using
the sEMG signal (or the remaining part of it) information is
essential for controlling purposes, instead of using the more
invasive implantable myoelectric sensors for intramuscular
EMG signal recording [60], [61]. To this end, implementing
sEMG sensors that are able to capture and process in real-
time the neural signals from the muscles was a matter of
research in the last two decades for a Japanese company that
developed and commercialized an exoskeleton technology,
called Hybrid Assistive Limb (HAL), to aid people with
disabilities. It includes both arm and leg assistance (which
can be used separately or in tandem) actuating the knee and
hip joints by using the sEMG signals [62], [63].

On the other hand, having tiny sEMG sensors integrated
into a shirt or clothing is very useful in rehabilitation [45],
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FIGURE 3. sEMG global system [55], [57], [58].

[64]. In [65], a low-cost sensorized shirt incorporates a
six-channel sEMG sensor and a heart rate data acquisition
module to provide the patient with objective audiovisual and
haptic biofeedback. The shirt is interfaced with a smartphone
application, for patient use at home, and with the online
database, for remote therapist supervision from the hospital.

For the same purposes, sEMG sensors are used to monitor
repetitive hand movements that are often used in rehabilita-
tion protocols to regain hand movement and strength. In [28],
a robotic glove was designed to aid in the movement and
coordination of gripping exercises through a cable system
actuated by servomotors that opens and closes the patient

hand. The glove can be controlled in terms of finger posi-
tion and grip force through the switch interface, software
program, or sEMG signal. Surface EMG sensors are also
used in [39] for the design and implementation of a robotic
system for assisted hand rehabilitation based on mirroring
healthy hand movements. The healthy hand opening and
closing is detected by sEMG sensors and this is used to
guide a robotic glove moving the paretic hand. In [66],
the design and evaluation of a wearable robot addressing
the limitations of the soft robot gloves for rehabilitation
and assistance of stroke and spinal cord injury patients is
presented. The system is composed of a soft hand exo-sheath
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based on electric actuation and integrated with a soft fabric
EMG sensor designed to be compact and portable.
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FIGURE 4. Example of activities recognized by the sEMG system in [57],
[58].

In [32], a novel wearable sEMG sensor was proposed for
muscle strength evaluation and rehabilitation training. It con-
sists of a flexible sEMG acquisition system that combines a
flexible graphene-based electrode with a flexible printed cir-
cuit board (PCB) for signal acquisition. The system utilizes
a polydimethylsiloxane substrate combined with graphene
transfer technology to develop a flexible sEMG sensor. The
single-lead sEMG acquisition system was designed and the
PCB was fabricated considering the requirements of flexible
bending and twisting.

In [67], an innovative wearable sensor is developed that
can be placed over clothing or installed in a nearby off-body
apparatus such as armrests and wrist pads and can monitor
superficial and deep muscles without requiring direct skin
contact. This sensor is based on a novel muscle monitoring
technique, named RMG, which can directly measure the
muscle motion by coupling radio frequency (RF) energy to
superficial and deep internal muscles. The proposed RMG
sensor employs four pairs of sensing antennas attached to
a wearable armband on the middle forearm and connected
by cables to off-body transceiver for fast and flexible pro-
totyping purposes to obtain an all-in-one wireless system.
Operation over clothing without direct skin touch allows
to noninvasively monitor both surface and internal muscles.
Coupled with sEMG, the RMG can potentially lead to new
methods for assessment of muscle functions, diagnosis of
neuromuscular disorders, monitoring of muscle fatigue and
physical training, all activities that are involved in many
rehabilitation systems and protocols.

1) Multimodal sEMG-Based Sensors
New sEMG-based biosensors with multimodal signal acqui-
sition, based on ECG, near-infrared spectroscopy (NIRS),
MMG, force myography (FMG), EEG, acceleration, temper-
ature, and vibration detection, have recently been proposed.

Multimodal sEMG and ECG wearable sensing systems
are reported in [68]–[70] that can be used in medical
applications and rehabilitation settings. In particular, in [68]
the acquisition system consists of an intelligent electrode
device (which performs amplification, filtering, analog-to-
digital (A/D) conversion, binary encoding, and wireless
transmission of biosignals) and a data acquisition host that
receives them using ZigBee wireless technology. In [69],
a low-power wearable sensor networks platform with high
sensitivity electric potential dry surface sensors in proposed
that can be used in either contact or non-contact mode to
measure ECG and EMG signals. The sensor nodes perform
runtime directly the heart and respiration rates, thus reducing
the amount of data to be transmitted and the radio power
consumption. Finally, in [70] a low-cost, low-power proto-
type is proposed that is characterized by very high sensitivity
allowing to capture and identify small muscle movements
quite distinctly.

A prototype of a hybrid sEMG, NIRS, and MMG sensor
system was proposed in [71]. Here, the acquisition circuits
were assembled into an all-in-one sensor, which can measure
the muscle motion and fatigue from the modalities of electro-
physiology, optics, and acoustics through the fusion of EMG,
NIRS, and MMG signal data. To improve the reliability and
safety of myoelectric prosthetic control, a modular multi-
modal EMG-FMG acquisition system is proposed in [72].
The whole system contains one data acquisition unit for A/D
conversion and wireless data transmission and eight identical
sensor modules for signal conditioning and amplifying. The
sensor modules are based on floating electrodes that can be
used for measuring EMG signal and for the force probe of
FMG simultaneously. With this solution, the FMG and EMG
signals could be detected at the same positions of the muscle.

A low-cost wearable multimodal sensing system for EMG,
ECG, acceleration, and temperature signal acquisition was
proposed in [55], [58]. The system consists of wearable
sensing modules that transmit the biological and accelerom-
eter signals to one or more base stations using a custom
wireless protocol based on the IEEE 802.15.4 standard.
Finally, each base station is connected via USB to a control
PC running a user interface software for data processing
and storage. The RF communication protocol allows a high
data rate compared to other devices using the same physical
layer and an accurate microsecond-level synchronization,
between nodes connected to the base station. The signals
thus acquired can be combined and processed to detect
and recognize human activities and help clinicians monitor
rehabilitation sessions.

As a sort of improvement of the previous system, a
three-channel wireless sensor for either EMG or ECG sig-
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nal acquisition with an inertial platform for simultaneously
capturing movement information has been proposed in [73]
and displayed in Fig. 5. The wearable sensor can acquire
three independent bioelectrical channels at 24-bit resolution
and a sampling rate up to 3.2 kHz. It has a 6-DoF inertial
platform measuring linear acceleration and angular velocity.
The Bluetooth low-energy was chosen for the wireless link as
easy interface with many consumer electronics devices, such
as smartphones or tablets, that can work as data aggregators.
Furthermore, to take into account the cost of computation,
the compression efficiency and energy consumption of some
lossless algorithms suitable for wireless transmission of
EMG signals were studied in detail [74].

FIGURE 5. EMG/ECG signal acquisition with inertial platform system
proposed in [73]. The left picture displays the placement of the electrodes
and device on the upper portion of a right arm. The electrodes identified
by the yellow tab contact the biceps brachii, those identified with the
orange tab the triceps brachii, and those with the blue tab the deltoideus
medium muscle (licensed under CC BY 4.0). The right picture displays the
assembled prototype circuit board: the EMG/ECG sensing chip is U2, the
inertial sensor is U5 and the overall circuit measures 51 mm×27 mm.

In [75], EEG and EMG signals were collected during
dynamic elbow flexion-extension motion at different speeds,
while holding different weights. These biosignals were used
to develop different EEG-EMG fusion models to classify the
weight the user was holding while moving, which can be
used to improve the adaptability and robustness of wearable
mechatronic rehabilitation devices. Bioelectrical signals were
acquired using an Intronix (Intronix Technologies, Bolton,
Canada) 2024F Physiological Amplifier System, configured
to collect EEG and EMG signals at 4000 Hz sampling
rate. A ground electrode was placed over the elbow bone
of the subject’s non-dominant arm to act as the system
ground for the differential amplifier used by the Intronix
2024F Physiological Amplifier System. In order to provide
a sufficient electrical connection through the subject’s hair,
EEG signals were measured using gold-cup electrodes with
conductive paste.

A prototype of a multimodal EMG, ECG, vibration and
temperature sensing system to be incorporated into clothing
and worn by the patient was reported in [76]. Here, in
addition to the sensor readout circuit for collecting the bio-
potential signals, the analog front end (AFE) includes a

piezoelectric wave detection circuit for vibration sensing, a
low-power analog-digital circuit with pulse-width modula-
tion (PWM) digital signal output, and a bandgap circuit for
temperature monitoring. The digital signal processing part
integrates a digital signal controller for AFE control and
calibration, an ARM-like microprocessor for compression
and communication, a 4 kB SRAM, and a 4 kB ROM.

Stroke survivors often have difficulties in completing
activities of daily living (ADL) independently. Thus, ADL-
related training for gross and fine motor function together is
important in the rehabilitation of these patients. In [77], an
ADL-based serious game rehabilitation system was proposed
for the training of motor function and coordination of
arm and hand movements, where the patient performs the
corresponding ADL movements to interact with the target
in the serious game. A custom system based on sEMG,
FMG, and inertial multi-sensor was proposed to estimate
the natural upper limb movement using a sensor-fusion
model. In particular, to implement the proposed multi-sensor,
six commercial sEMG sensors were placed evenly around
the user’s forearm, eight barometric pressure sensors were
attached evenly around the inner side of the wrist to measure
the FMG, and two 9-axis IMUs were placed one on the
middle of the forearm, and the other on the upper arm.

In [78], a system called SKYRE for the remote assessment
of patients undergoing knee rehabilitation was proposed. The
system is based on a multi-sensor wearable garment, which
can provide a real-time objective evaluation of physical exer-
cises, and an ICT architecture, which can support clinicians
in their decision-making process and provide guidance to
the patients. The system is composed of two units on the
thigh and calf, which are battery-powered and independent
from the perspective of power management as well as from
the computational point-of-view that adopt two IMUs placed
on the lower limbs, a couple of four EMG sensors located
on relevant muscles in the lower limbs, and two electrical
muscle stimulation (EMS) circuits to electrically stimulate
specific muscles.

B. ECG and Multimodal ECG-Based Sensors
Patients recovering from ischemic cardiac episodes
and similar acute events or heart surgery may require
rehabilitation sessions in which remote health monitoring
status can be accurately assessed using wearable sensors
based on ECG. In [79], a prototype system called
Wealthy allows the monitoring of health conditions using
ECG (Fig. 6), heart rate, oxygen saturation, impedance
pneumography and activity wearable sensors.

The design and implementation of the prototype of a
multisensor wearable patch (MultiSense CardioPatch) for
remote cardiac monitoring aiming to provide more detailed
and complete cardiac status diagnostics was presented
in [80]. The system integrates multiple sensors into a
single patch to detect both electrical (ECG) and mechanical
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(heart sounds) cardiac activity, as well as physical activity
via a 3-axis accelerometer. The prototype comprises a
microcontroller board with a radio communication unit
and is powered by a rechargeable lithium-ion battery to
enable remote monitoring of cardiac function in chronically
ill patients undergoing home cardiac rehabilitation programs.

FIGURE 6. ECG signal with some important features.

In [81], a wearable monitoring device was proposed for
upper limb rehabilitation that integrates ECG and EMG
sensors and uses data acquisition boards to obtain accurate
signals during training aided by robotic gloves. The collected
ECG/EMG signals were filtered, amplified, digitized, and
then transmitted to a remote receiver (smartphone or laptop)
through a low-energy Bluetooth module. A data analysis
software platform was developed to visualize ECG/EMG
information and integrated into the control module of the
robotic glove. During the course of training, various hand
activities (that is, hand closure, forearm pronation, finger
flexion, and wrist extension) were monitored by the EMG
sensor and changes in patient physiological state were moni-
tored by the ECG sensor. In a previous project and to monitor
patients in an operating room and simplify the connection
and monitoring tasks of physicians, we proposed a small
wireless device to collect ECG signals and transmitted to a
remote monitoring PC [82]. That device has been shown to
be most easily in practice and requires almost no effort from
physicians to maintain and operate, see Figs. 7 and 8 .

FIGURE 7. In a previous project [82], we developed a wireless ECG circuit
for monitoring patients in operating room.

In [83], a cyber-physical cardiac monitoring system called
Big-ECG for stroke management, consisting of a wearable
ECG sensor, data storage and analysis in a big data platform,
and healthcare consultancy services using data analytics and

medical ontology has been proposed. This system can help
healthcare companies in prognosis and rehabilitation man-
agement during post-stroke treatment. A wearable continu-
ous ECG/EMG monitoring system that can transmit data to
a smartphone/laptop for real-time monitoring, data recording
and analysis, was proposed in [84]. The wearable wireless
sensor is implemented in a compact size (30 mm × 30 mm
× 4.5 mm) and 24 hours of continuous ECG and EMG
recording were conducted to demonstrate the robustness and
stability of the device based on extended time wearability
on a daily routine.

FIGURE 8. Wireless ECG has been used in real operating room and
compared to classic wired ECG system.

In [85], a telemonitoring system composed of an acquisi-
tion, a transmission, and an elaboration unit is proposed. The
first one includes a shirt, a pair of socks and a belt embedding
accelerometer and inertial sensors, pressure sensors, single-
lead ECG, pulse oximeter, and temperature sensors. These
sensorized clothes are able to transmit the collected data to
a single database and provide physicians with the processed
information, allowing them to monitor the rehabilitation ac-
tivities performed by patients and assess whether corrective
measures are necessary. The design and implementation of a
wearable system, called Twinmed, composed of an exoskele-
ton and a smart shirt that records cardiac and muscle signals
through 3D silver-based textile electrodes was proposed in
[86]. The system was developed with the aim of evaluating
the progress of rehabilitation and the correct use of crutches
during walking with the exoskeleton through the use of the
ECG and EMG signal.

C. EEG Sensors
With the progress of microelectronics, communications and
signal processing, wireless EEG systems have attracted in-
creasing attention in the last ten years and research studies
have recognized their potential [87]. The use of wearable
EEG systems has demonstrated their validity in the mon-
itoring of rehabilitation activities and in the detection of
neurological and developmental disorders such as the autism
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spectrum disorder (ASD), where early diagnosis is an urgent
need for the treatment and rehabilitation of these patients.

In [88], a brain-computer interface (BCI) and brain-
machine interface (BMI) system is proposed to control an up-
per limb robotic arm. The whole system includes electrodes,
shield wires, preprocessing chip, wireless communication,
central control system, arm machinery, PC software, and
APP on the mobile terminal. The recorded EEG signal is
transmitted to the computer and the upper limb robotic arm
interface via Bluetooth. To obtain effective commands from
the brain, the recorded EEG signal is processed by filtration,
noise reduction, feature extraction and classification, while
the PC software and the upper limb arm are driven by com-
mands based on EEG. Through the encoders and gyroscopes
on the upper limb arm, some feedback signals are acquired
in real time, such as the joint angle, acceleration, and angular
velocity of the arm. In [89], tremor suppression in human
hand and forearm was studied, where EEG sensors were used
as cap head for tremor recording as shown in Fig. 9.

FIGURE 9. EEG sensors used as cap head for tremor recording.

In order to perform an effective treatment for rehabilitation
of severe motor impairment after stroke, a novel closed-
loop neurofeedback system prototype called REINVENT
was proposed in [90] to promote the patient motor recovery.
REINVENT (Rehabilitation Environment using the Inte-
gration of Neuromuscular-based Virtual Enhancements for
Neural Training) leverages recent advances in neuroscience,
wearable sensors and virtual technology, and integrates low-
cost EEG and EMG sensors with feedback in a head-
mounted virtual reality (VR) display to provide neurofeed-
back when an individual’s neuromuscular signals indicate
movement attempt, even in the absence of actual movement.
In [91], an EEG-based ASD classification processor that
targets a patch-form factor sensor that can be used for long
time monitoring in a wearable environment was proposed.
The selection of frontal and parietal lobe electrodes causes
minimum uneasiness to the patient. The proposed and im-
plemented algorithm utilizes only four EEG electrodes. The
processor is implemented and validated on Artix-7 FPGA
which requires only 26k lookup tables and 15k flip flops.

A hardware feasible shallow neural network architecture is
used for the ASD classification. The system classifies the
ASD with a high classification accuracy of 85.5% using the
power and latency of 8.62 µW and 2.25 ms, respectively.

D. PPG Sensors and Multimodal PPG-Based Sensors
Recent advances in wearable healthcare sensor technology
have triggered radical changes in rehabilitation. In the last
years, the PPG signal has gained in popularity as a further
biosignal that could easily provide interesting information
about patient cardiac activity (heart rate and body pressure),
and wearable systems involving wireless PPG sensors are
becoming used in long-lasting rehabilitation programs. As
an example, pulmonary rehabilitation exercises and patient
management for long periods of time are required for chronic
lung illnesses which usually worsen over time such as the
chronic obstructive pulmonary disease caused by chronically
poor airflow that makes breathing difficult. In [92], a remote
rehabilitation system for a multimodal sensors-based appli-
cation is proposed. It involves the fusion of sensory data –
captured motion data by stereo-camera and PPG signal by a
wearable sensor – that are the input variables of a detection
and evaluation framework.

Many consumer wearable devices are capable of mea-
suring heart rate information using PPG signal processing.
However, the sampling intervals of these wearable devices
tend to be longer than those of traditional instruments in
clinical applications and research environments. Therefore,
in [93] data interpolation was applied to PPG data acquired
with low sampling rates, so that traditional heart rate vari-
ability (HRV) methods like power spectrum analysis can be
utilized for stress evaluation. Additionally, motion artifacts
(MA) caused by the interfacial dynamic change between
PPG wearable sensors and human skin are making accu-
rate measurements still challenging in personal healthcare
and rehabilitation training. In [94], a wristwatch-type PPG-
based heart rate (HR) wearable sensor was proposed that
uses a novel interface sensor to remove MA through adap-
tive filtering avoiding conventional accelerometer-based MA
techniques. The interface sensor is able to detect non-contact
proximity and contact pressure between wearable sensors
and human skin. This sensor employs natural piezo-thermic
transduction of human skin and enables direct interfacial
proximity/pressure detection by using simple thin-film ther-
mistors to detect the interfacial thermal field change. Using
natural transduction of human skin and simple thermometry,
this interface sensor provides an advantageous MA removal
for wearable monitoring devices during physical activities
and thus broadens wearable monitoring applications such as
rehabilitation.

In [95], a wearable low-cost PPG sensor for simultaneous
hand gesture and force level classification was proposed, that
can be very useful in a wide range of application scenar-
ios in post-stroke home rehabilitation. Here, a customized
wristband embedded with green, red, and infrared light PPG
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sensors was developed, in order to improve the accuracy
achievable with single-signal or two-signal combinations.
In [96], a prototype PPG sensor was developed for con-
tinuous measurement of oxygen saturation level, as shown
in Fig. 10, where the circuit model consists of a infrared
light emitting diode (LED) and a photo-diode with other
supporting components.

a) Circuit model of PPG sensor.

b) Prototype of PPG sensor circuit.

FIGURE 10. Prototype PPG sensor for continuous measurement of
oxygen saturation level.

For the sake of completeness, due to its low invasiv-
ity, low cost and easy-to-acquire characteristics, the PPG
signal is often used in combination with other biosignals
related to cardiorespiratory activity such as ECG. As an
application example of home-based mobile-health (mHealth)
rehabilitation system, a design based on mobile visible
light communication (mVLC) technology for clinical data
transmission was proposed in [97]. In the proposed system,
multiple biosignals such as PPG, ECG, and respiration signal
are acquired by wearable body sensors, transmitted through
LED, and received by a smartphone camera at 30 fps thus
avoiding the use of RF communication channels that can
be risky for a human body in term of long term usage (as
in rehabilitation programs) due to RF exposure and electro-
magnetic interference (EMI). Furthermore, an Android-based
mobile monitoring application was also available for local
data analysis, visualization, and storage.

E. Inertial Sensors
Due to their relative ease of operation and low cost, inertial
measurement units (IMUs), which incorporate a combination
of accelerometers, gyroscopes, and sometimes magnetome-
ters, are used for a wide range of applications requiring
measurements of speed, accelerations, angular velocity, and
orientation of the human body. These include sports per-
formance, gait analysis, and rehabilitation (e.g., Parkinson’s
disease monitoring or post-stroke assessment) [98], [99].
In particular, inertial and multimodal platforms exploiting
commercial IMU sensors have been widely proposed over
the last two decades in most rehabilitation scenarios where
knowledge of position, acceleration and orientation of the
human body and its parts is essential for monitoring and
evaluating patient activity [100]–[109]. In [89], IMU sensors
were used for data recording in a tremor suppressing project
as shown in Fig. 11.

FIGURE 11. IMU sensors attached on a subject’s wrist.

III. Wearable Devices and Extra Training
Wearable devices for rehabilitation that use machine learning
and require specific training are gaining traction in the field
of physical therapy. Wearable devices are being used in
rehabilitation with the help of machine learning algorithms.
These devices collect physiological signals from users and
can induce emotional states to assess patients’ rehabilitation
outcomes [110], [111]. Machine learning algorithms are then
applied to the collected data to classify the emotional state
based on a two-dimensional model of emotion, achieving
high accuracy [112]. Additionally, machine learning algo-
rithms can be used to estimate clinical scores and track the
motor recovery process in patients with upper-limb motor
impairments [113]. The combination of wearable devices
and machine learning provides an accurate, objective, and
effective solution for clinical rehabilitation assessment and
remote rehabilitation without the presence of physicians
[114]. These advancements in wearable technology and
machine learning offer new possibilities for personalized and
precision rehabilitation interventions.
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a) Number of publications per year in linear scale.

b) Comparison among the number of publications.

FIGURE 12. Publication of references on machine learning-based
wearable devices for the years 2007–2024.

As Fig. 12 shows, the field of wearable devices for reha-
bilitation using machine learning has seen significant growth
since 2017. Here is a general overview of the publication
trend:

• 2007–2016: These years saw a relatively small number
of publications as it was less than 10000 up to 2014 and
2017 for normal machine learning and deep learning
respectively, as the field was still emerging.

• 2017–2018: There was a noticeable increase in publica-
tions as researchers began to recognize the potential of
combining wearable technology with machine learning
for rehabilitation purposes.

• 2019–2020: The field experienced rapid growth, with a
substantial increase in the number of publications. This
period likely saw the introduction of more sophisticated
deep machine-learning algorithms and improved wear-
able sensor technology.

• 2021–2024: These recent years have likely seen the
highest number of publications, with continued growth
in the field. The COVID-19 pandemic may have further
affected research in monitoring and rehabilitation using
wearable devices before it accelerated again.

Wearable devices integrated with machine learning algo-
rithms have demonstrated significant potential in the field
of rehabilitation. These technologies provide innovative so-
lutions for monitoring and enhancing various aspects of
rehabilitation processes. For example, wearable sensors com-
bined with machine learning have been employed in post-
stroke rehabilitation assessments, enabling more precise and
objective evaluation of patient progress [115]. Additionally,
the utilization of machine learning algorithms in wearable
devices has facilitated the development of systems for per-
sonalized rehabilitation assessment, allowing for tailored and
effective rehabilitation plans [116].

Furthermore, the integration of machine learning into
wearable devices has enabled the creation of Internet of
Things (IoT)-based systems for upper limb rehabilitation
assessments, expanding the accessibility of rehabilitation
services beyond traditional healthcare settings [117]. These
advancements have not only enhanced the monitoring of
rehabilitation progress, but have also improved the overall
effectiveness of rehabilitation interventions, particularly in
cases of stroke rehabilitation [118], [119].

Moreover, wearable devices equipped with machine learn-
ing capabilities have played a crucial role in providing
biofeedback during rehabilitation, assisting in balance and
gait outcomes in neurological diseases [120]. The portabil-
ity and user-friendly nature of the wearable devices have
rendered them suitable for both clinical and home-based
rehabilitation settings, thereby increasing patient compliance
and engagement in the rehabilitation process [120]. These
devices offer several advantages over traditional methods,
including:

• Continuous monitoring: Wearable devices can collect
data continuously, providing a more comprehensive
picture of a patient’s progress compared to periodic
assessments in a clinical setting.

• Remote monitoring: Patients can use these devices at
home, allowing therapists to monitor their progress
remotely and adjust rehabilitation plans as needed.

• Personalized feedback: Machine learning algorithms
can analyze data collected by wearable devices and
provide personalized feedback to patients, helping them
improve their form and adherence to their rehabilitation
program.

Here are some examples of how wearable devices are
being used for rehabilitation with machine learning and
specific training:

• Gait analysis: Wearable devices with sensors such as
gyroscopes and accelerometers can be used to track
a patient’s gait pattern, helping therapists identify ab-
normalities and design targeted exercises to improve
walking mechanics.

• Range of motion tracking: Wearable devices can track
the range of motion in a joint, allowing therapists to
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monitor progress and ensure that patients are perform-
ing exercises within safe and effective limits.

• Muscle activity monitoring: EMG sensors in wearable
devices can measure muscle activity, helping thera-
pists assess muscle activation patterns and identify
potential muscle imbalances. Fig. 13 displays an aug-
mented reality-based illusion system (ARIS) architec-
ture, which was developed by one of the co-authors. It
mixes EMG and a camera tracking system [121].

FIGURE 13. ARIS system Architecture, red dot represents the location of
four colour markers while green dot represents the site of electrodes.

Specific training is often required to use these devices
effectively, as therapists need to understand how to interpret
the data and use it to guide their treatment decisions.
Additionally, patients may need training on how to wear
the devices and perform exercises correctly. Here are some
examples of companies developing wearable devices for
rehabilitation that use machine learning and require specific
training:

• MindMaze is a brain technology company that aims
to accelerate humanity’s ability to recover, learn and
adapt. With over a decade of work at the intersec-
tion of neuroscience, biosensing, engineering, mixed
reality and artificial intelligence, it has enhanced pa-
tients’ recovery potential with neurological diseases.
The company use digital therapeutics with best-in-class
motion analytics, AI and cloud technologies to create
a universal platform for brain health [122].

• Neofect promotes motor learning and brain reorga-
nization to improve function for adults rehabilitating
from stroke. It integrates treatment, provides real-time
feedback on exercises, incorporates devices into session
activities, simultaneously views client and device usage,
and digitally assigns in-session activities and home
exercise programs [123].

• Rehabtronics company develops robotic rehabilitation
devices and robot-assisted therapy systems for people
with physical and neurological disabilities. Its tech-

nology uses machine learning algorithms to optimize
therapy and improve rehabilitation outcomes [124].

• Bionik develops robotic devices and AI-based reha-
bilitation solutions for people with neurological and
musculoskeletal disabilities. The Company’s product
includes three InMotion® Robots for rehabilitation
following stroke and other neurological conditions in-
tended to restore upper-extremity motor control for a
broad range of neurological conditions and recovery
stages, including early recovery from acute stroke.
InMotion® Robots also provide objective evaluation
assessments intended to measure and report the pa-
tient’s level of motor impairment and progress during
the course of therapy. A home version of the InMotion®
upper-extremity technology is in development [125].

In conclusion, the synergy between wearable devices and
machine learning algorithms holds significant potential for
transforming rehabilitation practices. By leveraging these
technologies, healthcare professionals can deliver more per-
sonalized, efficient, and data-driven rehabilitation interven-
tions, ultimately enhancing patient outcomes and the quality
of care.

Wearable devices are meant to be used as a comple-
mentary tool to enhance the effectiveness of rehabilitation
programs. It is important to note that wearable devices are
not totally a replacement for traditional physical therapy. It
is crucial to consult with a healthcare professional before
using any wearable device for rehabilitation purposes.

IV. Signal Processing Approaches and Technologies
From the beginning of this century, the processing of
biomedical signals (ECG, EEG, EMG, etc.) using different
advanced processing tools [126] (such as wavelets, deep
learning, machine learning, time-frequency representations,
adaptive filters) has been an active research field for a wide
range of applications going from human/brain-computer
interference (H/B-CI), to brain gaming, and rehabilitation
robotics [127]. In [43], the authors provide a review on
common physiological systems used in the rehabilitation
field and they target commercial wearable devices.

To illustrate the high dynamic research activities in the
field of signal processing applied in the rehabilitation as-
pects, we used the server of Google Scholar to conduct a sta-
tistical study on published papers and other online resources
related to these topics. To this goal, we plotted the number
of publications (papers, conferences, online resources) with
respect to their publishing year in Fig. 14. To make a better
and fast comparison, we provide four sub-figures to show the
number of publications with respect to year and considered
signal in linear scale (a), in logarithmic scale (b), the steepest
growth of publication is provided in (c), and the percentage
of publication is shown in (d).
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a) Number of publications per year in linear scale.

b) Number of publications per year in logarithmic scale.

c) Comparison among the number of publications.

d) Percentage of publications per year.

FIGURE 14. Publication of references on biomedical signals used in
rehabilitation with respect to year.

Based on Fig. 14, we can notice the large number of pub-
lished papers focusing on biomedical signal processing ap-
proaches applied to rehabilitation purposes. Therefore, in this
section, we classify the existing and ongoing researches in
signal processing applied to rehabilitation into six categories.
The first three categories consider the applications based on
different biomedical signals including ECG, EEG, and EMG.
In the fourth category, we consider the stimulation of the
galvanic vestibular. The fifth subsection considers complex
systems using simultaneously more than one biomedical sig-
nals. The final category focuses on rehabilitation applications
using biomedical signals coupled with virtual reality.

A. Electrocardiographic Signals
The most important muscle in the whole body can be
identified as the heart. Indeed, our life depends on the health
of our heart. The heart is responsible to circulate the blood
among different body organs through the arteries, veins, and
capillaries. The blood circulation provides the nutrients and
oxygen to all our cells and at the same time helps to get
ride of the metabolic waste. As all muscles, the motion of
the heart is generated by electrical signals. The electrical
signals of the heart can be described by electrocardiographic
signals, as shown in Fig. 15. To enable the heart to fulfill its
pumping role, it needs an electrical source. This corresponds
to a pre-existing electrical impulse coming from the cells of
the heart tissue more precisely in the sinus node (SN). This
impulse propagates along the muscle fibers, causing the heart
to contract. In fact, each cell is a membrane exchange center
where different ions are involved [128], such as sodium (Na),
potassium (K), calcium (Ca), and chlorine (Cl). In order
to measure and record ECG, biopotential electrodes1 are
provided as interfaces between the body and the measuring
instrument. The potentials measured on the outer surface of
the chest through the electrodes are recorded on moving chart
paper in the form of ECG.

FIGURE 15. An example of ECG signal and its major features.

We can mention that the ECGs are usually very noisy.
The noise can be generated by the sensors or the electronic
circuits. It can be also caused by electrical signals generated
by other organs such as the diaphragm which is the main
muscle to control the volume of lungs used for breathing, or

1Generally, Silver/Silver Chloride (Ag/AgCl) electrodes are used.
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other muscles such the suboccipital muscles act to rotate the
head and move the neck, etc. In order to clean ECG signals
form electrical artifact that can be generated by external
electrical sources, notch filters are largely used. However,
to reduce the impact of other signals generated by vari-
ous muscles and remove artifacts from electrocardiographic
signals, the authors of [14] propose an approach based on
independent components analysis [129]. Using an adaptive
blind signal processing approach, the same authors [130]
succeeded to reduce artifacts in ECG signals. Blind source
subspace separation [131], [132] and classification of ECG
are developed in [133].

To ensure patients safety, physiological parameters (car-
diac rhythm, heart rate, blood pressure and blood oxygena-
tion) are monitored during a surgery [15]. During a surgical
procedure, the use of the electrosurgical units (ESUs) be-
comes nowadays indispensable. Indeed, the ESU produces a
RF alternative current to cut or/and to coagulate the tissue.
However, the electrical pulses generated by the ESU can
strongly disturb the ECG recording and monitoring. To re-
move electrical artifacts, we have proposed different methods
based on singular value decomposition (SVD), wavelets, and
empirical mode decomposition (EMD) [16], [134].

For developing a complex home monitoring system, the
authors of [135] elaborate a digital system, called “System
for Prevention, Care and Rehabilitation of Subject with Car-
diovascular Risk”, to acquire and process ECG and extract
the HRV, which is defined as the time interval difference
between two adjacent heartbeats [136]. According to [135],
the HRV is used to estimate the beat-to-beat heart rate
dynamics and respiratory modulation in real time by using
their previous system “Windows Media Center”. Finally and
in order to extract the respiration information, the authors
filter the obtained ECG by a cascade of two median filters,
with respectively 200 ms and 600 ms temporal windows. The
first filter removes the QRS complexes, while the P and T
waves are eliminated by the second filter. We should mention
that their device can be considered a medical-making support
for characterizing ECG patterns and discriminate normal
versus pathological cardiovascular patterns [137].

B. Electroencephalography Signals
It is well known that our brain is a very crucial and
complex organ in our body. Indeed, our brain generates our
feelings, maintains our memories, creates our thoughts, and
controls almost all our conscious or unconscious activities by
electrical signals transmitted through our neurons to different
muscles or organs. The EEG is used to measure the electrical
activities of our brain using small metal discs (electrodes)
attached to the patient’s scalp. EEG can be measured during
any activity of an alive brain (even during a sleeping period
or being fainted), as shown in Fig. 16. In particular, the EEG
data reported in Fig. 16 were collected in a hospital setting
during routine diagnostic procedures using a Galileo BE Plus

PRO Portable, Light version, with electrodes applied in the
standard 10-20 configuration.

FIGURE 16. An example of EEG signals with 19 channels with electrodes
applied in the standard 10-20 configuration as in [138].

Usually EEG signals can be used to diagnose neurode-
generative diseases (e.g. Alzheimer’s disease, frontotemporal
dementia, dementia with Lewy bodies, progressive supranu-
clear palsy, vascular dementia, etc.) [138]. They can also be
used to diagnose multiple brain disorders (epilepsy, seizure
disorder, sleep disorders, tumors, stroke, Creutzfeldt-Jakob
disease, etc.) [139]. EEG and its features are widely used in
BCI systems, as shown in Fig. 17.

FIGURE 17. Noisy EEG signal during one minute with its features: Delta
(δ) wave 1–4 Hz, Theta (θ) wave 4–8 Hz, Alpha (α) wave 8–12 Hz, Beta (β)
wave 12–30 Hz. The sampling frequency is fs = 256 Hz.

Using independent component analysis (ICA) [140], the
authors of [141] removed artifacts and noise from EEG
signals. Then, the cleaned EEG signals were filtered by band-
pass filters to focus around the desired frequency compo-
nents. Then, several features have been extracted based on
the time, frequency, or time-frequency domains, and using
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Morlet or Bump wavelets. Using the extracted features to
control a finger rehabilitation system, the authors of [141]
applied several classifiers such as support vector machine
(SVM), K-nearest neighbors (KNN), linear discriminant
analysis (LDA), and random forest on modified and reduced
dimensions features obtained by the principal component
analysis (PCA) techniques.

Oral communication is the most effective way to engage
in a conversation and enhance our social connection. Unfor-
tunately, people suffering from auditory processing disorders
(APD) [142] face a big challenge to participate in common
conversations among several persons. In fact, recent hearing
devices (hearing aids or cochlear implants) use advanced
signal processing algorithms. The latter devices are very
helpful to maintain a conversation between two individuals.
Unfortunately, they reach their limit if many people talk
simultaneously. To help suffering individuals in these cases,
the authors of [143] propose an auditory attention decoding
(AAD) hearing device using EEG. In order to develop
their system, the authors use several approaches based on
CNN, minimum mean-squared error (MMSE), least absolute
shrinkage and selection operator (LASSO), and canonical
correlation analysis (CCA).

Using virtual reality gloves and neurophysical signals such
as EEG and EMG, the authors of [144] identify and classify
four different hand actions for human motor actions. To re-
move environmental artifacts from EEG signals, the authors
used three methods of referencing (average ear reference,
common average reference, and the small Laplacian, i.e. the
average of four electrodes around the target electrode) as
suggested in [145]. To improve the classification of EEG
signals, several finite impulse response (FIR) filters of order
100 have been used to decompose the EEG into many sub-
bands [144], including α waves (8-10 Hz, 10-12 Hz, and 8-
12 Hz) and β waves (12-15 Hz, 15-18 Hz, 19-30 Hz, and 12-
30 Hz). The authors reach around 75% correct classification
using several classifiers, including naive Bayes, alternating
decision trees, multinomial logistic regression with a ridge
estimator, functional trees, naive Bayes trees, and SVM.

C. Myoelectric Signals and Surface Electromyography
In a similar way to our heart, all other skeletal muscles
generate various electrical pulses during their actions, these
impulses are called the myoelectric signals. The EMG repre-
sents the measured biomedical signal related to myoelectric
signals. EMG can be divided into two categories depending
on the methods used during the measurement: sEMG and
intramuscular EMG (iEMG). The sEMG is a safer non-
intrusive method compared with iEMG. For this reason,
many systems have been proposed to deal with sEMG,
specially to operate a robotic exoskeleton, see Fig. 18.

According to [146], 85% of the stroke, or cerebrovascular
accident (CVA), are of ischemic origins and 15% are hem-
orrhagic. A stroke can be the cause of severe consequences
such as level of consciousness, visual deficits, eye movement

FIGURE 18. An example of sEMG signal recorded from biceps brachii
muscles.

abnormalities, language impairment, facial paralysis, or even
hemiplegia. In many cases, rehabilitation therapy for hemi-
plegia can be highly recommended. Many researchers are
building rehabilitation training robots to help patients, and
are also investigating exoskeleton for rehabilitation purposes
or to enhance their motor function. To build an effective
exoskeleton, researchers should pay attention for the weight
of the device, the accuracy of the requested actions, the
action time, the robustness of the system, the volume of
the device, its degrees of freedom, its price, usability, its
ability to enhance the mobility, and its acceleration of the
rehabilitation process. Recently, exoskeletons are used in
various applications such as military, helping workers in
their hard tasks, and assisting patients with their daily life
activities. We should mention that exoskeletons are widely
used in the rehabilitation process. The authors of [147] pro-
posed a limb exoskeleton rehabilitation system based on the
processing and the classification of sEMG signals. In their
system, they applied random forest to achieve pattern recog-
nition, and they used a complete ensemble empirical mode
decomposition (EEMD) [148], [149] to filter the signals and
wavelets [150] were used as tool for features extractions.
Their experimental results showed about 94% of accurate
classification. In order to improve the physical human-robot
interaction control, the authors of [151] proposed a variable
stiffness exoskeleton with sEMG-based torque estimation. In
[152], EMG-driven robot hand assisted upper limb training
has been tested in clinical service. In order to extract valuable
muscle information and also describe muscles’ activities
from noisy multi-channel sEMG, ICA [140] and spectral
curve descriptors have been used in [153]. Using SVM [154],
KNN [155], and LDA [156], myoelectric pattern recognition
of hand motions for stroke rehabilitation has been derived in
[157]. Similar approaches have been proposed [158], [159].

D. Galvanic Vestibular Stimulation
To cope with neural declines affecting elderly people, sev-
eral non-invasive brain simulation (NBIS) methods have
been investigated. Depending on the required simulation
and the corresponding neurological disorder, NBIS can be
applied through various means [160], such as electroconvul-
sive therapy (ECT), repetitive transcranial magnetic stimula-
tion (rTMS), single-pulse transcranial magnetic stimulation
(sTMS), transcranial electrical simulation (tES), galvanic
vestibular stimulation (GVS), and transcranial focused ul-
trasound (tFUS).
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While the vestibular integrates signals from muscles,
joints, the skin, and our eyes, and is an essential organ in
our body, it is incompletely understood and it influences
a number of brain systems. Indeed, our brain through the
vestibular system senses information about our body position
and allows rapid compensatory movements in response to
any external force to maintain our balance. According to
[161], around 28 out of 100000 US adults suffer from
bilateral vestibular hypofunction (BVH), which is equivalent
to more than 64 thousand cases of severe to profound BVH
only in the United States, and 1.8 million worldwide (by
extrapolation of US estimates to the 2008 world population).
As there is no medical treatment for bilateral vestibular
deficit (BVD), vestibular implants have been tested for
the rehabilitation of patients suffering from BVD. These
implants offer possibilities to evaluate balance. It seems that
GVS is a promising field to enhance vestibular reflex [162].

According to [163], GVS can help us understand our
sensory signal processing in the vestibular system under
normal and pathological conditions. In addition, GVS may
be used to block or activate the discharge in the vestibular
nerve by electrical currents. During a GVS session, small
electrical currents (less than 3 mA) are administrated to the
subject behind its ears. Modern brain imaging technologies2

can be used to study and design GVS stimuli by infer-
ring brain activity at various spatial and temporal scales
[160]. In therapeutic intervention, GVS becomes an essential
means. During GVS, EEG signals can be used to capture
rapid dynamic brain activities. As EEG contains very noisy
signals, blind source separation [129], [140], [164], [165]
methods can be used to clean these signals from artifacts
and other noises. Data analysis and GVS can be used in
neurorehabilitation [160].

E. Complex Systems Using Several Biomedical Signals
In [166], the authors review several studies related to inter-
preting volitional movement intent from biological signals
[166] used to create artificial limb for amputated people.
According to their study, more than one million people
worldwide are unfortunately suffering every year from limb
amputations. In order to propose an artificial limb, various
biomedical signals are used, such as EEG, electrocorticog-
raphy (ECoG), electroneurography (ENG), and EMG. They
present as well a generic block diagram of a movement
intent decoder used to action the artificial limb. This decoder
works in two phases: a training or an exercise. Both phases
start by signal acquisition, then signal filtering and enhance-
ment operations, before extracting useful features. During
the training period, the extracted features are fed into the
decoder to link these features to specific motion or gesture.
During the exercise period, the extracted exercise features are
compared to the decoder outputs. Then the intent motion is

2Modern brain imaging technologies used: functional magnetic resonance
imaging (fMRI), EEG, magnetoencephalography (MEG), and positron emis-
sion tomography (PET).

predicted, which should go through a post processing stage
before going to various servomotors to realized the desired
motion. The extracted features are tightly related to recorded
signal. For example, in the case of EEG signals, the signals
are split into different frequency bands, including the delta
(δ < 4 Hz), the theta (4 < θ < 7 Hz), the alpha (8 < α < 15
Hz), and the beta (β > 15 Hz) waves [167]. Mostly, the alpha
signals are used in the movement intent decoders. However,
a low-frequency amplitude modulation extracted from ECoG
signals can be correlated to the limb movements [167].
Finally, several advanced signal processing approaches based
on Kalman filtering (KF), machine learning, artificial neural
networks (ANN) and specially multilayer perceptron (MLP)
have been used in different approaches to extract features
and manipulate artificial limbs.

F. Virtual Reality and Signal Processing for Remote
Monitoring Rehabilitation Systems
It has been mentioned before that signal processing methods
applied to biomedical signals (ECG, EEG, EMG, etc.) are
widely used in various fields and are very valuable for
diagnostic and clinical tests. The same signals can be used
as well in the rehabilitation procedures. Often, a patient
wearing many senors should do some exercises under the
supervision of a practitioner to evaluate the states of its
recovery. To extend the application of such process to home-
based rehabilitation support activities, recent studies have
proposed different approaches [168], [169].

Using Microsoft Kinect systems, the authors of [168]
customize a virtual reality system allowing a subject to
carry out physical and cognitive rehabilitation therapies. The
virtual reality platform they developed encourages a patient
to rehabilitate its strength, aerobic, motion or cognitive
capacities through specified exergames. The system can be
used in home activities without the active need or presence of
a therapist. At the end of every session, the system generates
a log report and sends it to a therapist for further offline
evaluation if required. To add more comfort to patients, the
users are monitored and they are provided with audio-visual
feedback during their session. This feedback allows a user to
know in real time if the ongoing exercises are well performed
according to their specific therapy program.

Using the IoT technology, the authors of [170] designed
a remote-monitoring validation engineering system (Re-
MoVES)3, which is a remote care solution for frail elderly
individuals. This system also proposed a list of exergames
to encourage and enhance therapy performance of a patient.
Knowing that biomedical signals are noisy and based on
the proposed ReMoVES, the authors of [169] proposed a
pre-processing approach of the acquired signals. In their
study, they consider different kind of noises, including
additive white Gaussian noise (AWGN) and multiplicative

3ReMoVES was designed by the University of Genoa [170] to support
motor and cognitive rehabilitation using exergames and digital tests. This
system relies on Microsoft Kinect v2, Leap Motion and a touchscreen.
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FIGURE 19. Methodology of machine learning-based rehabilitation research; CML – classical machine learning, DL – deep learning, Acc – accuracy,
Sens – sensitivity, Spec – specificity.

noise (such as speckles used in radars, the impulse or shot
noises that could alter randomly some signal samples). Their
approach consists of applying at first a spline interpolation
over the raw data, then filtering the outputs by nonlinear
filters. The filtered data go through a segmentation procedure
as an initial phase of feature extraction before ending by data
analysis. The ReMoVES platform helps the authors to have a
certain feedback on potential moves of the upper limb of the
subject. In their original study, they mention that the feature
extraction phase was done by experts and they suggest the
possibility to do this task automatically.

V. Machine Learning-based Rehabilitation
Conventional rehabilitation approaches usually require reg-
ular evaluations from doctors and/or physiotherapists on the
physical activities of patients during the course of rehabilita-
tion based on visual observations complemented by clinical
measurements. While these approaches are effective in many
aspects of speeding up the recovery process, they are limited
by the high medicare expense and the availability of medical
doctors and physiotherapists [171]. Some of these constraints
can be effectively mitigated by machine learning approaches
which have been proposed and applied in a variety of areas
of physiotherapy and rehabilitation. Machine learning is a
rapidly evolving area with new tools emerging every couple
of months, which provide great opportunities to improve the
rehabilitation procedure and reduce the cost of medicare and
the workload of physiotherapists [115].

The main purpose of applying machine learning is to lever-
age its strong signal and data analysis capabilities to assist
the rehabilitation process by providing patients with con-
veniently accessible real-time measurement and guidance,
particularly in the context of home-based or telerehabilita-
tion settings. Machine learning includes classical machine
learning and deep learning [172], with the latter receiving an
increasing attention. The methodology of machine learning-
based rehabilitation research is illustrated in Fig. 19.

A. Classical Machine Learning
In general, the steps of applying classical machine learning
in rehabilitation include data collection, signal acquisition,
preprocessing, feature extraction, and classification.
As the first step, general patient data such as age,
gender, and medical history information are collected.
Physiological signals are acquired from various sensors
such as ECG [115], PCG [173], EMG [174], EEG [175], and
IMU [115]. Recently, functional near-infrared spectroscopy
(fNIRS) has been used to monitor the brain activity in
rehabilitation [176]. These sensors can be worn conveniently
by patients at home to provide real-time physiological signal
measurement, which reduces the time and efforts required
by patients to travel to hospitals or physio clinics. As an
example, Fig. 20 shows the waveforms of the real-time
PCG and ECG signals measured by a wearable vest holding
six PCG sensors and one three-lead ECG sensor illustrated
in Fig. 21.
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FIGURE 20. Waveform of PCG signals and ECG signal recorded from a
wearable vest.
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FIGURE 21. Prototype wearable vest holding six digital stethoscopes and
one three-lead ECG sensor.

As the acquired signals are often contaminated by various
external noise and interference, in the preprocessing step, the
raw signals are amplified and filtered to remove noise and
interference [177]. Simple frequency-selective filters can be
used to suppress out-of-band interference and noise. If the
interference lies in the same time-frequency band as that
of the signal-of-interest, more advanced filtering algorithms
such as the adaptive Wiener filter [173], [178] and the
recursive least squares (RLS) filter [177] can be applied
to enhance the signal integrity. Another important aspect in
preparing signals for machine learning is that the signals
need to be properly normalized before they are input into
the neural network.

FIGURE 22. Decision boundary of an SVM-based classifier.

After preprocessing, features-of-interest such as the heart
cycle obtained from the ECG and PCG signals, and gait in-
formation acquired from the IMU sensors are then extracted
from the filtered signals. These features can be obtained
directly from the time-domain signal waveform or from
various transform domains such as the Fourier transform
and the wavelet transform. Ideally, extracted features should
present significant difference for the signal categories to be

classified. Feature selection techniques such as the Student’s
t-test and the maximum relevance and minimum redundancy
method can be employed for this purpose [179]. The selected
features are input to a classifier or an estimator. Examples
of classical classifiers include SVM [5], random trees, and
random forest [180]. Fig. 22 illustrates the decision boundary
of an SVM-based classifier. In [181], SVM is used to distin-
guish between normal and coronary artery disease (CAD)-
affected heartbeats, obtaining an accuracy of 80.44% and an
F1-score of 81.00%.

B. Deep Learning
Recently, deep neural network-based classifiers such as
the convolutional neural network (CNN) and the recurrent
neural network (RNN) have seen wide applications due to
their enhanced capabilities compared with classical machine
learning approaches [115], [178]. Note that unlike classical
machine learning, in deep learning-based neural networks,
the feature extraction operation is often implicitly embed-
ded/incorporated in the deep neural networks employed. For
deep learning, the architecture of the neural network and
its associated hyper-parameters play an important role in a
successful application of machine learning. In general, its
capability increases with the depth of the network. General
guidelines on designing deep neural networks and tuning the
hyper-parameters can be found in [172].

FIGURE 23. Salivary glands.

CNNs are useful for data with a grid-like structure such as
image, spectrogram, and scalogram. They employ multiple
layers of convolutional filters to extract features from the
input signal, followed by pooling layers to reduce the dimen-
sion of the data. The output of the last convolutional layer is
usually fed into fully connected layers for classification or
regression tasks [6]. On the other hand, RNNs are developed
to handle data with temporal dependencies such as ECG
and PCG signals. They process the input data sequentially
based on the current input unit and hidden states that capture
information from previous time steps [172]. Using deep
learning, we proposed in [182] an automatic diagnosis of
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FIGURE 24. Machine learning to automatic detection of Gougerot-Sjörden syndrome.

the Gougerot-Sjörden syndrome that may affect the salivary
glands, see Fig. 23, at different severity levels between 0.1
and 5% of the total population, see Fig. 24.

Recently, the transformer architecture attracted significant
research interests in many areas such as automatic speech
recognition (ASR) and natural language processing (NLP).
Similar to the RNN, a transformer-based neural network is
applied to sequential input data. However, unlike RNNs, a
transformer network can process the entire input sequence si-
multaneously using the attention mechanism, which enables
it to focus on specific parts of the input sequence based on
their relevance [183].

For both classical machine learning and deep learning, the
accuracy of models is evaluated through statistical metrics,
including sensitivity, specificity, accuracy, and area under the
receiver operating characteristic curve. Explainable AI tools
such as guided-backpropagation, gradient-weighted class
activation mapping (Grad-CAM), and local interpretable
model-agnostic explanations (LIME) can be applied to un-
derstand and interpret the machine learning results. In two
different joint projects [19] and [184] between ENSTA, the
Medical school in Brest, and Brest Hospital, we proposed
two systems to detect and characterize a thrombus in deep
veins using elastography and echography, see Fig. 25. We
should highlight that the classification performance shown
in both projects are good and quite comparable.

FIGURE 25. Elastography and echography of a blood clot.

C. Literature Review
As can be seen from Fig. 26, there is a plethora of papers
in the area of machine learning in rehabilitation and it is not
possible to compile an exhaustive list of them. Therefore, in
this section, we mainly focus on the most recent works in
this area. It is noticeable from Fig. 26 that there is a surge
of publications during the Covid-19 time. For upper-limb
rehabilitation, an intelligent wearable robotic exoskeleton
prototype was developed [185]. It can be used to provide
support for diagnostic and rehabilitation processes of neuro-
motor functions. These intelligent exoskeleton devices apply
machine learning to detect motion intentions during rehabili-
tation [186]. Thus, physical therapy sessions can be adjusted
according to the special needs of each individual patient. An
overview of how machine learning is used in EMG signal-
driven upper-limb prosthesis control was provided in [174]
along with a discussion about how it could be employed
to improve the robustness and reliability of future devices.
In [187], a federated learning-based consensus model was
developed for post-stroke assessment. This study proposed
the adoption of federated learning to develop a scalable AI
model for post-stroke assessment while protecting patients’
privacy.
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FIGURE 26. Number of publications per year between 2007 and 2024 on
machine learning with applications in rehabilitation, retrieved from
Google Scholar on April 24, 2025.

In [188], machine learning approaches were proposed to
predict rehabilitation success based on both clinical and pa-
tient reported outcomes. Regression algorithms were applied
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to estimate the rehabilitation success in terms of admission
and discharge value differences. Classification models were
then developed for predictions based on a three-class grading
scheme. A review article in [189] summarized the state-of-
the-art works combining AI and the IoT to help the elderly
live easier and better. Paradigms of both classical machine
learning and deep learning were introduced. Activity classifi-
cation and fall detection [190] were chosen as two important
application examples in elderly care to showcase the poten-
tial, limitations, and perspectives of machine learning.

A tutorial on reinforcement learning (RL) methods imple-
mented in a reproducing kernel Hilbert space was presented
in [191]. These methods can be used to address challenges
in decoder design for the BMI system in online continuous
learning of tasks, which is required for the full restoration of
motor function. A transformer-based neural network for gait
prediction in lower limb exoskeleton robots was presented
in [183], which showed a significant reduction of the mean-
squared error compared with the CNN model.

A recent review on wearable sensors and machine learning
in post-stroke rehabilitation is published in [115]. The au-
thors followed the guidelines of preferred reporting items for
systematic reviews and meta-analysis (PRISMA) to select 33
papers in the review. The objectives and limitations of each
paper are summarized in [115]. A logistic regression and a
feed forward neural network were used in [192] to identify
patient orientation for the purpose of mitigating pressure
injuries, which are a common problem for patients who have
limited mobility, particularly for those who are confined to
a bed. Machine learning techniques for Alzheimer’s disease
diagnosis and prediction were proposed in [175], [193]
based on magnetic resonance imaging (MRI) results, see for
example Fig. 27. In [194], the authors presented an automatic
clustering algorithm to detect anomaly in the perfusion MRI
of the brain, see Fig. 28.

FIGURE 27. Brain MRI image.

Digital twins is a promising approach to personalize
rehabilitation by creating virtual replicas of patients [195],
enabling simulations of different treatment scenarios and
personalized therapy plans based on real-time data and
individual needs. These models can predict patient outcomes,

allow real-time monitoring of rehabilitation progress, and
adjust therapy accordingly, leading to optimized recovery.

FIGURE 28. Using machine learning for automatic anomaly detection in
MRI.

D. Data Sets
Machine learning algorithms can be classified as unsuper-
vised and supervised learning [172]. Unsupervised algo-
rithms are well-known for feature extraction and do not
require any supervision signals/labeled data. For supervised
learning, access to labeled data plays a key role in developing
machine learning based classification algorithms in rehabili-
tation. As the training of the neural networks greatly depends
on the labeled data, the domain knowledge of doctors
and physiotherapists is instrumental. Obviously, incorrectly
labeled data usually leads to a performance degradation. In
[188], data from a thousand rehab patients were used to build
models that are able to predict the rehab success for a patient
upon treatment start. A list of the currently available open
access data sets of PCG recordings is provided in a recent
paper [196]. Table 2 shows some open access datasets which
can be used for the purpose of training machine learning
algorithms in rehabilitation.

In contrast to areas such as ASR and NLP with easy access
to a large amount of training data, in many rehabilitation
applications, there is only limited labeled data available.
Moreover, in general, the amount of data required for training
increases with the size of the neural network. This may lead
to problems such as overfitting, where the neural network
performs well only on the training data set, but fails to
generalize to other data. In such a case, transfer learning can
be used to leverage the strong capability of pre-trained large
neural networks in feature extraction and classification [6].
Utilizing a pre-trained network allows data limitations to be
overcome, including issues around limited labeled data.

Another approach to solve the neural network overfitting
problem is through data augmentation and data generation
[201]. Data augmentation reduces overfitting by training
models on slightly modified copies of existing data, for
example through adding noise, modifying the contrast, hue,
and saturation of the original image, etc. Data generation
refers to the creation of synthetic data, which can be achieved
using generative AI networks.
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TABLE 2. Examples of currently available open access datasets for training machine learning algorithms in rehabilitation

Data class Data description Data set

Heart sound PCG recordings Various data sets summarized in [196]
Heart signal ECG recordings Incentia [197]
Stroke Data of patients recovering from stroke SCOAR [198]
Movements Physical rehabilitation movements IRDS [199]
Alzheimer’s disease Commonly used Alzheimer’s disease datasets Summarized in [175]
Neurocritical care Transcranial Doppler ultrasound [200]

E. Concerns
As shown in the works mentioned above, machine learning
provides potential benefits for rehabilitation, compared with
conventional rehabilitation approaches. However, the use of
machine learning may raise ethical and operational concerns.
Ensuring the diversity of training data is paramount to
prevent biases, as witnessed in other deep learning appli-
cations [6]. Overfitting remains a technical concern, where
algorithms might be overly tailored to specific datasets, com-
promising their broader applicability. Variability of signals
and motion artifacts may also reduce the generalisability of
AI-based rehabilitation models. Moreover, societal unease
about AI-driven decisions in rehabilitation emphasizes the
need for human oversight and transparent accountability.
Furthermore, ethical concerns related to patient privacy and
confidentiality present a challenge for the collection of data.
As a result, in contrast to other areas such as image and
speech recognition, where a large open-access database is
available, only limited medical datasets are available. Exten-
sive processes are required to anonymize medical data and
make them available for use in machine learning models.
Despite these challenges, AI’s supportive role, aiming to
enhance, not replace, human expertise, presents promising
advancements in rehabilitation.

VI. CONCLUSION
This paper considers technologies for rehabilitation from
various points of view. It is well known the impact of
rehabilitation therapies on patients as well as on the health
care system. Rich countries can pay hundreds of billions per
year to cover the need of their citizens. While rehabilitation
therapies are almost as old as the medicine practices, during
the last two decades, rehabilitation techniques have been
largely improved by introducing new technologies such as
machine learning, cutting-edge electronic devices, advanced
signal processing approaches, etc. Through this study, we
considered four major research fields recently introduced in
rehabilitation therapies. The need of our societies for such
therapies will continue to increase. The budget allowed for
such medical acts will also be soaring.

APPENDIX
A. Publication Tables
The number of publications on rehabilitation related to
specific biomedical signals from 2007 to 2024 is shown in

Tables 3 and 4. The number of publications on wearable
devices for rehabilitation related to acquired body signals
from 2007 to 2024 is listed on Table 5.
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nationale en Automatique & Traitement de Signal, Sousse, Tunisia,
March 2017.

[134] ——, “Blind elimination of electrical artifacts caused by the electro-
surgical units (ESU) for ECG signals,” in European Conference on
Electrical Engineering and Computer Science, (EECS 2018), Bern,
Switzerland, 20-22 December 2018.

[135] F. Braga, S. Bonacina, and M. G. Signorini, “A system for prevention,
care and rehabilitation of subject with cardiovascular risk: the signal
processing algorithm library,” in 28th IEEE EMBS Annual Interna-
tional Conference, New York City, USA, Aug 30-Sept 3 2006, pp.
5230–5233.

[136] Heart rate variability: standards of measurement, physiological in-
terpretation and clinical use, European Society of Cardiology and
the North American Society of Pacing and Electrophysiology, March
1996, circulation.

[137] H. Mussalo, E. Vanninen, R. Ikäheimo, T. Laitinen, M. Laakso,
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E. Lalor, B. T. Meyer, S. Miran, T. Francart, and A. Bertrand,
“Electroencephalography-based auditory attention decoding toward
neurosteered hearing devices,” IEEE Signal Processing Magazine,
vol. 38, no. 4, pp. 89–102, July 2021.

[144] D. Paoliello, T. Tan, and A. Mansour, “Classification of electroen-
cephalogram signals for human motor actions,” in 6th World Congress
on Biomechanics, Singapore, 1 - 6 August 2010.

[145] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw,
“Spatial filter selection for EEG-based communication,” Electroen-
cephalography and Clinical Neurophysiology, vol. 103, no. 3, pp.
386–394, 1997.

[146] A. S. Khaku and P. Tadi, “Cerebrovascular disease,” available
from: https://www.ncbi.nlm.nih.gov/books/NBK430927/, visited on
January 2024.

[147] B. Gao, C. Wei, H. Ma, S. Yang, X. Ma, and S. Zhang, “Real-time
evaluation of the signal processing of sEMG used in limb exoskeleton
rehabilitation system,” Applied Bionics and Biomechanics, vol. 57,
2018.

[148] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition:
a noise-assisted data analysis method,” Advances in Adaptive Data
Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[149] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin,
“A complete ensemble empirical mode decomposition with adaptive
noise,” in Proceedings of International Conference on Acoustics
Speech and Signal Processing, ICASSP 2011, Prague, Czech, May,
22-27 2011, pp. 4144–4147.

[150] S. Mallat, A wavelet tour of signal processing. New York and
London: Academic Press, 1999.

[151] Y. Zhu, Q. Wu, B. Chen, Z. Zhao, and C. Liang, “Physical hu-
man–robot interaction control of variable stiffness exoskeleton with
sEMG-based torque estimation,” IEEE Transactions on Industrial
Informatics, vol. 19, no. 10, pp. 10 601–10 612, October 2023.

[152] Y. Huang, W. P. Lai, Q. Qian, X. Hu, E. W. C. Tam, and Y. Zheng,
“Translation of robot-assisted rehabilitation to clinical service: a
comparison of the rehabilitation effectiveness of EMG-driven robot
hand assisted upper limb training in practical clinical service and
in clinical trial with laboratory configuration for chronic stroke,”
BioMedical Engineering OnLine, vol. 17:91, pp. 1–11, 2018.

[153] W. L. Lee, A. Mansour, and T. Tan, “Pre-processing of multi-channel
sEMG signals based on ICA and spectral curve descriptors,” in In
6th World Congress on Biomechanics, Singapore, 1-6 August 2010.

[154] C. Cortes and V. Vapnik, “Supprot-vector networks,” Machine Learn-
ing, vol. 297, no. 20, p. 273–297, 1995.

[155] N. S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” American Statistician, vol. 46, no. 3, p.
175–185, Aug 1992.

[156] C. Huberty, “Discriminant analysis,” Review of Educational Research,
vol. 45, no. 4, pp. 543–598, 2018.

[157] J. C. Castiblancoa, S. Ortmannb, I. F. Mondragonc, C. Alvarado-
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