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Channel Training Algorithms for Two-Way
MIMO Relay Systems
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Abstract—Two-way relay systems are known to be capable of
providing higher spectral efficiency compared with conventional
one-way relay systems. However, the channel estimation problem
for two-way relay systems is more complicated than that of
one-way relay systems. In this paper, we propose and compare
two channel estimation algorithms, namely the superimposed
channel training scheme and the two-stage channel estimation
algorithm, for two-way multiple-input multiple-output (MIMO)
relay communication systems, where the individual channel
state information (CSI) for the first-hop and second-hop links is
estimated. For both algorithms, we derive the optimal structure
of the source and relay training sequences which minimize the
mean-squared error (MSE) of channel estimation. In the super-
imposed channel training scheme, the power allocation between
the source and relay training sequences is optimized. For the
two-stage channel estimation algorithm, we optimize the power
allocation at the relay node between two stages to improve the
performance of the algorithm. Numerical examples are shown
to demonstrate and compare the performance of the proposed
channel training algorithms.

Index Terms—Channel estimation, MIMO relay, MMSE, power
allocation, superimposed training, two-way relay.

I. INTRODUCTION

In recent years, multiple-input multiple-output (MIMO) relay
communication systems have attracted many research interests
due to significant growth in the demand for fast and reliable
wireless communications [1]–[5]. In [2] and [3], the optimal
relay precoding matrix is derived to maximize the mutual in-
formation between the source and destination nodes for a three-
node two-hopMIMO relay communication system. In [4], a uni-
fied framework has been developed to optimize the source and
relay precoding matrices for two-hopMIMO relay systems with
a broad class of commonly used objective functions. A recent
survey on transceiver design for amplify-and-forward MIMO
relay systems is presented in [5].
It can be seen from [1]–[5] that in a MIMO relay system,

the knowledge of the instantaneous channel state information
(CSI) is required at the destination node to retrieve the informa-
tion transmitted by the source node. However, in practical relay
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communication systems, the instantaneous CSI is unknown, and
therefore, has to be estimated. A least-squares (LS) fitting-based
channel estimation algorithm is proposed in [6] for MIMO relay
systems. A two-stage channel training algorithm is developed
in [7], where the optimal training sequence at the source and
relay nodes is derived. In [8], a parallel factor (PARAFAC) anal-
ysis based algorithm is proposed which can estimate MIMO
relay channels up to a scaling ambiguity that is inherent in the
PARAFAC model.
The channel estimation algorithms in [6] and [7] are devel-

oped for one-way relay systems [1]–[4], where a source node
sends signals to a destination node through relay node(s). In
two-way relay systems, two source nodes exchange their in-
formation through assisting relay node(s). Initially studied by
Shannon in [9], two-way relay systems are getting more atten-
tion recently as they have higher spectral efficiency compared
with one-way relay systems. For two-wayMIMO relay systems,
the joint source and relay optimization is recently investigated
in [10] assuming the channel matrices are known. Channel es-
timation issue is not discussed in [10].
The channel estimation problem becomes more complicated

in two-way relay systems and several algorithms have been
proposed in [11]–[13]. Maximum likelihood (ML) and linear
maximum signal-to-noise ratio (SNR) channel estimation tech-
niques have been introduced in [11], while block-based training
and pilot-tone based training algorithms are presented in [12].
However, the algorithms in [11] and [12] are based on the as-
sumption that each node is equipped with single antenna only,
and extension to MIMO systems is not straightforward.
For two-way MIMO relay systems, cascaded channel esti-

mation and individual channel estimation algorithms have been
proposed in [13]. The cascaded channel estimation is easy to im-
plement but does not provide the second-hop CSI, which is nec-
essary for system optimization [10]. In the individual channel
estimation algorithm, the first-hop CSI is first estimated at the
relay node and then fed-forward to the receive nodes. How-
ever, this algorithm requires the relay node to be capable of
performing advanced signal processing, and therefore, increases
the cost and complexity at the relay node.
The major challenge in channel estimation for two-way

MIMO relay systems is to obtain the instantaneous CSI of both
the first-hop and second-hop links with a minimal amount of
signal processing at the relay node. In this paper, we address
this challenge by proposing two algorithms: the superimposed
channel training scheme and the two-stage channel estimation
algorithm. In the superimposed channel training algorithm,
both source nodes transmit their training sequence simultane-
ously to the relay node in the first time block. The relay node
then amplifies the received signals and superimposes its own
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training sequence, before transmitting the superimposed signals
to both receive nodes. By exploiting the training sequences
from the source and relay nodes, the individual CSI of the
first-hop and second-hop links can be successfully estimated.
In the two-stage channel estimation algorithm, both source

nodes are silent at the first stage, while the relay node broad-
casts a pilot matrix to both receive nodes for the estimation of
the channel matrices from the relay node to the receive nodes
(second-hop links). During the second stage, both source nodes
transmit their training sequence simultaneously to the relay
node, and the relay node amplifies the received signals and
forwards them to the receive nodes. Then, the channel matrices
from the source nodes to the relay node (first-hop links) are
estimated by exploiting the second-hop channel matrices esti-
mated at the first stage. We would like to mention that although
the estimation of the second-hop channels at the first stage is
similar to the problem in [14] and [15], an efficient estimation
of the first-hop channels is a non-conventional problem.
For both algorithms, we derive the structure of the optimal

training sequences that minimize the sum mean-squared error
(MSE) of channel estimation. In particular, we show that the
optimal training matrix for each hop matches the eigenvector
matrix of the correlation matrix of the MIMO channel at that
hop. Moreover, in the superimposed channel training scheme,
the power allocation between the source and relay training
sequences is optimized. For the two-stage channel estimation
algorithm, we optimize the power allocation at the relay node
between two stages to minimize the MSE of channel estima-
tion. The performance of the superimposed channel training
scheme and the two-stage channel estimation algorithm are
demonstrated and compared through numerical examples.
The rest of this paper is organized as follows. The system

model of a two-way MIMO relay system is presented in
Section II. The superimposed channel training algorithm is
developed in Section III. In Section IV, we introduce the
two-stage channel estimation algorithm and derive the optimal
training sequences and power allocation at the relay node.
Section V shows numerical examples to demonstrate the per-
formance of the proposed algorithms. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

We consider a three-node two-way MIMO communication
system where node 1 and node 2 exchange information through
a relay node as shown in Fig. 1. Nodes 1 and 2 are equipped with
and antennas, respectively, while the relay node has

antennas. For , 2, is the channel matrix from
the relay node to node , while denotes the channel
matrix from node to the relay node. In this paper, we consider
that all nodes are operating in the half-duplex mode, i.e., one
node cannot transmit and receive at the same time. Since in a
two-way relay system, both source nodes transmit signals to the
relay node at the first time slot, they cannot receive signals from
each other. Therefore, there is no direct link between two source
nodes. The half-duplex mode has been widely used in two-way
relay communications [10]–[12].
In this paper, we assume that the channel matrices and
satisfy the well-known Gaussian-Kronecker model [16],

Fig. 1. Block diagram of a two-way MIMO relay communication system.

where and are complex-valued Gaussian random ma-
trices with

(1)

Here stands for the matrix Kronecker product [17], and
denote the and covariance matrix at the

transmit and receive side of , respectively, while and
stand for the and covariance matrix at the

transmit and receive side of , respectively. In other words,
from (1) we have

(2)

where , , ,
, ,2, and are and

Gaussian random matrices with independent and
identically distributed (i.i.d.) zero mean and unit variance
entries. Here and denote matrix (vector) transpose
and Hermitian transpose, respectively. We assume that
and , , 2, are statistically independent of each other.
The following lemma is useful in this paper.
Lemma 1 [18]: For , there is

, and .
Here stands for statistical expectation, and denotes
matrix trace.

III. SUPERIMPOSED CHANNEL TRAINING ALGORITHM

In this section, we develop a superimposed channel training
algorithm to estimate and , , 2. This channel
estimation scheme is completed in two time blocks. In the first
time block, the source node transmits an training signal
matrix , where is the length of the training sequence. The

received signal matrix at the relay node is given by

(3)

where is an noise matrix at the relay node.
In the second time block, the relay node amplifies and

superimposes its own training matrix . Thus, the
signal matrix transmitted by the relay node can be written as

(4)

where is the relay amplifying factor. From (3) and (4),
the received signal matrix at node is given by

(5)

where is an noise matrix at node . Here,
for , and for . The main idea of the super-
imposed channel training algorithm is to use to estimate the
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second-hop channels . Then the first-hop channels ,
, can be estimated by exploiting and the estimated .
Let us introduce the eigenvalue decomposition (EVD) of

as , , 2, and the EVD of as . Then

we have , , 2, and ,
where and are arbitrary and unitary
matrix, respectively. Using (2), we can rewrite (5) as

(6)

where ,

(7)

and

(8)

is the equivalent noise matrix at node . In the following, we
develop an algorithm to estimate and in (6). Then an
estimate of and can be obtained from (7) as

and , , where stands for
matrix pseudo-inverse, and are the estimates of
and , respectively.
By vectorizing both sides of (6), we obtain

(9)

(10)

where for , 2, , , ,

, , denotes an identity
matrix. Here denotes the vectorization operator which
stacks all column vectors of a matrix on top of each other, and
the identity of [17] has been

used to obtain (9) from (6). In (10), is
the vector of unknown variables at node with a dimension of

, and
has a dimension of .

Due to its simplicity, a linear MMSE estimator [19] is applied
at node to estimate . We have

(11)

where stands for an estimation of and is the weight
matrix of the MMSE estimator. It can be seen from (11) that
since a linear estimator is used, there is ,
and the MSE of estimating can be written as

(12)

where is the covariancematrix of and
is the noise covariance matrix. Using (2), (8), and

Lemma 1, we obtain that

(13)

Using Lemma 1, can be calculated as follows.
First, the th column of is given by

, , where
is the th diagonal element of , and is the th

column of . Since and are independent, the
covariance matrix of can be calculated as

(14)

where . Second, the covariance matrix of the
th column of , denoted as , is given by

(15)

where is the th diagonal element of . From (14) and
(15), can be written as

(16)

where denotes a block diagonal matrix.
The matrix minimizing in (12) is given by

(17)

where denotes matrix inversion. Substituting (17)
back into (12), and using the matrix inversion lemma of

,
the MSE of estimating can be obtained as

(18)

The transmission power consumed at nodes 1 and 2 is

(19)

From (4), the power consumed at the relay node is given by

(20)

From (18)–(20), the optimal training matrices and the optimal
can be designed by solving the following optimization problem

(21)

(22)

(23)
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where is the transmission power available at node , ,
2, and is the transmission power available at the relay node.
The following theorem establishes the optimal structure of ,
, and as solution to the problem (21)–(23).
Theorem 1: The optimal training sequences , , and

satisfy , , and ,
, , where , , is an diagonal

matrix.
Proof: See Appendix A.

The optimal structure of , , can be obtained

from Theorem 1 as , where is an
semi-unitary matrix satisfying , , and

, , . Such , , and can be
easily constructed, for example, from the normalized discrete
Fourier transform (DFT) matrix when .
Interestingly, it can be seen that the optimal training matrix at

node matches the eigenvector matrix of the transmitter corre-
lation matrix of , and the optimal training matrix at the relay
node matches the eigenvector matrix of . Using Theorem 1
and (81) in Appendix A, the problem (21)–(23) is equivalently
converted to the following problem

(24)

(25)

(26)

(27)

where for a matrix , means that is a positive
semi-definite (PSD) matrix. Using the definition of , ,
and in (78) in Appendix A, the problem (24)–(27) can
be equivalently rewritten as the following problem with scalar
variables

(28)

(29)

(30)

(31)

where , , , 2,

, , , , 2, is the th
diagonal element of , and , , , are the th
diagonal element of and , respectively.

Given that , and are known variables
with fixed , the objective function (28) can be rewritten as

where , , and
are known variables. It can be seen from the above

equation that the triple summation terms and the double sum-
mation terms are monotonically decreasing and convex with
respect to and , respectively. Moreover, with fixed
, the constraints in (29) and (30) are linear inequality con-
straints which can be rewritten as , , 2, and

, respectively, where
, , 2, and is a vector of all

ones with a commensurate dimension. Therefore, the problem
(28)–(31) with respect to , , and is a convex optimiza-
tion problem when is fixed, where the optimal , , and
can be efficiently obtained through the Karush-Kuhn-Tucker

(KKT) optimality conditions of the problem (28)–(31). In par-
ticular, the gradient conditions are given by

(32)

(33)

where , , 2, and , , 2, 3,
are Lagrange multipliers such that the complementary slackness
conditions [20] given by

(34)

(35)

are satisfied.
With fixed and , , 2, 3, for each , the non-neg-

ative , , and can be found by using the bi-sec-
tion search, since the left-hand-side (LHS) of (32) and (33) are
monotonically decreasing function of and , respec-
tively. To find the optimal , , 2, 3, an outer bi-section
search loop is used as the LHS of (29) is an increasing func-
tion of , and the LHS of (30) is an increasing function of

, , and , while in (32), is a monotonically
decreasing function of and , and is a monotonically
decreasing function of in (33).
When is an optimization variable (not fixed), the problem

(28)–(31) as a whole is not a convex optimization problem.
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However, we can show that (28) subjecting to (29)–(31) is a
unimodal (quasi-convex) function with respect to . Let us in-
troduce , , the problem
(28)–(31) can be rewritten as

(36)

(37)

(38)

(39)

where , and
, 1, 2.

Let us first ignore the effect of all by treating them as
known variables. Then the problem (36)–(39) is a convex op-
timization problem, since (36) is a convex function of , ,
, and (37)–(39) are linear inequality constraints. In particular,

with increasing , the value of (36) first decreases and then in-
creases based on the following reasons. For a significantly small
, the value of (36) is strongly governed by the constraints in
(37), since constraint (38) is inactive compared with those in
(37) when is small. Once increases from a small value, the
feasible region specified by (37) expands, and thus, the value of
(36) decreases. On the other hand, when is large, the value of
(36) is strongly governed by the constraint in (38), since con-
straints in (37) are inactive compared with that in (38) when
is large. Once decreases from a large value, the feasible

region specified by (38) expands, resulting in a deceasing of
the value of (36). Now we consider the effect of . Since

, monotonically decreases with
increasing , and (36) increases when decreases.
Considering the two effects above, we can draw the following

conclusion regarding the value of (36) with respect to . When
increases from a significantly small positive number, the value

of (36) starts to decrease since the potential decrease of (36)
due to the expanded feasible region (37) dominates the potential
increase of (36) caused by the decreasing . The value of
(36) keeps decreasing as increases till a ‘turning point’ where
the decreasing of starts to dominate the effect of relaxed
feasible region (37). After such turning point, the value of (36)
will monotonically increase with an increasing .
To validate the analysis above, a plot of the MSE value (28)

over a range of feasible values of is generated in Fig. 2 for
the case where all nodes have the same number of antennas,
i.e., , , and the channel matrices have
i.i.d. entries, i.e., , , 2.
Fig. 2 shows the normalized MSE (NMSE), which is (28) di-
vided by , versus for different , and is set
to be 20 dB. It can be observed from Fig. 2 that (28) is a uni-
modal (quasi-convex) function of . Thus, the optimal for
the problem (28)–(31) can be efficiently found by applying the
golden section search (GSS) technique described in Table I,
where denotes the absolute value, is a positive constant

Fig. 2. Superimposed channel training: NMSE versus for different
with and .

TABLE I
PROCEDURE OF APPLYING THE GOLDEN SECTION SEARCH (GSS) TO FIND THE

OPTIMAL IN THE PROBLEM (28)–(31)

close to 0, and is the reduction factor. It is shown in
[21] that the optimal , also known as the golden ratio.
The GSSmethod can guarantee that the minimum of a unimodal
function to be found by bracketing the minimum to an interval
of 0.618 times the size of the preceding interval. Unlike the Fi-
bonacci search, the GSS method is able to perform up to the
desired accuracy and does not require the number of iterations
as input. However, the GSS method may need more iterations
compared with the Fibonacci search.
The complexity of the superimposed channel training algo-

rithm can be estimated as ,
where is the number of GSS iterations required to obtain the
optimal , stands for the number of iterations in the outer
bi-section loop to obtain the optimal , , and , and rep-
resents the number of bi-section operations required to obtain
the optimal , , and .

IV. TWO-STAGE CHANNEL ESTIMATION ALGORITHM

There are two stages in this channel estimation scheme. In
particular, the channel matrices , , 2, from the relay
node to the receive nodes are estimated in the first stage, while
the channel matrices , , 2, from the source nodes to
the relay node are estimated in the second stage. The first stage
requires one time block while the second stage requires two time
blocks.
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A. Stage One

At the first stage, the relay node transmits an training
signal matrix to both receive nodes, where is the length of
the training sequence and will be determined later. The
received signal matrix at node is given by

(40)

where is an noise matrix at node in stage one.
By vectorizing both sides of (40), we obtain

(41)

where , , and
.

Using a linear MMSE estimator at node to estimate , we
obtain

(42)

where denotes an estimation of and is the weight
matrix of the MMSE estimator given by

(43)

Here ,
, , 2, and stands for

complex conjugate. From (41) and (42), we find that since a
linear estimator is used, there is . Using (41)–(43), the
MSE of estimating can be written as

Since the transmission power consumed by the relay node
at stage one is , the optimal can be derived by
solving the following optimization problem

(44)

(45)

where is the power allocation at the relay node at the first
stage. The following theorem establishes the optimal structure
of as the solution to the problem (44)-(45).
Theorem 2: The optimal training sequence satisfies

, where is an diagonal matrix.
Proof: Similar to the proof of Theorem 1.

The optimal structure of can be obtained from Theorem
2 as , where is an semi-unitary
matrix satisfying and can be easily constructed
from the normalized DFT matrix when . Using The-
orem 2, the problem (44)-(45) is equivalently converted to the
following problem

(46)

(47)

The problem (46)-(47) can be equivalently rewritten as the fol-
lowing problem with scalar variables

(48)

(49)

where and is the th diagonal
element of .
The problem (48)-(49) is convex and thus can be efficiently

solved through the KKT optimality conditions. The gradient
condition is given by

(50)

where is the Lagrange multiplier such that the comple-
mentary slackness condition is sat-
isfied. For each , with fixed , the non-negative can be
found using the bi-section search, since the LHS of (50) is a
monotonically decreasing function of . To find the optimal
, an outer bi-section search is used as the LHS of (49) is an in-
creasing function of , while in (50), is a monotonically
decreasing function of .

B. Stage Two

At the second stage, the source node transmits an
training signal matrix to the relay node. The received
signal matrix at the relay node is given by

where is an noise matrix at the relay node. Then
the relay node amplifies and retransmits ,
where is the relay amplifying factor. The received
signal matrix at node is given by

(51)

where is an noise matrix at node .

Introducing , ,
, , 2, we can rewrite (51) as

(52)

where is defined in (7). Similar to Section III, we first es-
timate . Then an estimation of is obtained as

, , where is the estimation of ob-
tained from stage one and is the estimation of . By vec-
torizing both sides of (52), we obtain

(53)
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where , ,

, and is the vector of un-
known variables at node .
Using a linear MMSE receiver to estimate , we have

(54)

where stands for an estimation of , is the weight ma-
trix of the MMSE estimator and given by

(55)

From (53) and (54), we find that since a linear estimator is used,
there is . In (55), is the covariance
matrix of , which can be calculated similar to in (16) and
written as

In (55), is the noise covariance matrix
which can be calculated similar to (13) as

Using (55), the MSE of estimating can be obtained as

(56)

The transmission power consumed at nodes 1 and 2 is

(57)

And the power consumed at the relay node is given by

(58)

From (56)–(58), the optimal training matrices , , 2,
and the optimal can be obtained through solving the following
optimization problem

(59)

(60)

(61)

where is the transmission power available at node ,
, 2, and is the transmission power available at the relay
node at the second stage. Note that for a fair comparison with

the superimposed channel training algorithm, the power at three
nodes should satisfy

(62)

The following theorem establishes the optimal structure of
and as the solution to the problem (59)–(61).
Theorem 3: The optimal training sequences and sat-

isfy and , , 2, where is
an diagonal matrix.

Proof: Similar to the proof of Theorem 1.
The optimal structure of can be obtained from Theorem

3 as , where is an semi-unitary
matrix satisfying , , 2, and .
Such and can be easily constructed from the normal-
ized DFT matrix when . Using Theorem 3, the
problem (59)–(61) is equivalently converted to the following
problem

(63)

(64)

(65)

(66)

where , , 2, are diagonal
matrices. The problem (63)–(66) can be equivalently rewritten
as the following problem with scalar variables

(67)

(68)

(69)

(70)

where , ,
, 2, and is the th diagonal element of .

With fixed , the objective function (67) can be rewritten as

where and are known variables. It can
be seen from the above equation that the summation terms are
monotonically decreasing and convex with respect to and

. Moreover, with fixed , the constraints in (68)–(70) are
linear inequality constraints. Therefore, the problem (67)–(70)
is a convex optimization problemwith respect to and when
is fixed. For a given , the optimal and can be efficiently
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obtained through theKKT optimality conditions associated with
the problem (67)–(70). The gradient conditions are given by

(71)

where , , 2, and , , 2, 3,
are Lagrange multipliers such that the complementary slackness
conditions given by

(72)

(73)

are satisfied.
With fixed and , , 2, 3, for each , the non-negative
and can be found by using the bi-section search, since

the LHS of (71) is a monotonically decreasing function of
and . To find the optimal , , 2, 3, an outer bi-sec-
tion search is used as the LHS of (68) and (69) are increasing
functions of and , while in (71), is monotonically
decreasing with respect to and .
The problem (67)–(70) as a whole is non-convex with re-

spect to . However, based on a similar analysis used in
the problem (28)–(31), it can be shown that (67) subjecting to
(68)–(70) is a unimodal (quasi-convex) function with respect
to . To validate our analysis, a plot of the MSE value over
a range of feasible values of is generated in Fig. 3 for the
case where all nodes have the same number of antennas, i.e.,

, . The channel matrices have i.i.d. en-
tries, i.e., , , 2. Fig. 3 shows
the NMSE value versus for different with set to
be 20 dB. It can be observed from Fig. 3 that (67) is a unimodal
function of . For a unimodal function, the minimum value can
be efficiently found by the GSS algorithm [21]. Hence, the op-
timal for the problem (67)–(70) can be obtained by applying
the GSS technique similar to the procedure listed in Table I.
Now let us investigate the optimal power allocation and
at the relay node during two stages of channel training.

Based on (62), we let and ,
where . The aim is to find the optimal to minimize
the overall MSE of channel estimation over two-stages which is
given by the summation of (44) and (59), and can be written as

(74)

Fig. 4 shows the value of (74) over a range of feasible values of
for different with , ,

, and . We assume that ,

Fig. 3. Two-stage channel estimation: NMSE versus for different
with and .

Fig. 4. Two-stage channel estimation: NMSE versus for different
with and .

, and , , 2. Here
for each , the problem (44)-(45) and the problem (59)–(61) are
solved to obtain the optimal , , , and . It can be seen
from Fig. 4 that (74) is a unimodal function of . Hence, the
GSS technique described in Table I can be applied to obtain the
optimal .
The complexity of the two-stage channel estimation al-

gorithm can be estimated as
, where the first term is the complexity

of stage one, and the second term represents the complexity in-
volved in stage two. Here , , and stand for the numbers
of iterations required to obtain the optimal , , and , respec-
tively, is the number of iterations in the outer bi-section
loop to obtain the optimal , , and , and represents the
number of bi-section operations required to obtain the optimal
, , and .
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V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed su-
perimposed channel training algorithm and two-stage channel
estimation algorithm through numerical simulations. We con-
sider a three-node two-wayMIMO relay systemwhere all nodes
are equipped with the same number of antennas, i.e.,
, . We also assume that all nodes have the same

transmission power , , and use the shortest
training sequence possible with , , .
Thus, based on (62), there are and

for the two-stage channel estimation algorithm.
The channel covariance matrices have the commonly used ex-
ponential Toeplitz structure [16] such that ,

, 2, , , 2, ,
, 2, and , where is the correlation

coefficient with magnitude . For all scenarios, the nor-
malized MSE (NMSE) of channel estimation at nodes 1 and 2
are computed. The optimal training sequences for the superim-
posed channel training method and the two-stage channel esti-
mation algorithm are generated by using Theorem 1 and Theo-
rems 2 and 3, respectively. In particular, the semi-unitary ma-
trices in the superimposed channel trainingmethod are set based
on the normalized DFT matrix as ,

, ,
, . Matrices and , ,

2, in the two-stage channel estimation algorithm are chosen as
, , and

, , ,
.

In the first example, we study the performance of the super-
imposed channel training algorithm with respect to . Fig. 5
shows the NMSE of this algorithm versus with different
when and . The curve associated with the op-
timal is obtained by applying the GSS algorithm on the pro-
posed superimposed channel training technique to find the op-
timal for different . It can be seen from Fig. 5 that the curve
associated with the optimal has the lowest MSE level. This
justifies that the GSS algorithm can be applied to obtain the op-
timal at different efficiently. Interestingly, we observe from
Fig. 5 that the optimal vary with respect to , indicating that
using constant is strictly suboptimal. In fact, the optimal at
low level is smaller compared with the optimal for large .
The reason is that the estimation of the first-hop channels is
based on that of the second-hop channels . When is small,
at the relay node, more power should be allocated for the esti-
mation of , which is also beneficial to the estimation of .
When a large amount of power is available, the MSE of es-
timating is smaller compared with that of . Therefore,
more power should be allocated at the relay node to assist the
estimation of .
In the second example, we investigate the performance of the

two-stage channel estimation algorithmwith respect to . A plot
of the NMSE of this algorithm for different is shown in Fig. 6,
where the curve with the optimal is obtained from the GSS
algorithm. Similar to Fig. 5, it can be seen from Fig. 6 that the
curve associated with the optimal has the lowest MSE level.

Fig. 5. Example 1. Superimposed channel training: NMSE versus for dif-
ferent with and .

Fig. 6. Example 2. Two-stage channel estimation: NMSE versus for different
with and .

In the third example, we compare the performance of the su-
perimposed and two-stage channel estimation algorithms when
the optimal and are used. We also show the performance
of the conventional two-stage channel estimator, where random
orthogonal pilot sequences are used to estimate the channel ma-
trices and the transmission power at the relay node is equally
distributed between two stages. Fig. 7 demonstrates the MSE
performance of all algorithms with for different ,
while Fig. 8 shows the MSE results at . It can be seen
from Figs. 7 and 8 that the proposed algorithms yield much
smaller estimation error compared with the conventional two-
stage channel estimator, especially at high level. It can also
be observed from Figs. 7 and 8 that for both scenarios, the
two-stage channel estimation algorithm yields smaller MSEs
than the superimposed channel training scheme. This is mainly
due to the fact that in the superimposed channel training algo-
rithm, the estimation of is affected by the noise at the relay
node, which is not the case in the two-stage channel estimation
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Fig. 7. Example 3. NMSE versus for and different .

Fig. 8. Example 3. NMSE versus for and different .

scheme. However, the two-stage channel estimation algorithm
has a higher computational complexity than that of the super-
imposed channel training scheme, since both and need to
be optimized in the former algorithm. Such performance-com-
plexity tradeoff can be exploited in practical two-way MIMO
relay communication systems.

VI. CONCLUSION

In this paper, we have proposed and investigated the per-
formance of two channel estimation algorithms, namely, the
superimposed channel training and two-stage channel estima-
tion schemes, for two-way MIMO relay communication sys-
tems. The proposed algorithms can efficiently estimate the in-
dividual CSI for two-way MIMO relay systems, with the two-
stage channel estimation algorithm performs better than the su-
perimposed channel training scheme at a higher computational
complexity.

APPENDIX A
PROOF OF THEOREM 1

Let us introduce the EVD of .We can equiv-
alently rewrite (13) and (16) as

(75)

(76)

where , , 2.
Substituting (75) and (76) back into (18), can be rewritten
as

(77)

where

(78)

are all diagonal matrices. It can be seen from (77) that the ob-
jective function (21) is minimized only if

(79)

(80)

for , 2, and . Equations (79) and (80) hold if and
only if and , , 2, or equivalently

and , , 2. Then the objective function
(21) can be written as

(81)

Since , , and are all diagonal, to minimize (81),
, , must be diagonal. Note that the diagonality of
does not change , , in the constraints

(22) and (23). We would like to note that in the
constraints (23) is minimized if is diagonal and its diag-
onal entries are in the inverse order of that of [22]. Denoting

, , then we have ,
.
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