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Abstract— In this article, a joint design of communication
sensing and control (JDCSC) scheme is developed which focuses
on a scenario where a cellular-connected unmanned aerial vehi-
cles (UAV) senses a moving target. The goal is to maximize the
sensing mutual information via jointly optimizing the transmit
power, the trajectory of the UAV and the task completion time,
while meeting the onboard energy, the communication service
quality, and the UAV flight safety constraints. In particular,
UAV dynamics are considered, which are usually ignored in the
existing design and inferior communication and sensing quality
of service might be resulted. The formulated problem is dynamic
optimization problem, which is difficult to be solved. The control
parameterization method and exact penalty function scheme
are utilized to transform the problem into a static nonlinear
program which can be solved by gradient-based methods. The
effectiveness of the JDCSC approach is verified by carrying out
some numerical examples.

Index Terms— Joint design sensing communication and con-
trol, 6G, quadrotor UAV, trajectory optimization, exact penalty
function.

I. INTRODUCTION

INTEGRATED sensing and communication (ISAC) along
with ubiquitous communication have been identified by

the International Telecommunication Union (ITU) as pivotal
application scenarios for 6G, fostering numerous disrup-
tive innovations in applications [1]. The existing ISAC
methods can be generally classified into three categories:
radar-communication (RadCom) [2], dual-functional radar
communication (DFRC) [3], [4], and joint communication
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and radar sensing (JCAS) [5], [6]. RadCom schemes try
to embed communication information in radar waveforms
for communication. However, they only support very low
communication rates. Communication-driven DFRC schemes
attempt to identify target data from signals, such as using spe-
cific frames for perception through time-division techniques.
JCAS tries to propose novel waveforms with dual-function
of communication sensing to enable simultaneous high-rate
communications and high-accuracy sensing [5], [7].

Unmanned aerial vehicles (UAVs) connected to cellular
networks are regarded as a pivotal approach for achieving
beyond visual line-of-sight (BVLoS) control and ubiquitous
coverage of drones [8], [9], [10], [11]. In contrast to the device-
to-device (D2D) links that typically operate in unlicensed
spectrums, cellular-connected UAVs work within licensed
spectrums, offering more flexible and universally accessible
network services to both base stations (BSs) and ground
users [8], [9]. Leveraging the altitude advantages of UAVs
and the superior performance of cellular networks, cellular-
connected UAVs can establish robust line-of-sight (LoS) links,
providing wireless communication services with higher capac-
ity, greater reliability, and lower latency [10]. Furthermore,
the 3rd Generation Partnership Project (3GPP) is actively
advancing the standardization process for the integration of
UAVs into cellular networks [11].

When cellular-connected UAV meets ISAC, the following
benefits can be obtained [12]. Firstly, originally independent
communication and sensing (C&S) loads can be integrated
into the ISAC load through resource sharing, thus reducing the
load weight and improving the endurance of UAVs. Secondly,
compared with separately designed C&S platforms, the ISAC
improves both the communication capability and the sensing
performance. Thirdly, UAV-enabled ISAC (UAV-ISAC) can
provide a broader and more flexible service coverage than
terrestrial BS ISAC (BS-ISAC) that can only provide C&S
services within a limited range [13]. Moreover, by leveraging
the ISAC technology, UAVs are able to enhance their flight
safety by acquiring information on cooperative targets through
communication signals and actively sensing the position of
non-cooperative targets in the environment to avoid collisions.

By optimizing the trajectory of UAV, the flexible maneu-
verability of UAV can be fully utilized to improve ISAC
performance. A time-division multiple access (TDMA) based
periodic ISAC mechanism is proposed in [13], where the
simulation results demonstrate the significant role of UAV
trajectory design in balancing the C&S performance. [14]
investigated cellular-connected UAV for conducting sensing
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tasks and uploading the sensed data in real-time to a BS,
with the objective of minimizing the task completion time.
To achieve this goal, the UAV’s two dimensional (2D) tra-
jectory, the sensing order of each task, and the association
between the UAV and the BS are optimized. In [15], static
deployment and planar motion scenarios of UAVs are dis-
cussed. They propose a joint design for UAV trajectory or
static deployment and ISAC beamforming to maximize user
throughput while considering constraints such as sensing beam
gain, transmission power, and practical flight limitations.

References [13], [14], and [15] focus on optimizing the
path of UAV under the constraint of the maximum speed.
This approach simplifies the UAV as a mass point and used
a discretized trajectory framework that focuses on the UAV’s
kinematics. However, the UAV is not just a mass point but a
rigid-body with both translational and rotational motion [16].
It is a complex dynamical system where motion is influenced
by both kinematics and dynamics [17].

Recently, there are some works that plan UAV trajec-
tories by considering the dynamics of UAVs. A control
parameterization framework is utilized for UAV-aided com-
munication [17] and for UAV formations [18]. Furthermore,
the Gauss pseudo-spectral method (GPM) is applied in [19]
and [20] to explore the control of fixed-wing UAV formations
and the obstacle avoidance of a quadrotor UAV, respectively.
For the significant nonlinearity of the dynamics of quadrotor,
[21] and [22] explore methods for transforming non-convex
problems into convex sub-problems. Specifically, [21] focuses
on achieving iterative optimization of time-optimal trajectories
by transforming the non-convex problem into a second-order
cone programming (SOCP) sub-problem. In contrast, [22]
employs a three dimensional (3D) trajectory as an initial
estimate and then derive a 6 degrees of freedom (6DoF)
trajectory through iterative solutions via sequential convex
programming (SCP). Inspired by artificial intelligence (AI),
machine learning techniques are leveraged in [23] and [24] for
planning the 6DoF trajectory of a fixed-wing UAV in obstacle
avoidance scenarios.

While trajectory planning incorporating UAV dynamics has
received significant attention in the fields of obstacle avoidance
and formation control, there is a lack of research on UAV-aided
communications and sensing. The trajectories generated by the
existing design in UAV communication field lack smoothness
and usually lead to trajectory distortion. Moreover, the planned
path cannot be effectively tracked by the UAV’s controller in
real world applications. Consequently, this can result in C&S
performance degradation, including reduced communication
throughput rate, increased packet loss, and distorted data
perception, as shown in Fig. 1.

Inspired by the aforementioned discussions, a joint design
of communication sensing and control (JDCSC) optimization
framework is proposed, which generates a 3D smooth tra-
jectory by accounting for the UAV’s rigid-body dynamics.
In this framework, we focus on a scenario, as depicted in
Fig. 2, where a cellular-connected UAV senses a mobile target
(vehicle) with an ISAC system and an optical camera. This
considered framework has various potential applications, such
as traffic monitoring and live broadcasting of outdoor events.

Fig. 1. Paths planned by existing design framework affect communication
and sensing QoS in real trajectory.

Fig. 2. An illustration of a UAV-ISAC system.

In contrast to traditional methods [13], [14], [15] that focus on
stationary targets, this study takes into account the continuous
trajectories of both the UAV and the target, thereby improving
the general applicability of the problem. Furthermore, instead
of discretizing the trajectories of the UAV and the mobile
target, a segment-based parameterization method is utilized
for the UAV’s control signals to guarantee the continuity and
smoothness of the UAV’s dynamic trajectory. The proposed
algorithm effectively addresses the challenges posed by mul-
tiple constraints through the application of an exact penalty
function, which aids in reducing the algorithm’s complexity.
The following is a summary of this manuscript’s primary
contributions.

• We propose a novel framework for trajectory design
within UAV-ISAC system, incorporating the dynamics of
the UAV as a pivotal element. Comparing with [13], [14],
and [15], in which the planned trajectories are piece-wise
line constant, a smooth trajectory is obtained by the
proposed algorithm.

• The control parameterization method and an exact penalty
function scheme are employed to solve the dynamic
optimization problem, which has infinite-dimensional
decision variables and constraints. Without discretizing
the UAV’s trajectory, our algorithm maintains trajec-
tory continuity and smoothness by discretizing only the
decision variables. Moreover, the exact penalty function
is adopted to handle the infinite-dimensional state con-
straints.
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Fig. 3. An illustration of the ISAC transceiver.

• In the numerical simulations, the proposed UAV-ISAC
approach, the benchmark BS-ISAC scheme, and an exist-
ing design method are utilized to detect targets with
different moving speeds. The simulation results indicate
that a significant enhancement in sensing performance
with the UAV-ISAC approach compared to the BS-ISAC
scheme. In addition, the results show that the performance
of the existing method in real UAV systems falls short
of its designed performance, exhibiting degradation in
comparison to the proposed method.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

We consider a UAV-ISAC system as depicted in Fig. 2,
where a quadrotor UAV is used to track and monitor a
non-cooperative moving target. Besides the ISAC system,
we assume that the UAV is also equipped with an optical
camera to provide additional visual sensing information.

Fig. 3 depicts the ISAC system, comprising a transmit
antenna (TX) and a receive antenna (RX), such that it has
the full-duplex (FD) transceiver capability [25]. In the ISAC
system, the TX transmits the wireless signal, whereas the RX
receives the echo signal and extracts the sensing information
of the target. To mitigate the impact of self-interference (SI),
we separates the RX and the TX for passive suppression,
followed by active cancellation strategies in analog and digital
domains to further reduce SI levels [25]. Nonetheless, residual
SI (RSI) that cannot be entirely eliminated persists in the
echo signals at the RX. Furthermore, the high-speed UAV
rotor rotation affects the electromagnetic field surrounding
the antenna [26], thereby influencing the quality of the echo
signals. In addition, the 6DoF motion of UAV affects both
Doppler shift and Doppler power spectral density, and such
influence can be complicated to model [27], [28]. However,
in this paper, the potential impact of the UAV’s rotor on
wireless signal has not been taken into account. The Doppler
induced by UAV’s flight is assumed to be effectively compen-
sated at both the BS [29], [30] and the sensing receiver [13],
[31], [32].

In this scenario, we assume that the UAV already knows
the accurate location of the BS in advance, and knows the
real-time location of the target based on the existing location
algorithm [33], [34], [35]. Let xB = [xB , yB , zB ]⊤ denote
the location of the BS, where ‘[·]⊤’ stands for the transpose
operation. At time t, the positions of the UAV and the target
are represented by q(t) = [x(t), y(t), z(t)]⊤ and xT (t) =
[xT (t), yT (t), zT (t)]⊤, respectively, with unit of meter. The
objective is to optimize the 3D trajectory of the UAV to
improve the sensing performance about the target. In what

TABLE I
NOTATIONS

follows, we will introduce the key evaluation metrics and UAV
dynamics model. For ease of reference, the essential symbols,
their definitions, and associated units are presented in Table I.

A. Sensing Metric

To evaluate the sensing performance of the ISAC system,
the amount of sensing MI [36], [37], [38], [39], [40] is recom-
mended as the performance metric, which has the advantage
that communication and sensing can be compared in the same
dimension. The MI measures the maximum information rate
of the ISAC echo signal from the target that can be reliably
received by the UAV [41]. Based on information theory,
a higher MI indicates an increased ability to derive information
about the target through measurements [41]. The received
baseband signal of the UAV-ISAC system is given by

r(t) =
√

Pr(t− τt)s(t− τt)hr(t− τt) + sI(t) + n(t), (1)

where Pr(t) is the transmission power, s(t) is the sensing
signal with E[|s(t)|2] = 1, hr(t) is the double cascaded
channel between the UAV and the target, τt is the time
delay between transmitting the ISAC signal and receiving the
echo signal back from the target, sI(t) is the RSI after SI
cancellation, and n(t) is a Gaussian noise signal with no bias
and a power determined by the variance σ2

n. From (1), the
system sensing ability measured by the MI metric is given
below [41], [42], [43]

I (y(t), hr(t)) = H(y(t))−H(n(t))
= ρB log2 (1 + SINRr) , (2)

where ρ is the proportion of the sensing signal in the ISAC
signal, H(·) is the information entropy, B is the ISAC system
bandwidth, SINRr is the signal-to-interference-noise ratio
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(SINR) of the received echo signal, which can be expressed
as

SINRr =
E[|

√
Pr(t− τt)s(t− τt)hr(t− τt)|2]

E[|sI(t)|2] + E[|n(t)|2]

≈
Pr(t)E

[
|hr(t)|2

]
σ2

s + σ2
n

. (3)

The term E[|
√

Pr(t− τt)s(t−τt)hr(t−τt)|2] can be approx-
imated as E[|

√
Pr(t)s(t)hr(t)|2], since the time delay τt is

merely a few microseconds, which is too short to cause a
notable variation. The RSI is modeled as zero-mean additive
white Gaussian noise (AWGN) [25], and its impact on the
SINR is quantified by the variance σ2

s . The noise variance is
given by σ2

n = kBTtempB, where kB = 1.38 × 10−23J/K is
the Boltzmann constant and Ttemp is the absolute temperature.
The non-cooperative channel gain can be obtained by [44]

E
[
|hr(t)|2

]
=

G2λ2σcross

(4π)3 (dR(t))4
, (4)

where G is the UAV antenna gain (assuming that the transmit-
ting and receiving antennas have the same gain), λ = c/fc is
the carrier wavelength, fc is carrier frequency, c = 3×108m/s
is the speed of light in vacuum, σcross is the target cross
section area, and dR(t) = ∥q(t) − xT (t)∥ is the distance
between the UAV and the target. Therefore, the sensing MI
of the UAV-ISAC system is expressed as

Rr(t) = ρB log2

(
1 +

Pr(t)λr

∥q(t)− xT (t)∥4

)
, (5)

where

λr =
G2λ2σcross

(4π)3 (σ2
s + σ2

n)
. (6)

B. UAV On-Board Camera Data Rate

The optical camera on the UAV generates stable image data
with a constant frame rate. In theory, the image data rate can
be calculated as follows [45]

Rbps = RfpsNbpf , (7)

where Rbps is the image data rate (bits/s), Rfps is the frame
rate of the UAV on-board camera (frames per second, fps),
and Nbpf is the number of bits per frame (bpf). In theory,
the standard video frame rate is not less than 24 fps. In fact,
24 fps and 25 fps are the video frame rate standards adopted by
most countries and regions [45], and there is only slight visual
perception difference between the two frame rates. The amount
of data required to transmit per frame of an image is related
to image pixels and the pixel format. When the video format
is determined, the camera data rate is a constant. Considering
the influence of the video compression technology and com-
munication coding technology, the transmission rate required
after the image data is converted into the communication data
is

Rv = ηcompRbps/ηcode, (8)

where ηcomp is the video compression ratio and ηcode is the
channel coding rate. In this manuscript, Rv is considered as a
constant rate.

C. UAV Sensing Information Transmission

Generally speaking, the transceiver antenna of the BS is in a
high altitude, and a good LoS channel can be easily established
with the UAV. The UAV transmits information data to the BS
with a data rate given by [43]

Rc(t) = (1− ρ)B log2

(
1 +

Pc(t)E[|hc(t)|2]
σ2

n

)
, (9)

where Pc(t) is communication transmission power, hc(t) is the
communication channel between the UAV and the BS which
follows the free-space path loss model and can be expressed
as [44]

E[|hc(t)|2] =
GGBλ2

(4π)2 (dC(t))2
, (10)

where GB is the BS antenna gain and dC(t) = ∥q(t)− xB∥
is the distance between the UAV and the BS. Let

λc =
GGBλ2

(4π)2σ2
n

, (11)

then (9) can be rewritten as

Rc(t) = (1− ρ)B log2

(
1 +

Pc(t)λc

∥q(t)− xB∥2

)
. (12)

In order to ensure that the sensing and camera data received
by the UAV is successfully uploaded to the BS receiver, the
communication rate of the UAV should be greater than the
sum of the video data rate and the sensing MI. This constraint
is given below [46], [47]

Rc(t) ≥ Rr(t) + Rv. (13)

D. Energy Model

The energy consumption of UAV includes propulsion power,
communication transmission power, optical camera power and
other equipment power. As derived in [17], the propulsion
power of a quadrotor UAV is given by

P (t) =
4∑

i=1

Pi(t), (14)

where Pi(t) = c4ω
4
i (t) + c3ω

3
i (t) + c2ω

2
i (t) + c1ωi(t) + c0

is power consumption of the ith motor, i = {1, 2, 3, 4},
c0, c1, c2, c3, c4 are constant parameters depending on the
motor, ωi(t) is the speed of the ith motor, i ∈ {1, 2, 3, 4},
as illustrated in Fig. 4. The total energy consumption of the
UAV can be expressed by

E(t) =
∫ t

0

(P (τ) + Pr(τ) + Pc(τ) + Po) dτ, (15)

where Po is an average power constant, which includes the
power consumption of optical camera power and other neces-
sary on-board equipment. The remaining battery energy of the
UAV is given by

Er(t) = Etotal − E(t), (16)

where Etotal is the total available energy of the onboard
battery of the UAV before the mission begins.
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Fig. 4. The cartesian coordinate system of the UAV.

E. Rigid-Body Dynamic Model of Quad-Rotor UAV

In this manuscript, we consider the quadrotor UAV as a rigid
body and study the influence of its rigid-body dynamics model
on the trajectory. As illustrated in Fig. 4, the Earth frame and
the fixed-body frame are defined as Oe and Ob , respectively.
Let q(t) be the real-time position vector of the UAV at the
Earth frame, and Ωb(t) = [ωx(t), ωy(t), ωz(t)]⊤ be the UAV’s
angular velocity about the x-axis, y-axis, z-axis in the frame
Ob at time t.

As shown in Fig. 4, the thrust Fi(t), i ∈ {1, 2, 3, 4} is
generated by related electric motor: motors 1 and 3 counter-
rotate, while motors 2 and 4 rotate clockwise with the angular
velocity ωi(t), i ∈ {1, 2, 3, 4} as illustrated in Fig. 4. Accord-
ing to [16], the motors generate the thrusts Fi(t) = Ctω

2
i (t),

where Ct is the thrust coefficient.
Compared with the Euler angle-based representations for

the rotational motion in prior work [17], unit quaternions are
used to describe the UAV rotation motion in this manuscript.
Thus, the UAV rotation does not need to satisfy the small
disturbance hypothesis and the singularity problem caused
by the Euler angle-based representations can be avoided. Let
q̄(t) = [q0(t), q1(t), q2(t), q3(t)]⊤ denote unit quaternions,
which satisfy ∥q̄(t)∥ = 1.

The control input vector u(t) =
[u1(t), u2(t), u3(t), u4(t)]

⊤ is designed as [17]

u1(t) =
4∑

i=1

ω2
i (t),

u2(t) = ω2
2(t)− ω2

4(t),

u3(t) = ω2
3(t)− ω2

1(t),

u4(t) = ω2
1(t)− ω2

2(t) + ω2
3(t)− ω2

4(t). (17)

The motors’ angular velocities are controlled by input con-
trol signal, and their analytical expression can be deduced
from (17) as follows [17]

ω1(t) = 0.5 (u1(t) + u4(t)− 2u3(t))
0.5

,

ω2(t) = 0.5 (u1(t)− u4(t) + 2u2(t))
0.5

,

ω3(t) = 0.5 (u1(t) + u4(t) + 2u3(t))
0.5

,

ω4(t) = 0.5 (u1(t)− u4(t)− 2u2(t))
0.5

. (18)

The six-degree-of-freedom dynamic model of the UAV is
given by (19), shown at the bottom of the next page, [48],

where Ω(t) = ω1(t) − ω2(t) + ω3(t) − ω4(t), ẋ(t) and
ẍ(t) denote the first and second derivatives of variable x
with respect to t, respectively. The physical meanings of the
symbols are listed in Table I. And the quaternion propagation
equations are shown below [49]

˙̄q(t) =
1
2
Ωq(t)q̄(t), (20)

where

Ωq(t) =


0 −ωx(t) −ωy(t) −ωz(t)

ωx(t) 0 ωz(t) −ωy(t)
ωy(t) −ωz(t) 0 ωx(t)
ωz(t) ωy(t) −ωx(t) 0

 .

Compared with the Euler angles used in [17], the quaternion
method uses four elements to record the UAV attitude rota-
tion, which is more complicated and not easy to understand
intuitively. However, the quaternion method can avoid the
singularity problem of attitude angle caused by the Euler
method, and the computational cost is lower [50].

III. PROBLEM FORMULATION

Based on the discussion of the model above, the JDCSC
problem, which is a dynamic optimization problem based on
the state-space model [51], is formulated in this section. For
comparison, the existing design, which only consider the UAV
kinematics with a fully discretized model, is utilized.

A. Dynamic Optimization Problem

In this paper, we assume that the target moves with uniform
velocity VT along the Xe-axis, the kinematic model of the
target can be expressed as

ẋT (t) = VT ,

ẏT (t) = 0,

żT (t) = 0. (21)

Acc state-space model [51], the state vector is defined as

x(t) = [x(t), y(t), z(t), vx(t), xT (t), vy(t), vz(t), ωx(t),
ωy(t), ωz(t), q0(t), q1(t),

q2(t), q3(t), Er(t), Qc(t), Qr(t)]
⊤

,

where Qc(t) =
∫ t

0
Rc(τ)dτ is the theoretical cumulative

throughput of the transmitted communication data from 0 to
t and Qr(t) =

∫ t

0
Rr(τ)dτ is the accumulated amount of the

sensing MI from 0 to t. Then, the state-space model of the
system (5), (12), (16), (19) and (20), can be written as (22),
shown at the bottom of the next page. To simplify notation,
(22) is rewritten as

ẋ(t) = f (x(t), u(t), Pr(t), Pc(t)) . (23)

The UAV-ISAC dynamic trajectory optimization problem is
formulated as P1. In problem P1, C0 is the dynamic equa-
tions. C1 is introduced to limit the total force and torque
generated by the UAV motors and control the ISAC trans-
mission power, where U1,min, Ui,max i = 1, 2, 3, 4, and
Pmax are constant values. C2 is to ensure that the task
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completion time has realistic physical significance. x0 in C3 is
the initial value of x(0). Constraint C4 safeguards the UAV
by maintaining a safe altitude, where hmin and hmax are the
minimum and maximum allowable altitude, respectively. C5

is the communication requirement constraint, which ensures
that the UAV can successfully transmit sensing and video
data to the BS. To successfully complete the mission, the
UAV must reach an end-point before depleting the planned
onboard energy. Therefore, the residual energy at the terminal
time should satisfy C6. C7 is the end-point position constraint,
where qF = [xF , yF , zF ]⊤ is end-point position. If the sensing
task does not specify a terminal location, we can optimize
P1 without the constraint C7.

P1 : max
u(t),Pr(t),Pc(t),T

Qr(T ) =
∫ T

0

Rr(τ)dτ

s.t. C0 : ẋ(t) = f (x(t), u(t), Pr(t), Pc(t)) ,

t ∈ [0, T ],
C1 : U1,min ≤ u1(t) ≤ U1,max,

|ui(t)| ≤ Ui,max, i = 2, 3, 4,

0 ≤ Pr(t) ≤ Pmax,

0 ≤ Pc(t) ≤ Pmax, t ∈ [0, T ],
C2 : T > 0,

C3 : x(0) = x0,

C4 : hmin ≤ z(t) ≤ hmax, t ∈ [0, T ],
C5 : Rc(t) ≥ Rr(t) + Rv, t ∈ [0, T ],
C6 : Er(T ) ≥ 0,

C7 : x(T ) = xF ,

y(T ) = yF , z(T ) = zF .

B. Existing Design

For existing design, the UAV is regarded as a mass point
and only the kinematics of UAV are considered. Moreover,
a fully discretized model is usually adopted. In this case,
we use the UAV centroid velocity vector generated by the UAV
motors as the decision variable, which is denoted as v[n] =
[vx[n], vy[n], vz[n]]⊤. The discrete kinematic equation is
described as [14], [15], and [13]

q[n + 1] = q[n] + v[n]∆t, (24)

where ∆t is discrete time step. The motion power consumption
of UAV can be estimated as follows [17]

Pω[n] = Cp1

(
1 + Cp2

(
v2

x[n] + v2
y[n]

)2
) 3

4
+ mgvz[n]

+ Cdz|vz[n]|3 + Po + Pr[n] + Pc[n], (25)

where Cp1 = 4Cm

(
mg
4Ct

) 3
2

, Cp2 =
(

Cdx

mg

)2

.
Similarly to (5) and (12), the discrete sensing and commu-

nication rate can be expressed as follows

Rr[n] = ρB log2

(
1 +

Pr[n]λr

∥q[n]− xT [n]∥4

)
, (26)

Rc[n] = (1− ρ)B log2

(
1 +

Pc[n]λc

∥q[n]− xB∥2

)
. (27)



mẍ(t) = Ctu1(t) (2 (q1(t)q3(t) + q0(t)q2(t)))− Cdxẋ(t)|ẋ(t)|,
mÿ(t) = Ctu1(t) (2 (q2(t)q3(t)− q0(t)q1(t)))− Cdy ẏ(t)|ẏ(t)|,
mz̈(t) = Ctu1(t)

(
q0(t)2 − q1(t)2 − q2(t)2 + q3(t)2

)
−mg − Cdz ż(t)|ż(t)|,

Ixω̇x(t) = LCtu2(t) + (Iy − Iz)ωy(t)ωz(t)− ImΩ(t)ωy(t)− Cdmxωx(t) |ωx(t)| ,
Iyω̇y(t) = LCtu3(t) + (Iz − Ix)ωx(t)ωz(t) + ImΩ(t)ωx(t)− Cdmyωy(t) |ωy(t)| ,
Izω̇z(t) = Cmu4(t) + (Ix − Iy)ωx(t)ωy(t)− Cdmzωz(t) |ωz(t)| ,

(19)



ẋ(t) = vx(t), ẏ(t) = vy(t), ż(t) = vz(t), ẋT (t) = VT ,

v̇x(t) = [2Ctu1(t) (q1(t)q3(t) + q0(t)q2(t))− Cdx|vx(t)|vx(t)] /m,

v̇y(t) = [2Ctu1(t) (q2(t)q3(t)− q0(t)q1(t))− Cdy|vy(t)|vy(t)] /m,

v̇z(t) =
[
Ctu1(t)

(
q0(t)2 − q1(t)2 − q2(t)2 + q3(t)2

)
−mg − Cdz|vz(t)|vz(t)

]
/m,

ω̇x(t) = [LCtu2(t) + (Iy − Iz)ωy(t)ωz(t)− ImΩ(t)ωy(t)− Cdmx|ωx(t)|ωx(t)] /Ix,

ω̇y(t) = [LCtu3(t) + (Iz − Ix)ωx(t)ωz(t) + ImΩ(t)ωx(t)− Cdmy|ωy(t)|ωy(t)] /Iy,

ω̇z(t) = [Cmu4(t) + (Ix − Iy)ωx(t)ωy(t)− Cdmz|ωz(t)|ωz(t)] /Iz,

q̇0(t) = 0.5 [−ωx(t)q1(t)− ωy(t)q2(t)− ωz(t)q3(t)] ,
q̇1(t) = 0.5 [ωx(t)q0(t) + ωz(t)q2(t)− ωy(t)q3(t)] ,
q̇2(t) = 0.5 [ωy(t)q0(t)− ωz(t)q1(t) + ωx(t)q3(t)] ,
q̇3(t) = 0.5 [ωz(t)q0(t) + ωy(t)q1(t)− ωx(t)q2(t)] ,

Ėr(t) = −
4∑

i=1

Pi(t)− Pr(t)− Pc(t)− Po,

Q̇c(t) = (1− ρ)B log2

(
1 +

Pc(t)λc

∥q(t)− xB∥2

)
Q̇r(t) = ρB log2

(
1 +

Pr(t)λr

∥q(t)− xT (t)∥4

)
.

(22)
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Similar to P1, the optimization problem for the UAV,
in which the UAV is regarded as a mass point, can be
formulated as

P2 : max
v[n],Pr[n],Pc[n],∆t

N∑
n=1

Rr[n]

s.t. S0 : q[n + 1] = q[n] + v[n]∆t,

n ∈ {1, 2, · · · , N},
S1 : ∥v[n]∥ ≤ Vmax,

0 ≤ Pr[n] ≤ Pmax,

0 ≤ Pc[n] ≤ Pmax, n ∈ {1, 2, · · · , N},
S2 : ∆t > 0,

S3 : q[1] = q0,

S4 : q[N + 1] = qF ,

S5 : hmin ≤ z[n] ≤ hmax,

n ∈ {1, 2, · · · , N}
S6 : Rc[n] ≥ Rr[n] + Rv,

n ∈ {1, 2, · · · , N}

S7 :
N∑

n=1

Pω[n] ≤ Etotal,

n ∈ {1, 2, · · · , N}

where N is the total number of time slots.

IV. PROPOSED SOLUTION METHOD

A. Preliminary Treatment

In this subsection, the optimal solution of Pc(t) in problem
P1 is analytically derived, which yields a closed form expres-
sion for Pc(t) in C5 and highly simplifies the computation
burden.

Theorem 1: The communication throughput monotonically
increases with Pc(t). When Pc(t) is in the lower bound,
the power consumption of communication is minimum. The
optimal value of P ∗c (t) is obtained as follows:

P ∗c (t) = fp (q(t), Pr(t), xT (t))

≜
[
(1 + SINRr)

ρ
1−ρ 2rv − 1

] ∥q(t)− xB(t)∥2

λc

s.t. fp (q(t), Pr(t), xT (t)) ≤ Pmax

where SINRr = λrPr(t)
∥q(t)−xT (t)∥4 and rv = Rv/ (B(1− ρ)).

Proof: See Appendix A. □

B. Control Parameterization Method

It is challenging to solve dynamic optimization problem P1.
For example, (C0) are dynamical constraints, and (C4, C5)
are infinite-dimensional constraints. Firstly, a time-scaling
transform is utilized [52] to map the varying time domain
into a fixed S-domain; Secondly, the control parameterization
method [53] is adopted to parametrize the infinite-dimensional
decision variables into a finite vector. Thirdly, an exact penalty
function method [54] to append the infinite-dimensional state
inequality constraints and terminal state equality constraints.
The proposed method is also applicable to task scenarios
without the terminal location constraint (C7).

Fig. 5. Control parametrization.

C. Time-Scaling Transform and Control Parametrization

The linear transform is utilized in problem P1 for mapping
the time interval [0, T ] into a known S-domain s ∈ [0, 1] [52]:

dt

ds
= T. (28)

Based on (28), using the chain derivative rule, we can obtain
the differential equation of (23) in the S-domain as [52]

ẋ(s) =
dx

dt
dt
ds

= T · f (x(s), u(s), Pr(s), Pc(s)) . (29)

As shown in Fig. 5, the S-domain interval [0, 1] is divided
into K equal subintervals with the K + 1 points sk =
k/K, k ∈ K = {0, 1, · · · , K − 1, K}. For each control
variable ui(s), i ∈ {1, 2, 3, 4} and Pr(s), the variables are
approximated by

ui(s) ≈
K∑

k=1

σi,kF[sk−1,sk)(s), (30)

Pr(s) ≈
K∑

k=1

σ5,kF[sk−1,sk)(s), (31)

where

F[sk−1,sk)(s) =

{
1, s ∈ [sk−1, sk),
0, otherwise.

By letting σi = [σi,1, σi,2, . . . , σi,K ]⊤ , i ∈ {1, 2, 3, 4, 5}
and σ =

[
σ⊤1 , σ⊤2 , σ⊤3 , σ⊤4 , σ⊤5

]⊤
, u(s) and Pr(s) are thus

parameterized by vector σ. By replacing u(s) and Pr(s) with
σ, (29) become

ẋ(s) = T · f (x(s), σ, Pc(s)) . (32)

Therefore, we obtain the following problem (P1)σ:

(P1)σ : min
σ,T

−Qr(1)

s.t. C0 : ẋ(s) = T · f (x(s), σ, Pc(s)) ,

s ∈ [0, 1],
C1 : U1,min ≤ σ1,k ≤ U1,max,

|σi,k| ≤ Ui,max, i = 2, 3, 4,

0 ≤ σ5,k ≤ Pmax, k ∈ K,

C2 : T > 0,

C3 : x(0) = x0,
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C4 : hmin ≤ z(s) ≤ hmax, s ∈ [0, 1],
C5 : Pc(s) = fp (q(s),
σ5,k, xT (s)) , s ∈ [0, 1],
C6 : Er(1) ≥ 0,

C7 : x(1) = xF , y(1) = yF , z(1) = zF ,

C8 : fp (q(s), σ5,k, xT (s))
≤ Pmax, s ∈ [0, 1].

D. Exact Penalty Function Scheme

According to [53] and [54], the terminal equality constraint
of C7 is converted into the following form:

∆e = ϵ−α
[
(x(1)− xF )2 + (y(1)− yF )2 + (z(1)− zF )2

]
,

(33)

where α > 0 is a penalty weight exponential constant. The
terminal inequality constraint of C6 is converted into the
following form:

∆ine = ϵ−α min
{
0, Er(1) + ϵβW0

}2
, (34)

where β > 0 is a positive real number, W0 is a constant
positive weight. Similarly, C4 and C8 are transformed into the
following alternative:

∆i = ϵ−α
[
min

{
0, z(s)− hmin + ϵβW1

}2

+ min
{
0, hmax − z(s) + ϵβW1

}2

+ min
{
0, Pmax − fp (q(s), σ5,k, xT (s)) + ϵβW2

}2
]
,

(35)

where W1 and W2 are fixed constants.
Therefore, the problem (P1)σ can be transformed into the

optimal control problem (P1)σ,ϵ without state constraints:

(P1)σ,ϵ : min
σ,T,ϵ

J = −Qr(1) + δϵγ + ∆e + ∆ine +
∫ 1

0

∆ids

s.t. C0, C1, C2, C3, C5,

C9 : ϵ > 0,

where γ ≥ 2 and δ > 0 are penalty parameters. Note
that problem (P1)σ,ϵ can be treated as a standard nonlinear
program problem without state constraints. The key steps
involved in solving problem (P1)σ outlined in Algorithm 1.

E. Gradient Formulas

To solve the nonlinear programming problem (P1)σ,ϵ in
Algorithm 2, we need to derive the gradient formulas of the
objective function J with respect to σ, T , and ϵ. The gradient
formulas for the objective function of (P1)σ,ϵ are given in the
following Theorem 2.

Theorem 2: The gradients of the objective function J with
respect to σ, T , and ϵ are given by

∂J

∂σ
=

∫ 1

0

∂H

∂σ
ds,

Algorithm 1 Optimization Algorithm of Problem (P1)σ

Initialization: Set δ(1) = 10, ϵ(1) = 0.1, ϵ∗ = 10−5, the
iteration index iter = 1. The penalty parameter values α, β,
γ, and Wi, = 0, 1, 2, are chosen depending on the problem
(P1)σ,ϵ.
1: while ϵ(iter) > ϵ∗ and δ(iter) < 108:
2: Solving (P1)σ,ϵ based on Algorithm 2 with the initial
point

(
σ(iter), T (iter), ϵ(iter)

)
, and the locally optimal result(

σ(iter),∗, T (iter),∗, ϵ(iter),∗) is obtained.
3: if All constraints are satisfied:
4: break.
5: else:
6: Adjust α, β, γ, and set ϵ(iter),∗ = 0.1ϵ(iter), δ(iter) =
0.1δ(iter)

7: end if
8: Let δ(iter+1) = 10δ(iter), σ(iter+1) =
σ(iter),∗, T (iter+1) = T (iter),∗, ϵ(iter+1) = ϵ(iter),∗, iter =
iter + 1.
9: end while
10: Output:

(
σ(iter),∗, T (iter),∗).

Algorithm 2 Solving Problem (P1)σ,ϵ at Iteration j

Input: σ(j), T (j), and ϵ(j).
Output: σ(j+1), T (j+1), and ϵ(j+1).
1: Approximate u(j)(s) with σ(j) based on (30).
2: Solve ẋ(j)(s) = T (j)f

(
x(j)(s), σ(j), Pc(s)

)
, s ∈ [0, 1]

for x(j)(s) with x(0) = x0, σ(j), and T (j).
3: Calculate the objective function’s gradients with x(j)(s),
σ(j), T (j), and ϵ(j).
4: Provide the objective function’s values and gradients to the
SQP-based nonlinear program solver.
5: Output σ(j+1), T (j+1), and ϵ(j+1).

∂J

∂T
=

∫ 1

0

∂H

∂T
ds,

∂J

∂ϵ
= δγϵγ−1 − αϵ−α−1

(
∆e + ∆ine + T

∫ 1

0

∆ids
)

+2βϵβ−α−1T

∫ 1

0

[
W1 min

{
0, x3(s)−hmin+ϵβW1

}
+ W1 min

{
0, hmax − x3(s) + ϵβW1

}
+ W2 min

{
0, Pmax − fp (s) + ϵβW2

}]
ds

respectively, where H is the Hamiltonian function formulated
as

H = ∆i + Tλ(s)⊤f (x(s), σ, Pc(s)) (36)

and λ(s) is given by the following differential equation

λ̇(s) = −∂H

∂x

⊤
(37)

with

λ(1) =
∂ (−x16(1) + ∆e + ∆ine)

∂x

⊤
. (38)

Proof: See Appendix B. □
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TABLE II
SOME PARAMETERS OF THE UAV-ISAC SYSTEM [17], [43]

F. Convergence Analysis and Computational Complexity

In the initial optimization stage, to relax penalties for
constraint violations, the optimizer can start with a large
ϵ to reduce penalty weight and relax constraints. As vio-
lations decrease, ϵ can be reduced to increase penalty
weight and tighten constraints, further reducing violations.
Decreasing ϵ reduces penalties δϵγ , leading to cost function
reduction. Based on section 9.3.2 of [53], if the parameter
iter is sufficiently large (iter →∞), then ϵ(iter) → 0,(
σ(iter),∗, T (iter),∗) → (σ∗, T ∗) is a local minimizer of

Problem P1. Thus, Algorithm 1 is convergent.
We use the SQP method [55], [56] to solve the nonlinear

programming problem (P1)σ,ϵ in Algorithm 2. The computa-

tional complexity of Algorithm 2 is O
(
(5K + 2)2

)
, where K

is usually assigned as 10. Because the improvement in the per-
formance of the problem (P1)σ,ϵ is marginal if K > 10 [17].
However, the algorithms outlined in [13], which regard UAV
as points for trajectory optimization, exhibit a computational
complexity of O

(
(5N)3.5

)
, where N = 400 is the number

of time slots. It is noteworthy that this paper models the UAV
as a rigid body, increasing the number of UAV state variables.
However, by focusing on optimizing control inputs rather than
state variables directly, we have successfully circumvented the
increase in computational complexity that would arise from a
sharp increase in the number of state variables. Furthermore,
the control parameterization employed in this paper achieves
a smooth UAV trajectory with a few control parameters,
contrasting with [13] that requires many time slots for a refined
trajectory, leading to reduced computational demand.

V. SIMULATION RESULTS

In the simulation, we consider a UAV-ISAC system where
the UAV flies from the start point q0 = [500, 2600, 100]⊤

to the end point qF = [0, 2600, 100]⊤ before the given
energy Etotal = 30 kJ runs out. Meanwhile, the UAV collects
information (including the ISAC signal and camera data) about
a single target to the BS whose position is xB = [0, 0, 30]⊤.
For ISAC, the proportion of sensing signal is ρ = 0.5. The
ambient temperature and the target cross-sectional area are set
to be Ttemp = 290 K and σcross = 2 m2, respectively. The
RSI power is set as σ2

s = −130 dB [25]. Some parameters
of the UAV-ISAC system are listed in Table II [17], [43].
The UAV initial conditions for problem P1 are set as x0 =
[q⊤0 , xT (0), 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, Etotal, 0, 0]⊤. The
maximum velocity of the UAV in problem P2 is set as 20 m/s.

Fig. 6. The flowchart of obtaining the real trajectory of P2.

Fig. 7. The cumulative MI comparison with different target speeds.

Problem P2 can be solved by on-the-shelf nonlinear program
packages and then the planned trajectory are tracked by the
UAV controller. The procedure for obtaining the real trajectory
with existing design is shown in Fig. 6. In the event that
constraint (13) is not satisfied, the sensing data transmission
is deemed unsuccessful.

We consider two scenarios. In the first scenario, a stationary
target is considered with position xT = [250, 3000, 0]⊤.
The other scenario considers a moving target with the start
point at xT (0) = [500, 3000, 0]⊤ and a uniform velocity VT

along the X-axis at 5 m/s, 10 m/s, and 15 m/s, respectively.
We choose the penalty parameter α = 1.5, β = 2, γ = 3
[54] and W0 = W1 = W2 = 10 in the problem (P1)σ,ϵ

based on Algorithm 1. As described in Algorithm 1, the value
of the penalty parameter can be adjusted for better constraint
satisfaction.

A benchmark scheme with only BS sensing is used for
comparison. In this scheme, the BS is equipped with a FD-
ISAC system, which is called BS-ISAC. The transmitting
antenna transmits the ISAC signal, and the receiving antenna
receives the echo signal reflected back by the target. The
perceived MI of the target obtained by the BS-ISAC system
can be calculated by the following formula

Rb(t) = B log2

(
1 +

PBG2
Bλ2σcross

(4π)3(σ2
s + σ2

n)∥xT (t)− xB∥4

)
,

(39)

where PB = 50 W is the BS transmission power. For a
stationary target, the focus is on the cumulative sensing MI
acquired within 200 seconds of perception time. In the case
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Fig. 8. The trajectories of the UAV and target.

of a moving target, the sensing outcomes within the xT (t) ∈
[−500, 500] segment of the X-axis are taken into account.

The cumulative MI of the BS-ISAC, P1, P2, and P2 with
real trajectory (P2 Real) are plotted in Fig. 7. As shown in
Fig. 7, we observe that as the target’s speed increases from
5 m/s to 15 m/s, the MI obtained by both the BS and the UAV
gradually decreases. The faster the target moves, the shorter
the time it spends within the perceptible section of the BS-
ISAC system, leading to a decrease in the total sensing MI.
For the UAV-ISAC system, the faster speed of the target, the
quicker the UAV needs to approach the target, resulting in
faster energy consumption and less sensing MI of the target.
As expected, although P2 outperforms P1, the performance of
the P2 Real is not as good as P1, which is clearly illustrated
in Fig. 7. This further verifies that the ignoring the UAV
dynamics may lead to performance degradation.

The flying trajectories and real time ISAC date rate of P1
and P2 are plotted in Fig. 8 and Fig. 9, respectively. As shown
in Fig. 8 and Fig. 9, both of the trajectories and the ISAC data
rate of the two methods look similar. At the beginning, the
UAV flies in the direction close to the target to obtain better
sensing performance. Limited by the communication capacity,
the UAV maintains a stable sensing distance between the UAV
and the target to ensure that the communication rate is no
less than the sensing rate. As the UAV’s onboard energy runs
out, the UAV starts flying towards the end point and away
from the target, resulting in a gradual decrease in the ISAC

rate, ultimately reaching the destination before the energy is
completely depleted. As shown in Fig. 9, when the velocity
of the target increases, the UAV has less time to maintain
peak ISAC rates. Consequently, the UAV must swiftly track
the moving target, leading to increased energy consumption.
In order to reach the destination before energy depletion, the
UAV must balance its time moving away from the target.

However, the planned UAV trajectory of P2, as shown in
Fig. 6, is required to be tracked by the controller. Thus,
we plot both the planned UAV trajectories and the real
UAV trajectories of P2 in Fig. 10. As shown in Fig. 10,
the planned trajectories of P2 are not fully tracked. This
deviation happened because the UAV’s dynamic characteristics
are not considered during the planning the of trajectory of P2,
resulting in some segments of the planned trajectory not align
with the UAV’s dynamic response. As a result, the controller
could not achieve precise tracking of the planned trajectory.
Furthermore, the UAV cannot reach the end point before
the exhaustion of its battery power. Specifically, the energy
consumption model for P2, based on the UAV controller
in Fig. 6, underestimated the actual UAV electrical energy
expenditure. In addition, the controller, while tracking the
P2 planned trajectory, cannot implement an optimal energy
consumption control throughout the entire task, leading to
unnecessary energy dissipation. This wastage exacerbated the
rate of onboard energy depletion, ultimately preventing the
UAV from reaching the end point before energy depletion.
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Fig. 9. Real time ISAC data rate.

Fig. 10. The planned P2 trajectory and its real trajectory.
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Therefore, the real performance of P2 is less than that of P1,
as illustrated in Fig. 7.

VI. CONCLUSION AND FUTURE WORK

This manuscript considers a novel UAV-enabled ISAC sys-
tem, where the UAV acts as an aerial platform equipped with
full-duplex antennas and vision sensors to sense a single target
of interest and transmits the sensing data in real time to a
BS. A JDCSC scheme for UAV has been developed, which
has been formulated as a dynamic optimization problem. The
control parameterization method has been utilized to discretize
infinite-dimensional decision variables and the exact penalty
function has been adopted to deal with infinite-dimensional
state constraints. The dynamic optimization problem is con-
verted into a nonlinear problem. Simulation results show that
the UAV-ISAC system can significantly improve the perceptual
performance compared with the BS-ISAC system. Moreover,
the proposed method outperforms the existing design which
only considers the kinematics of the UAV.

The study can be extended to scenarios involving multiple
UAVs, multiple targets, and operations across cellular net-
works. For example, when multiple UAVs work together to
detect multiple targets, it presents challenges in task alloca-
tion and resource management that are crucial for improving
accuracy. Furthermore, optimizing the flight trajectories of
multiple UAVs to mitigate inter-cell interference and reduce
disruptions among them is essential for enhancing the overall
communication and sensing performance of the system.

APPENDIX A
PROOF OF THEOREM 1

Since the UAV-ISAC system investigated in this manuscript
operates causally, let’s assume the UAV’s feasible position
p(t) ∈ P and sensing power Pr(t) ∈ Pr. In this context,
the feasible solution for the communication power can be
expressed as follows:

Pc(t) ≥ fp (q(t), Pr(t), xT (t))

≜
[
(1 + SINRr)

ρ
1−ρ 2rv − 1

] ∥q(t)− xB(t)∥2

λc
,

0 ≤ Pc(t) ≤ Pmax, C6,

where SINRr = λrPr(t)
∥q(t)−xT (t)∥4 and rv = Rv/ (B(1− ρ)).

Given that Rv is a constant significantly greater
than 0, it is straightforward to observe that
infp(t)∈P,Pr(t)∈Pr

(q(t), Pr(t), xT (t)) > 0. Consequently,
when Pc(t) reaches its lower bound, the UAV achieves the
minimum communication power consumption while satisfying
the energy constraint C6. Considering the feasible domain of
Pc(t), we can express the optimal P ∗c (t) as:

P ∗c (t) = fp (q∗(t), P ∗r (t), xT (t)) , (40)

subject to fp (q∗(t), P ∗r (t), xT (t)) ≤ Pmax.

APPENDIX B
PROOF OF THEOREM 2

We define a general problem, in which we need to find a
system parameter vector σ such that the cost function

J (σ) = Ψ (x(τ0|σ), σ) +
∫ τ0

0

L (t, x(t|σ), σ)dt (41)

is minimized subject to the dynamic system

ẋ(t) = f (t, x(t), σ, Pc(s)) , (42)

with initial conditions x(0) = x0(σ). The gradients of the
cost function J are given in Lemma 1.

Lemma 1 (Theorem 7.2.2 in [53]): The gradients of the
cost function J are given by

∂J (σ)
∂σ

=
∂Ψ (x(T |σ), σ)

∂σ
+ λT

0 (0|σ)
∂x0(σ)

∂σ

+
∫ τ0

0

∂H (t, x(t|σ), σ, λ(t|σ))
∂σ

dt,

where

H (t, x(t|σ), σ, λ(t|σ)) = L(t, x(t), σ) + λ(t)⊤f(x(t), σ)

is the Hamiltonian and λ(t) is the co-state vector satisfying
the following equations:(

λ̇(t)
)⊤

= −∂H (t, x(t|σ), σ, λ(t|σ))
∂x

with

(λ(τ0))
⊤ =

∂Ψ (x(τ0|σ))
∂x

.

According to Lemma 1, we define the Hamiltonian function
of the (P1)σ,ϵ as

H = ∆i + Tλ(s)⊤f (x(s), σ, Pc(s)) (43)

and λ(s) is the corresponding co-state vector satisfying the
following differential equations

λ̇(s) = −∂H

∂x

⊤
(44)

with

λ(1) =
∂ (−x16(1) + ∆e + ∆ine)

∂x

⊤
. (45)

The objective function J is defined as

J = Ψ0 +
∫ 1

0

∆ids, (46)

where Ψ0 = −Qr(1) + δϵγ + ∆e + ∆ine. We can obtain the
following gradient formulas:

∂Ψ0

∂σ
= 0,

∂Ψ0

∂T
= 0,

∂Ψ0

∂ϵ
= δγϵγ−1 − αϵ−α−1 (∆e + ∆ine) . (47)

Because x0 does not depend on σ, T and ϵ, we have

∂x0

∂u
= 0,

∂x0

∂T
= 0,

∂x0

∂ϵ
= 0. (48)
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Therefore, the gradients of the objective functional J with
respect to σ, T and ϵ are

∂J

∂σ
=

∫ 1

0

∂H

∂σ
ds,

∂J

∂T
=

∫ 1

0

∂H

∂T
ds,

∂J

∂ϵ
=

∂Ψ0

∂ϵ
+

∫ 1

0

∂H

∂ϵ
ds

= δγϵγ−1 − αϵ−α−1

(
∆e + ∆ine + T

∫ 1

0

∆ids
)

+2βϵβ−α−1T

∫ 1

0

[
W1 min

{
0, x3(s)−hmin+ϵβW1

}
+ W1 min

{
0, hmax − x3(s) + ϵβW1

}
+ W2 min

{
0, Pmax − fp(s) + ϵβW2

}]
ds,

where fp(s) = fp (q(s), σ5,k, xT (s)). So far, the proof of
Theorem 2 is completed.
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