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Abstract—In this paper, we propose a time-division integrated
sensing, communication and control (ISCC) scheme designed to
dynamically enhance communication and sensing capabilities on
the UAV platform. The UAV is dispatched to track a randomly
moving target for capturing and transmitting sensing data to the
base station via wireless communication. The goal is to leverage the
ISCC framework for maximizing the cumulative sensing mutual
information while guaranteeing successful data transmission by
optimizing the allocation of the communication and sensing time
slots together with the UAV’s control scheme. The formulated
problem cannot be straightforwardly solved by off-the-shelf op-
timization algorithms due to the time-varying environment. To
tackle this challenge, a constrained soft actor-critic (C-SAC) al-
gorithm is developed, which dynamically switches between max-
imizing rewards and minimizing constraint violations to ensure
robust performance in changing environments while maintaining
the simplicity and efficiency of unconstrained policy optimization.
Simulation results demonstrate that the proposed C-SAC algo-
rithm outperforms dual-variable-based methods in handling the
constrained problems, while extensive Monte Carlo tests confirm
the robustness of the ISCC policy trained by the proposed algo-
rithm, which adapts to varying target speeds and achieves higher
cumulative mutual information compared to the point-mass UAV
models.

Index Terms—Integrated sensing, communication and control
(ISCC), unmanned aerial vehicle (UAV), constrained reinforce-
ment learning (CRL), trajectory planning.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is regarded as
one of the six ITU use scenarios in 6G wireless networks [1]–
[3], which not only provides high-throughput and low-latency
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communication services, but also affords high-precision sens-
ing capabilities. As a flexible and cost-effective aerial platform,
unmanned aerial vehicles (UAVs) have been widely used in
various fields such as reconnaissance, disaster rescue operations
[4], traffic monitoring [5], agriculture, forestry and animal hus-
bandry operations, logistics and transportation [6]. Recently,
UAV-enabled ISAC has attracted more attention, prompting a
surge in academic research endeavors.

To fully exploit the potentials of UAV and ISAC, the optimal
design of UAV-ISAC networks has been intensively studied,
including UAV trajectory planning and resource allocation.
[7] focused on minimizing the power consumption of a UAV-
enabled ISAC system through the joint design of trajectory
and resource allocation. In [8], the UAV utilized ISAC signals
to provide communication services to ground users and locate
unknown-positioned targets, optimizing its 2D flight path and
hover points to balance the communication performance with
the target positioning accuracy. However, it is noted that the
UAV in [7], [8] is restricted to providing communication and
sensing services solely during its hovering phases. In [9], a
time-division multiple access (TDMA) based periodic ISAC
mechanism was proposed. Simulation results underscore the
importance of UAV trajectory design in effectively balancing
the communication and sensing performance. Furthermore, in
[10], a comprehensive framework was developed to encompass
the joint optimization of UAV trajectory or static deployment
and ISAC beamforming, addressing constraints such as sensing
beam gain, transmission power, and flight limitations, with the
aim of maximizing the communication users’ average weighted
sum-rate throughput.

The existing studies in the literature discussed above pri-
marily utilize numerical optimization techniques to achieve
suboptimal solutions with prior knowledge of the environ-
ment. However, the limited computational resources present a
challenge in providing real-time online optimization support
for UAVs operating in dynamically changing environments.
Deep reinforcement learning (DRL) has attracted considerable
attention as a method for tackling the sequential decision-
making challenges of UAV-enabled ISAC systems in time-
varying environments [11]. Recently, several studies have in-
vestigated the utilization of DRL to improve the capabilities of
UAVs in terms of trajectory planning and resource allocation in
unfamiliar environments. For instance, the study by [12] specif-
ically addressed the optimization of service area selection and
power allocation for UAVs during emergency communication
scenarios. [13] investigated the enhancement of obstacle per-
ception accuracy through the utilization of ISAC for designing
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UAV flight paths that circumvent obstacles. Furthermore, [14]
delved into the application of DRL for the purpose of planning
UAV 3D trajectories to improve user access rates, fairness,
and energy efficiency. Moreover, [15] utilized DRL to tackle
a challenge related to joint user association, UAV trajectory
planning, and power allocation to enhance spectral efficiency.
In addition, [16] investigated the application of multi-agent
DRL algorithms in trajectory planning and resource allocation
for multi-UAV systems.

However, it is worth noting that the aforementioned studies
treat UAVs as point-masses and only take into account their
kinematic paths. Given the significant difference between the
oversimplified point-mass model and the actual UAV system,
the planned UAV trajectory may not be fully trackable in
practice, thus diminishing the feasibility of planned trajectories
[17]. To improve the feasibility of planned UAV trajectory, [17]
and [18] suggested using deep learning for dynamic trajectory
planning of fixed-wing UAVs. For rotary-wing UAVs, [19] and
[20] proposed breaking down the nonlinear dynamic trajectory
planning into sub-problems solvable with convex optimization.
However, [17]–[20] focused on UAV trajectory planning in
scenarios involving obstacle avoidance. In the communications
community, the trajectory planning that integrates UAV dynam-
ics for UAV-enabled communication or sensing has not yet
received sufficient research attention. Our prior works [21],
[22] demonstrated that neglecting the UAV dynamics in the
trajectory design can lead to degradation in the quality of
service (QoS) of communication. Compared with the DRL
schemes [12]–[16], [23] that treat the UAV as a mass point, the
complexity of the problem is considerably increased when the
dynamics of the UAV are incorporated. For instance, DRL fre-
quently demonstrates limited efficacy in addressing the safety
constraints and communication and sensing (C&S) constraints
associated with UAV operations. This limitation suggests a
shift in research focus towards safe reinforcement learning
(SRL) [24] or constrained reinforcement learning (CRL) [25]
methodologies.

This shift is exemplified by recent works: the authors in
[26] proposed a SRL-based joint optimization framework for
terahertz (THz)-band UAV-assisted communication networks.
By co-optimizing the UAV’s trajectory planning and dynamic
channel allocation strategy, the study maximized network en-
ergy efficiency. Furthermore, [27] investigated UAV trajectory
design and power allocation based on causal channel state
information (CSI), while utilizing the CRL method to opti-
mize the system’s total transmission rate under average rate
constraints for users. However, it is important to note that
both studies [26] and [27] employed the Lagrangian multi-
plier method to manage constraints. Although this approach
provides mathematical simplicity in formulation, its practical
application exhibits significant limitations [24], [25]: (i) The
convergence performance of Lagrangian multipliers is highly
sensitive to initial parameter settings. (ii) The method exhibits
poor adaptability in dynamic time-varying environments. (iii)
Performance degradation becomes particularly evident when
addressing sparse constraints (e.g., event-triggered safety con-
ditions) or long-term cumulative constraints (e.g., temporal
average requirements for latency or throughput).

Motivated by above discussion in this paper, our focus lies
in the ongoing monitoring of randomly moving ground targets
within a cellular-connected UAV-ISAC system. Operating un-
der energy constraint, the UAV is required to sense the target
efficiently and transmit sensing data to the base station (BS) in
real-time. Our objective is to maximize the mutual information
(MI) obtained from sensing the target, achieved through the
integrated sensing, communication and control (ISCC) of the
UAV to optimize its real-time trajectory and the allocation of
communication and sensing time slots. In contrast to our prior
studies [21], [22], this paper investigates a non-cooperative
and non-adversarial (NCNA) sensing target with unpredictable
movement patterns, which restricts the system to acquiring
only causal CSI of the sensing channel. This characteristic ren-
ders conventional non-causal CSI-based approaches [7]–[10],
[21], [22] ineffective for addressing the problem investigated
in this study. Furthermore, the continuous control of UAVs
becomes particularly challenging when simultaneously con-
sidering multiple constraints including communication quality,
safety requirements, and energy consumption. To the best of
our knowledge, no prior research has been conducted on this
specific issue. In order to tackle this challenge, we customize
the reward functions and the constrained soft actor-critic (C-
SAC) algorithm, enabling the UAV to learn how to adjust its
policy for monitoring randomly moving target.

In summary, the primary contributions of this paper can be
outlined as follows:

• We propose a time-division ISCC (TD-ISCC) frame struc-
ture that can dynamically adjust the time slot allocation to
maximize the ISAC rate, which represents the successful
transmission of both the sensing and video data received
by the UAV to the BS, reflecting the capacity of the ISAC
system. Furthermore, we derive a rigorous closed-form
solution for the allocation of communication and sensing
time slots within this framework.

• We formulate the ISCC problem by integrating UAV dy-
namics, energy limitation, and safety prerequisites, result-
ing in a multi-constraint optimization problem. By cus-
tomizing the reward and cost functions for each constraint,
we transform this problem into a constrained Markov de-
cision process (CMDP). Subsequently, for the single-step
decision-making of UAVs, we construct the single-step
reward and cost functions by incorporating the rewards
and costs associated with all constraints, thereby aligning
with the objectives of the ISCC problem. This approach
simplifies the decision-making process.

• The C-SAC algorithm is proposed to address the ISCC
problem within a UAV-based TD-ISCC system operating
in changing environments. The algorithm leverages an
unconstrained SAC policy to maximize rewards, thereby
updating the network parameters. However, when a con-
straint violation is detected, C-SAC switches to a correc-
tive mechanism: it employs the unconstrained policy to
minimize the associated cost, updates the network param-
eters accordingly, and temporarily adjusts the policy in the
regression direction of the violated constraint. Notably,
the implementation of C-SAC maintains the simplicity
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Fig. 1. An AI-controlled UAV using the TD-ISCC technique to sense moving
targets.

and computational efficiency of traditional unconstrained
policy optimization algorithms.

• Simulation results demonstrate that, compared to methods
involving dual variables, C-SAC exhibits higher effective-
ness in handling constrained problems. In addition, an
extensive Monte Carlo tests demonstrate the robustness of
the ISCC policy trained by the proposed algorithm. This
policy can adapt to various target speeds and produces a
greater cumulative MI compared to methods that consider
the UAV as a point-mass model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In Fig. 1, an AI-controlled quad-rotor UAV equipped with
optical cameras and the TD-ISCC system is shown to conduct
continuous surveillance over a specific area. The monitored tar-
get is subject to real-time traffic conditions on the ground, such
as the presence of other vehicles and road bends, resulting in
a time-varying speed. In this task, the UAV effectively gathers
precise information about the target using both radar signals
and video data through flexible flight maneuvers. The data
acquired from the target is then transmitted to the BS in real-
time, enabling timely and accurate monitoring and surveillance
capabilities.

t

UAV Control UAV Control

Communicaton slot Sensing slot

k th segment (k+1) th segment
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Fig. 2. The UAV control signal and the flexible sensing and communication
frame structure of the proposed TD-ISCC system.

Fig. 2 depicts the UAV dynamic control signal segments and
the flexible sensing and communication frame structure of the

proposed TD-ISCC system. During the flight, the motion con-
trol commands of the UAV are divided into multiple segments.
Each segment has the same duration and is further divided
into multiple subframes, with each subframe containing both
a communication slot and a sensing slot. The time proportion
of the sensing slot in the subframe, denoted by ρ, can be
adjusted flexibly according to the specific requirements of the
surveillance mission. This flexible structure allows the UAV to
efficiently balance its communication and sensing tasks while
adapting to varying mission conditions and priorities.

We set the duration of each segment to dt, and the duration
of each subframe can be designed to be 1 ms or even shorter. As
a result, ρ can be approximated as a time-continuous variable,
denoted as ρ(t), representing its value at time t. In this sce-
nario, the UAV and the target positions at time t are denoted
by p(t) = [x(t), y(t), z(t)] and pT (t) = [xT (t), yT (t), 0],
respectively. In addition, the location of the BS is represented
as pB = [xB , yB , zB ].

Next, we provide a detailed description of the subsystem
models and the problem formulation.

A. UAV Sensing Metric
The signal-to-noise ratio (SNR) of the radar signal reflected

back from the monitored target to the UAV can be expressed as
follows:

Γr(t | pT (t)) =
PtE

[
|hr(t | pT (t))|2

]
σ2
n

, (1)

where Pt is the transmission power, σ2
n is the variance of the

additive white Gaussian noise (AWGN). The non-cooperative
channel gain can be obtained by [28]

E
[
|hr(t | pT (t))|2

]
=

G2λ2σcross

(4π)3∥p(t)− pT (t)∥4
, (2)

where G is the antenna gain of the UAV (assume that the
transmitting and receiving antennas have the same gain), λ is
the carrier wavelength, σcross is the target cross section. We
investigate a general scenario where the UAV is assigned to
sense an NCNA moving target. In this situation, the UAV can
only obtain the target’s current position and velocity informa-
tion through perception technologies and is unable to predict
the target’s future trajectory. The motion equation of the target
can be expressed as

ṗT (t) = vT (t), (3)

where vT (t) = [vTx(t), vTy(t), 0] is the velocity of target.
Under the aforementioned conditions, the radar MI estimation
rate can be derived, which quantifies the system’s capability
to extract target-related information from echo signals. Conse-
quently, we employ the radar MI estimation rate as a key metric
to evaluate the UAV’s sensing performance. For a given target
position pT (t), the UAV’s sensing capability can be expressed
as [29]–[31]

Rr (t | pT (t)) = Bρ(t) log2

(
1 +

λ1

∥p(t)− pT (t)∥4

)
. (4)

Here B is the ISAC system bandwidth and

λ1 =
PtG

2λ2σcross

(4π)3σ2
n
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represents the SNR at a reference distance of 1 meter.

B. UAV Sensing Information Transmission

Generally speaking, the transceiver antenna of the BS is
positioned at a high location, enabling the establishment of a
strong line-of-sight (LoS) channel with the UAV. In addition,
it is assumed that the Doppler effect resulting from the UAV’s
flying motion is perfectly compensated at both the BS [32], [33]
and the UAV sensing receiver [9], [34], [35]. This compensation
ensures that any frequency shifts caused by the UAV’s move-
ment are effectively mitigated, leading to more reliable and
accurate communication and sensing performance. Therefore,
the SNR of the communication signal received by the BS from
the UAV can be calculated as

Γc(t) =
PtE

[
|hc(t)|2

]
σ2
n

, (5)

where hc(t) is the communication channel gain, which follows
the free-space path loss model and the channel power gain from
the UAV to the BS can be expressed as [28]

E
[
|hc(t)|2

]
=

GGBλ
2

(4π)2∥p(t)− pB∥2
, (6)

where GB is the receiving antenna gain of the BS. Let

λ2 =
PtGGBλ

2

(4π)2σ2
n

, (7)

and then the data rate of the detection information transmitted
by the UAV to the BS can be written as

Rc(t) = B (1− ρ(t)) log2

(
1 +

λ2

∥p(t)− pB∥2

)
. (8)

We adopt the ISAC rate min{Rc(t), Rr (t | pT (t))+Rv} to
represent the capacity of the ISAC system, which characterizes
the successful transmission of both the sensing and video data
received by the UAV to the BS. To guarantee the successful
transmission of the sensing and camera data collected by the
UAV to the BS receiver, it is imperative that the communication
rate of the UAV exceeds the combined rates of the video
data and the MI from the sensing data. The constraint on the
communication rate is as follows [36], [37]

Rc(t) ≥ Rr (t | pT (t)) +Rv, (9)

where Rv is the video data rate and is assumed to be stable at
specific resolutions. Through analysis, we can derive a closed-
form analytic constraint for ρ(t) in (9), which can be expressed
as

0 ≤ ρ(t) ≤ log2 (1 + Γc(t))−Rv/B

log2 (1 + Γc(t)) + log2 (1 + Γr (t | pT (t)))
.

(10)

C. Energy Consumption Model

We consider a battery-powered electric quadcopter UAV,
where the total energy available to perform the task is denoted
as Emax, due to the limitation of the onboard energy capacity.
The remaining energy at time t can be expressed as

Er(t) = Emax −
∫ t

0

(P (τ) + Pt + Po) dτ, (11)

TABLE I
NOTATIONS AND TERMINOLOGIES

Notation Terminology Unit
Ct Thrust coefficient N/(rad/s)2

Cm Torque coefficient N ·m/(rad/s)2

Cdx Drag coefficient of x-axis N/(m/s)2

Cdy Drag coefficient of y-axis N/(m/s)2

Cdz Drag coefficient of z-axis N/(m/s)2

Cmx Damping torque coefficient of x-axis N ·m/(rad/s)2

Cmy Damping torque coefficient of y-axis N ·m/(rad/s)2

Cmz Damping torque coefficient of z-axis N ·m/(rad/s)2

g Acceleration of gravity m/s2

Ix Rotational inertia of x-axis kg ·m2

Iy Rotational inertia of y-axis kg ·m2

Iz Rotational inertia of z-axis kg ·m2

Im Motor propeller inertia kg ·m2

L Fuselage length m
m Aircraft mass kg

bX

bZ

x

y

z

X

Z

Y

O

bO TransformationbY

Fig. 3. Six DoF quadcopter coordinate transformation.

where Po is an average power constant, encompassing the
power consumption of optical cameras and other necessary on-
board equipment of the UAV. As derived in [21], the propulsion
power consumption of the UAV’s motors can be expressed as

P (t) =

4∑
i=1

Pi(t), (12)

where Pi(t) = c4ω
4
i (t)+c3ω

3
i (t)+c2ω

2
i (t)+c1ωi(t)+c0 rep-

resents the power consumption of each motor i = {1, 2, 3, 4}.
Here, c0, c1, c2, c3, and c4 are constant parameters related to
the motor [21], while ωi(t) denotes the angular velocity of each
motor i ∈ {1, 2, 3, 4} as illustrated in Fig. 3.

D. Quadcopter Rigid-Body Dynamic Model

As shown in Fig. 3, the UAV is equipped with four motors
that enable it to perform six degree-of-freedom (6-DoF) move-
ment. For simplicity, some of the terms and symbols related to
UAV are listed in Table I. We denote the velocity vector of the
UAV as v(t) = [vx(t), vy(t), vz(t)], which is defined as

v(t) = ṗ(t). (13)

In this paper, ṗ represents the derivative of p with respect to
time t, following the conventional notation for time deriva-
tives. The derivatives of other variables are defined sim-
ilarly. We denote the UAV control variables as u(t) =
[u1(t), u2(t), u3(t), u4(t)], where u1(t) represents the acceler-
ation induced by the motors’ tension, while u2(t), u3(t), and
u4(t) correspond to angular accelerations around the Xb, Yb,
and Zb axes, respectively. As illustrated in Fig. 3, the accel-
eration of the UAV is transformed from the body coordinate
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system Ob−XbYbZb to the Earth coordinate system O−XY Z
through a coordinate transformation. Consequently, the UAV
acceleration can be obtained as [38]

v̇x(t) =2u1(t) [q1(t)q3(t) + q0(t)q2(t)]−Dx(t)/m,

v̇y(t) =2u1(t) [q2(t)q3(t)− q0(t)q1(t)]−Dy(t)/m,

v̇z(t) =u1(t)
[
q0(t)

2 − q1(t)
2 − q2(t)

2 + q3(t)
2
]

−Dz(t)/m− g.

(14)

The air drag of the UAV is proportional to the square
of the flight speed and can be expressed as follows:
Dx(t) = Cdx|vx(t)|vx(t), Dy(t) = Cdy|vy(t)|vy(t),
and Dz(t) = Cdz|vz(t)|vz(t). The quaternion q(t) =
[q0(t), q1(t), q2(t), q3(t)]

⊤ is used to describe the body attitude
of UAV, where ‘[·]⊤’ stands for the transpose operation. It is
updated according to the following equation [39]:

q̇(t) =
1

2
Ωq(t)q(t), (15)

where

Ωq(t) =


0 −ωx(t) −ωy(t) −ωz(t)

ωx(t) 0 ωz(t) −ωy(t)
ωy(t) −ωz(t) 0 ωx(t)
ωz(t) ωy(t) −ωx(t) 0


and ω(t) = [ωx(t), ωy(t), ωz(t)] represent the angular ve-
locities around the UAV frame’s respective axes. The angular
velocities are controlled by the UAV’s control signals u(t) ,
which are given by [40]

ω̇x(t) =u2(t) + [(Iy − Iz)ωy(t)ωz(t)− ImΩ(t)ωy(t)

−Dmx] /Ix,

ω̇y(t) =u3(t) + [(Iz − Ix)ωx(t)ωz(t) + ImΩ(t)ωx(t)

−Dmy] /Iy,

ω̇z(t) =u4(t) + [(Ix − Iy)ωx(t)ωy(t)−Dmz] /Iz,

(16)

where Ω(t) = ω1(t) − ω2(t) + ω3(t) − ω4(t). Due to the
symmetry of the UAV body, the moment of inertia Ix around
the Xb-axis is equal to the moment of inertia Iy around the
Yb-axis. The damping torque of the UAV body is proportional
to the square of the angular velocities and can be expressed as
follows: Dmx = Cmx|ωx(t)|ωx(t), Dmy = Cmy|ωy(t)|ωy(t),
and Dmz = Cmz|ωz(t)|ωz(t).

Intuitively, (14)-(16) capture the UAVs rigid-body dynamics
in a physically meaningful way. (14) governs the translational
acceleration along the three axes of the Earth frame, where the
thrust generated by the motors is projected into the global coor-
dinates through quaternion-based rotation, and the aerodynamic
drag and gravity are also considered. (15) describes the time
evolution of the UAVs attitude in terms of quaternion dynam-
ics, ensuring a smooth representation of 3D orientation. (16)
characterizes the rotational dynamics, showing how the control
torques around the roll, pitch, and yaw axes [u2(t), u3(t), u4(t)]
interact with gyroscopic effects and body damping to update
the angular velocities. Taken together, these equations indicate
that the UAVs next position and attitude are determined by
the interplay of thrust, torque, aerodynamic drag, gravity, and
inertia, which makes the model significantly more realistic than
the commonly used point-mass model.

E. Problem Formulation

Based on the discussion of the models above, this section
formulates the ISCC problem for the UAV TD-ISCC system.
In this problem, the UAV starts from a point and continuously
tracks and monitors a target while sending real-time sensing
data to the BS. In addition, the UAV must reach a prede-
termined end point before depleting its onboard energy. The
primary objective is to maximize the ISAC rate concerning
the target, which is achieved by jointly optimizing the UAV’s
motor controls, communication and sensing ratio, and the time
required to complete the mission. The goal is to achieve an
efficient and effective surveillance task while optimizing the
trade-off between energy consumption, sensing data quality,
and the mission completion time. Since the video rate in the
ISAC rate is a constant, our actual optimization objective shifts
to maximizing the total radar MI estimation. Therefore, the
ISCC problem for the UAV TD-ISCC system is formulated as

P : max
u(t),ρ(t),T

Qr(T ) = E

[∫ T

0

Rr(τ | pT (τ))dτ

]
s.t. C0 : (13), (14), (15), (16),

C1 : U1l ≤ u1(t) ≤ U1u,

|ui(t)| ≤ Uiu, i = 2, 3, 4, t ∈ [0, T ],

C2 : T > 0,

C3 : (10),
C4 : z(t) ≥ hmin, t ∈ [0, T ],

C5 : Er(T ) ≥ 0,

C6 : ∥p(T )− pF ∥ ≤ ξd,

where ξd is the critical distance.
Herein, C0 include the dynamic equations of UAV. C1 is

introduced as a constraint to limit the force and torque pro-
duced by the UAV motors, where U1l and Uiu i = 1, 2, 3, 4
are boundary values. C2 ensures that T satisfies real-world
physical constraints. Constraint C3 represents the communi-
cation requirements, guaranteeing the successful transmission
of video data and radio sensing to the BS. For the safety of
the UAV, its flight altitude is limited by constraint C4, where
hmin is the minimum allowable altitude. A critical factor for
the mission success is reaching the end point before depletion
of the onboard energy. C5, the residual energy constraint,
ensures sufficient energy residue at the final time. Constraint C6

defines the permissible end point position for the UAV, where
pF = [xF , yF , zF ] is the terminal position.

In problem P , the UAV cannot obtain the complete causal
CSI of the sensing channels in advance, which makes tradi-
tional numerical optimization methods ineffective for obtaining
the optimal solution. While online real-time computation ap-
proaches are theoretically feasible, they encounter fundamental
trade-offs between optimizing the objective function, satisfying
terminal constraints, and ensuring global energy efficiency.
Although DRL techniques demonstrate promising capabilities
in addressing sequential decision-making challenges induced
by causal CSI, the inherent strong coupling between control
variables and system states within the UAV dynamical model
fundamentally constrains the ability to rigorously enforce state



6

constraints through purely hard-constrained neural network
architectures, thus introducing substantial technical obstacles
to effective problem resolution. To address these challenges,
we propose an innovative and computationally efficient C-SAC
algorithm.

III. CRL BASED UAV TRAJECTORY DESIGN AND TIME
SLOT ALLOCATION

Problem P is a sequential decision problem, which can
be reformulated as a CMDP and then solved by SRL/CRL
[24], [25]. In this section, the UAV is treated as an agent and
trained with the C-SAC algorithm based on CRL to meet the
objective and constraints in problem P . At observation time
t, the environment state, agent action, reward and cost are
denoted as st, at, rt and ct, respectively. The state after taking
action at is denoted as st+1. The done variable is a binary flag
that indicates whether the episode has ended. If the episode
has ended, done is 1, otherwise it is 0. The corresponding
experience tuple ⟨st, at, rt, ct, st+1, done⟩ is stored in a expe-
rience replay buffer B for the training of the network. In the
following section, we elaborate on the problem preprocessing,
the definitions of system states, actions, rewards, and costs, as
well as the composition of the C-SAC algorithm.

A. Preliminary Treatment of P
In this subsection, we derive the optimal solution of ρ(t) in

P using an analytical method. Through analysis, we can derive
a closed analytic expression of ρ(t) in C3 as Theorem 1, which
simplifies the task of solving problem P .

Theorem 1. The objective function monotonically increases
with ρ(t). When ρ(t) reaches its maximum value, the objective
function becomes optimal. The optimal value of ρ(t) is obtained
as follows:

ρ∗(t) =
log2 (1 + Γc(t))−Rv/B

log2 (1 + Γc(t)) + log2 (1 + Γr (t | pT (t)))

s.t. Rc(t) ≥ Rv.

Proof. See Appendix A.

B. Environment State Space

In problem P , elements in the environment include the UAV,
the BS and the moving target. For the UAV, the state variables
that have an impact on the control decision include the current
position coordinate p(t), the speed vector v(t), the current body
rotation angular speed ω(t), the quaternion used to describe
the body attitude q(t), the remaining energy Er(t), and the MI
throughput Qr(t), totaling 15 state variables. The BS’s location
pB also has an impact on the UAV’s trajectory planning. Both
the target’s present position pT (t) and its moving speed vT (t)
are state variables that have an impact on the UAV control
decision. In addition, for the UAV trajectory planning, it is
necessary to have terminal position information pF .

Therefore, there are 26 states in the environment that have
an impact on the UAV control decisions. Analysis reveals that
the control decision solely pertains to the UAV’s position in
relation to both the base station and the target. Three states

can be dropped when the relative position is utilized to describe
the environmental states, which is advantageous for DRL. The
position of the UAV relative to the BS, target, and the endpoint
can be expressed as

pUB(t) = p(t)− pB , (17)

pUT (t) = p(t)− pT (t), (18)

pUF (t) = p(t)− pF . (19)

Therefore, the environment state space can be expressed as

st =

{
pUB(t),v(t),ω(t), q(t), Er(t),
Qr(t),pUF (t),pUT (t),vT (t)

}
. (20)

To ensure that the observed values of all environmental state
variables fall within the range [−1, 1], the observed values
must be normalized [41]. Normalization aids in removing cross-
dimensional influences between various state variables.

C. UAV Action Space

The action space of the UAV, denoted as at =
{a1(t), a2(t), a3(t), a4(t)}, encompasses four dimensions, cor-
responding to the UAV’s four control parameters. Given that
the UAV’s control variables adhere to the saturation control
constraint C1, the action components are constrained within
the interval [−1, 1], signifying that ai(t) ∈ [−1, 1] for i =
{1, 2, 3, 4}. These action components a(t) are responsible for
determining the UAV’s control inputs, and they can be mathe-
matically expressed as follows:

u1(t) = U1l + (U1u − U1l) (1 + a1(t)) /2,

u2(t) = U2ua2(t),

u3(t) = U3ua3(t),

u4(t) = U4ua4(t).

(21)

The UAV motors’ angular velocities are controlled by input
control variables, and its analytical expression can be derived
from (21) as follows

ω1(t) = 0.5 (τ1(t) + τ4(t)− 2τ3(t))
0.5

,

ω2(t) = 0.5 (τ1(t)− τ4(t) + 2τ2(t))
0.5

,

ω3(t) = 0.5 (τ1(t) + τ4(t) + 2τ3(t))
0.5

,

ω4(t) = 0.5 (τ1(t)− τ4(t)− 2τ2(t))
0.5

,

(22)

where τ1(t) = mu1(t)/Ct, τ2(t) = u2(t)Ix/(CtL), τ3(t) =
u3(t)Iy/(CtL), and τ4(t) = u4(t)Iz/Cm.

D. Hybrid Reward and Cost Function Design

This study carefully designs the reward and cost functions
to guide the UAV in maximizing the cumulative MI, subject to
state constraints C3 to C6. Specifically, the objective function
and constraints C3 and C4 are active throughout the entire UAV
flight, and can be modeled as immediate rewards and costs at
each step. In contrast, constraints C5 and C6 serve as terminal
state constraints, typically modeled as sparse terminal rewards
and costs.
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1) The UAV motion space and the end of the episode settings:
Setting an effective motion space for the UAV can avoid invalid
exploration of the UAV, such as the UAV constantly lowering
its altitude, the UAV continuously flying in the direction that
violates the mission goal, etc. The motion space of the UAV is
set to be larger than the space required for the normal flight of
the UAV in the mission scenario. The UAV motion space is set
as Ω3d = {[xmin, xmax] ; [ymin, ymax] ; [zmin, zmax]}, where
xmin, ymin and zmin are the lower boundaries of the space, and
xmax, ymax, and zmax are the space upper boundary values. If
the UAV flies out of the motion space, the current episode is
terminated and a cost is given

c3d(t) = ∥pUF (t)∥, if p(t) /∈ Ω3d, else 0. (23)

When the UAV flies out of the motion space (p(t) /∈ Ω3d) or
the given on-board energy runs out (constraint C5), the episode
ends, and the end flag is set as done = 1 , otherwise done = 0.

2) Terminal reward: The training goal of this problem is
that the UAV flies to the destination (constraint C6) before the
energy is exhausted, and the MI about the target is maximized
during the flight. Therefore, the design of the terminal reward is
related to the distance between the end point and the UAV, the
residual energy, and the cumulative MI. The terminal reward
and cost are obtained when the episode ends and they are
designed to be{

rd = r̃d
1+εd∥pUF (T )∥ +Qr(T ), if ∥pUF (T )∥ ≤ ξd, else 0,

cd = ∥pUF (T )∥, if ∥pUF (T )∥ > ξd, else 0,
(24)

where r̃d is the maximum terminal distance reward, εd is a
positive constant parameter, and the cost cd represents the
degree of violation of constraint C6. Specifically, in (24), r̃d
is set to be on the same order of magnitude as Qr(T ), ensuring
that the agent balances attention between the terminal distance
and cumulative MI. The parameter εd controls how the actual
terminal distance ∥pUF (T )∥ discounts the reward. An exces-
sively large εd makes r̃d

1+εd∥pUF (T )∥ too small in early training,
leading the agent to ignore the terminal constraint, while an
overly small value weakens its effect, hindering convergence.
Empirically, 1 ≤ εdξd ≤ 9 gives satisfactory results.

3) Sensing reward: According to Theorem 1, transmission
of the video information should be ensured during the UAV’s
flight, and as much sensing data as feasible should be collected.
Therefor, the sensing reward is designed as{

rs(t) = εsRr(t), if Rc(t) ≥ Rv, else 0,
cs(t) = Rc(t)−Rv, if Rc(t) < Rv, else 0,

(25)

where εs is a positive constant parameter, and the cost cs(t)
represents the degree of violation of constraint C3.

4) Safe flight reward: To encourage continuous flying, the
UAV is penalized for violating the safe flight height constraint
and rewarded for keeping the safe flight. The safe flight reward
is designed as{

rh(t) = r̃h, if z(t) ≥ hmin, else 0,
ch(t) = εh (hmin − z(t)) , if z(t) < hmin, else 0,

(26)

where r̃h is the safe flight reward, εh is the height penalty
weight, and the cost ch(t) represents the degree of violation
of constraint C4.

5) Flight guidance reward: According to the expert knowl-
edge, the UAV should fly to the target when the energy is
sufficient, which reduces the sensing distance and enhances the
sensing ability. When the UAV’s energy level is low, it should
fly towards its destination to ensure that it reaches the end point
before running out of the onboard energy. Based on the above
considerations, the flight guidance reward is set as

rg(t) =

{
max (∥pUT (t− 1)∥ − ∥pUT (t)∥, 0) , Er(t) > ξe,
max (∥pUF (t− 1)∥ − ∥pUF (t)∥, 0) , Er(t) ≤ ξe,

(27)
where ξe is the critical energy value. According to (27), when
the residual energy of the UAV is greater than the critical
energy, the UAV can be rewarded for approaching the sensing
target, and it is not penalized for moving away from the sensing
target. This design is beneficial to avoid unreasonable ξe set-
tings when the UAV needs to fly to the destination in advance
without being penalized. The same is true for the guiding
reward of the end point. When the value of ξe is unreasonable,
the UAV uses more energy to sense the target without penalty.

6) Step reward: In summary, the step reward and cost can be
formulated as

rt = rs(t) + rh(t) + rg(t) + done · rd, (28)

ct = cs(t) + ch(t) + c3d(t) + done · cd. (29)

For the process rewards rs(t), rh(t), and rg(t) in (28), the
hyperparameters are tuned to normalize their values to a similar
dimensionless range, ensuring that the agent pays balanced
attention to different states. In contrast, the cost function is
activated when a constraint is violated, and its value only needs
to reflect the severity of the violation. For constraints that are
more likely to be violated, the penalty can be amplified by
increasing the corresponding hyperparameter, such as εh in
(26).

7) Training objective: In CRL, the objective of the agent is
to train a control policy π, which maximizes the cumulative dis-
counted reward while adhering to constraints on the cumulative
discounted cost. This objective can be expressed as follows

P1 : max
π

∞∑
t=0

γtrt

s.t.

∞∑
t=0

γtct ≤ 0,

where γ is the discount factor.

E. Preliminaries of SAC

SAC is an off-policy algorithm within the actor-critic (AC)
framework [42]. The SAC framework, illustrated in Fig. 4,
employs five neural networks: two parallel critic networks, e.g.,
Q(st, at|θqi), i = {1, 2} with corresponding target networks,
e.g., Q(st, at|θq̃i), i = {1, 2}, and one actor network, e.g.,
π(st|θπ), where θqi , θq̃i , and θπ denote the trainable parame-
ters of the respective networks. Specifically, the minimum Q-
value from the two critic networks evaluates the actor’s pol-
icy π(st|θπ) (representing the action probability distribution),
while the target networks provide stable Q-value estimates for
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Fig. 4. The C-SAC algorithm architecture.

temporal difference learning. The real action can be obtained
by sampling from the probability distribution of actions at ∼
π (st | θπ).

To address the issue of overestimation in the critic network,
two critic target networks are employed for estimation. The
estimation result is determined by selecting the one with the
minimum valuation. The loss functions of the two critic net-
works (TD Error 1 and TD Error 2 in Fig. 4) can be represented
as

L (θqi) = (yt −Q (st, at | θqi))
2
, i = {1, 2}, (30)

where

yt = rt + γ(1− done)[min
i=1,2

Q(st+1, ât+1 | θq̃i)

− α lnπ(st+1 | θπ)] (31)

is the soft target Q value with the discount factor 0 < γ < 1 and
α is the temperature coefficient. The predicted action in (31) is
given by

ât+1 ∼ π (st+1 | θπ) . (32)

In addition, the policy network is optimized by reducing the
Kullback-Leibler (KL) divergence between the action distribu-
tion and the soft Q-value s distribution. Therefore, the policy
loss is defined as follows:

L (θπ) = α lnπ(st | θπ)− min
i=1,2

Q(st, at | θqi). (33)

F. C-SAC Algorithm

To address the constraints in problem P1, we propose a
C-SAC algorithm that minimizes costs when constraints are
violated and maximizes cumulative rewards when constraints
are satisfied. Unlike the methods in [43], [44] that use separate
cost and reward Q-functions, we employ a single Q-function to
estimate the joint Q-value of costs and rewards, distinguishing
between rewards and costs based on the sign of the Q-value
(positive for rewards, negative for costs). In the implementation,
when a constraint violation is detected, the negative cost value
is used as a penalty to replace the reward term in (31), thereby
minimizing costs during constraint violations and maximizing
returns when constraints are satisfied. This unified Q-function

design simplifies the algorithm structure and enhances the
synergistic efficiency between constraint handling and reward
optimization.

The loss functions of the two cost critic networks can be
represented as

Lc (θqi) = (yct −Qrc (st, at | θqi))
2
, i = {1, 2}, (34)

where

yct = rct + γ(1− done)[min
i=1,2

Qrc(st+1, ât+1 | θq̃i)

− α lnπ(st+1 | θπ)], (35)

and

rct =

{
−ct, ct > 0,
rt, otherwise.

(36)

This constitutes a special case of the primal-dual method, with
further details provided in Appendix B. Similar to (33), the loss
function of the policy network can be expressed as

Lc (θπ) = α lnπ(st | θπ)− min
i=1,2

Qrc(st, at | θqi). (37)

To train the neural networks, Nb tuples are randomly sampled
from the buffer B for each step of training. Specifically, the
critic networks can be trained by minimizing the mean-squared
soft Bellman error loss function which is derived as

θqi = argmin
θqi

1

Nb

Nb∑
n=1

(ycn −Qrc (sn, an | θqi))
2
, i = {1, 2}.

(38)
In addition, the actor network is trained by minimizing the
policy loss

θπ = argmin
θπ

1

Nb

Nb∑
n=1

[
α lnπ(sn | θπ)− min

i=1,2
Qrc(sn, an | θqi)

]
.

(39)
The temperature coefficient α is updated by minimizing the loss

α = argmin
α
− 1

Nb

Nb∑
n=1

[α (lnπ (sn | θπ)−H)] , (40)

whereH is equal to the negative value of the action dimension.
The target networks are updated using soft update policy, which
can be represented as

θq̃i = τθqi + (1− τ)θq̃i , i = {1, 2}, (41)

where τ ≪ 1 is the soft update coefficient.
For convenience, the C-SAC algorithm is summarized in

Algorithm 1.

G. Complexity Analysis

Let Nπ and NQ denote the parameter sizes of the pol-
icy and critic networks, respectively, and let B be the batch
size. The C-SAC algorithm has the same complexity as SAC,
i.e., O(B(Nπ + 2NQ)). The conservative augmented La-
grangian (CAL) [43] method requires additional networks to
estimate both cost and reward, leading to a complexity order
of O(B(Nπ + 2NQ + 2KNQ)), where K is the number
of constraints. The constrained variational policy optimization
(CVPO) [44] approach further introduces an E-step involving
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Algorithm 1 C-SAC Algorithm
Initialization: Randomly generating parameters of actor net-
work θπ , and critic networks θq1, θq2. Initialize target networks
θq̃1 ← θq1 , θq̃2 ← θq2 .

1: for episode = 1, 2, · · · , episodemax do
2: Initialize the training environment and obtain the state

s0;
3: for t = 0, 1, · · · do
4: Sample action at from the policy distribution π(st |

θπ), UAV execution action ak, and obtain the next environ-
ment state st+1, reward rt, cost ct, and the flag done;

5: Store (st, at, rt, ct, st+1, done) in replay buffer B;
6: if done == 1 then
7: Break;
8: end if
9: end for

10: for i = 1, 2, · · · , Nu do
11: Randomly sample a batch of transitions

(st, at, rt, ct, st+1, done) from B;
12: Update critics as (38);
13: Update policy network as (39);
14: Update temperature coefficient as (40) ;
15: Update target networks as (41);
16: end for
17: end for

action sampling and dual-variable optimization, along with an
M-step for supervised policy updates, leading to O(B((1 +
M)Nπ + 2(1 + E + K)NQ)), where E and M denote the
numbers of sampled actions in the E-step and M-step, respec-
tively. Therefore, C-SAC achieves a lower computational com-
plexity compared with the advanced CAL and CVPO schemes.
Compared with the point-mass model, the rigid-body UAV
model linearly increases computational complexity due to more
input neurons, but enables trajectory optimization that strictly
satisfies UAV dynamics.

IV. SIMULATION RESULTS

In this section, we assess the effectiveness of the algorithm
proposed in this paper through a series of simulation tests.
The simulation environment is configured with the following
specifications: Windows 10 operating system, Python 3.8 pro-
gramming language, PyCharm 2023 as the compiler platform,
and the open-source machine learning toolkit PyTorch 1.9.0
with CUDA 11.1 support.

A. Simulation Settings

In the simulations, we set the BS as the coordinate ori-
gin, with the receiving antenna positioned at a height of 30
meters. The UAV initiates its mission from the starting point
[500, 2600, 100] m and is tasked with sensing a moving target,
ultimately reaching the endpoint [0, 2600, 100] m. The UAV
operates with a maximum energy capacity of 30 kJ. For the
TD-ISCC system, the transmission power consumption at the
UAV is held constant at Pt = 1 W. The UAV’s antenna features
a gain of G = 17 dBi, while the BS antenna has a gain of

TABLE II
KEY UAV PARAMETERS FOR SIMULATION

m 3 c0 3.6× 10−3 Ct 4.848× 10−5

g 9.8 c1 7.5× 10−4 Cm 8.891× 10−7

L 0.3 c2 8.5938× 10−6 Cmx 0.016
Cdx 0.11 c3 8.8949× 10−7 Cmy 0.1
Cdy 0.11 c4 5.1287× 10−10 Cmz 0.1
Cdz 0.2 hmin 60 Ix 4.29× 10−2

U1l 6 Im 8.02× 10−4 Iy 4.29× 10−2

U1u 26 U2u 0.7 Iz 7.703× 10−2

U3u 0.7 U4u 0.05 - -
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Fig. 5. The AC network architectures.

GB = 20 dBi. The carrier frequency is set at 28 GHz, with a
channel bandwidth of 10 MHz [31]. The UAV’s camera has a
data rate of Rv = 80 Mbps and consumes power of Po = 9 W.
The reference SNR values are determined as λ1 = 98.6 dB
and λ2 = 109.6 dB. Key parameters related to the UAV are
summarized in Table II [21].

The UAV operates within a 3D space defined as Ω3d =
{[−300, 600]; [2500, 3100]; [30, 200]} m. The key parameters
of the reward and cost functions are set as r̃d = 500, εd = 0.3,
ξd = 20 m, εs = 1, r̃h = 1, εh = 10, ξe = 15 kJ. The DRL
algorithm has various hyperparameters, which are detailed in
Table III. Fig. 5 illustrates the AC network architecture, includ-
ing the input/output dimensions, number of neurons, hidden
layers, and activation functions. The actor maps the environ-
ment state to the UAV action mean and standard deviation
(STD) with tanh at the output layer and ReLU elsewhere,
while the critic shares the same hidden-layer architecture and
estimates Q(st, at) from both the state st and action at. To
evaluate performance, rewards between adjacent continuous
states are estimated by uniform sampling, with the sampling
interval, referred to as the control segment, set to one second.

B. Algorithms Comparison

To verify the effectiveness of the proposed algorithm, this
section compares the training results of the C-SAC algorithm

TABLE III
PARAMETER SETTING OF THE DRL ALGORITHM

Parameter Symbol Value
Actor learning rate ra 10−3

Critic learning rate rc 10−3

Discount factor γ 0.99
Soft update coefficient τ 0.005

Buffer B 220

Batch size B 256
Update count Nu 30
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with the CAL [43], CVPO [44], constrained twin delayed
deep deterministic policy gradient (C-TD3), and constrained
proximal policy optimization (C-PPO) methods, where C-TD3
and C-PPO are standard TD3 [41] and PPO [45] algorithms
adopting our recommended hybrid reward-cost (36) as reward.
Furthermore, we include a non-RL numerical optimization
(NO) [21], [22] baseline based on gradient descent for com-
parison. Fig. 6 illustrates the trends of the rewards and costs
obtained by these algorithms during training with episodes.
In the figure, the shaded areas show statistical results from
a window of 101 episodes centered on each training round
(including the current round, 50 preceding and 50 subsequent
episodes). The solid lines represent the average reward, and the
bounds of the shaded area are determined by the mean ± STD
within the same window.

Fig. 6 illustrates the training performance of different algo-
rithms, where ξd represents the distance cost allowed by con-
straint C6. In terms of the cost convergence, both the CAL and
CVPO algorithms exhibit satisfactory performance, demon-
strating robust convergence characteristics. However, their ef-
fectiveness in reward training remains suboptimal, indicating a
notable limitation in balancing constraint satisfaction and re-
ward maximization. In contrast, the proposed method achieves
a superior trade-off, effectively minimizing costs while simulta-
neously enhancing reward acquisition. Specifically, the analysis
reveals that C-PPO, as an on-policy approach, suffers from
significant limitations in both reward and cost optimization
due to its inherent low data utilization efficiency. Meanwhile,
C-TD3, as a deterministic policy algorithm, exhibits limited
exploration capabilities during the training phase, which leads
to a slower convergence rate compared to the more exploratory
C-SAC approach. In addition to convergence, training stability
can also be observed from the learning curves. As shown in
Fig. 6, the proposed method exhibits smoother reward and
cost trajectories, whereas the proposed method shows larger
variance during iterations due to its high level of exploration.
This stability is further reflected in the consistency of results
across multiple runs, highlighting the robustness of the pro-
posed method compared with baseline algorithms.

To validate the algorithm’s efficacy in sensing time-varying
motion targets and ensure its robustness, we conduct 1000
Monte Carlo simulations using the well-trained actor network.
The simulation results are presented in Table IV. In Table
IV, “Cumulative MI” denotes the successful reception of UAV
sensing data (Qr(T )) by the BS, while “Distance” represents
the distance of the UAV from the destination at the time of
energy depletion. The terms “Reward” and “Cost” refer to
the cumulative reward and cost values provided as feedback
from the environment, respectively. In addition, “Commun.
Con.” and “Height Con.” indicate the probabilities of violating
communication constraints (C3) and altitude constraints (C4)
in the test results, respectively. In the presented table, the data
are expressed in the format a ± b, where a and b represent the
arithmetic mean and STD of the results, respectively. From the
simulation results, it can be observed that C-SAC achieved the
maximum amount of sensing data, the shortest distance to the
destination, the highest reward value, and did not violate the
communication and altitude constraints throughout the process.
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Fig. 6. Comparison of different algorithms.

In contrast, CVPO achieved the minimum cost. However, the
NO scheme fails to deliver satisfactory performance under
complex UAV dynamics and time-varying target trajectories.
Overall, the simulation results underscore that the proposed C-
SAC algorithm effectively accelerates training convergence and
enhances the overall training performance.

C. Comparison of UAV Models: Rigid-body vs. point-mass

While UAVs are commonly abstracted as point-mass mod-
els in trajectory optimization studies for communication and
sensing performance analysis [12]–[16], [23], a gap persists be-
tween this simplified representation and the actual 6-DoF rigid-
body dynamics governing real-world UAV operations. This
modeling gap significantly undermines the translational validity
of neural network-based controllers trained with point-mass
representations when implemented on physical UAV platforms.
To rigorously assess this performance discrepancy, we conduct
systematic Monte Carlo simulations that compare our proposed
rigid-body dynamics framework with the conventional point-
mass model-based approaches.
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TABLE IV
MONTE CARLO SIMULATION RESULTS: PERFORMANCE OF DIFFERENT ALGORITHMS

Algorithm Cumulative MI (Mbits) Distance (m) Reward Cost Commun. Con. Altitude Con.
CAL 226.04± 62.31 17.51± 9.65 1304.89± 239.12 6.84± 13.83 0 0

CVPO 198.44± 46.70 8.89± 3.92 1483.83± 132.25 0.02± 0.67 0 0
C-PPO 382.57± 95.08 30.62± 19.45 1674.06± 291.46 26.05± 23.86 0 0
C-TD3 456.20± 88.52 13.11± 3.61 2229.89± 255.41 0.86± 4.27 0 2.92× 10−5

C-SAC 471.46± 95.38 7.20± 6.40 2298.64± 276.75 1.61± 7.04 0 0
NO 365.27± 11.07 31.33± 25.51 - - 0 0

TABLE V
MONTE CARLO SIMULATION RESULTS: RIGID-BODY VS. POINT-MASS

Model Cumulative MI (Mbits) Distance (m) Reward Cost Commun. Con. Altitude Con.

Point-Mass Expect 692.67± 123.89 1.90± 0.93 3174.68± 293.94 0.01± 0.21 0 7.68× 10−5

Real 419.06± 31.98 856.67± 67.37 778.49± 47.96 1847.13± 344.51 0 0.32
Rigid-Body 471.46± 95.38 7.20± 6.40 2298.64± 276.75 1.61± 7.04 0 0
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Fig. 7. Flowchart of the actor network implementation based on the point-mass
model.

To systematically evaluate the impact of different UAV mod-
els on performance, this study employed the C-SAC algorithm
to train both the UAV point-mass model and the rigid-body
model. As illustrated in Fig. 7, the trajectory generated by
the point-mass model was input into the real-world rigid-body
model, and the UAV controller executed the corresponding
control commands based on this trajectory to obtain the actual
operational results of the point-mass model in a real-world
environment. To compare the differences between the models
in sensing time-varying moving targets, this study conducted
1,000 Monte Carlo simulations using a well-trained actor net-
work. The statistical analysis of the simulation results is sum-
marized in Table V.

As shown in Table V, the simulation results obtained from
the point-mass ideal model are significantly superior to those
obtained from training with the rigid-body model. This ad-
vantage primarily stems from the structural simplicity of the
point-mass model, which facilitates easier training and en-
ables more efficient optimization of the objective function,
ultimately leading to enhanced simulation outcomes. However,
when the control commands generated by the point-mass model
are applied to the rigid-body model, the actual performance
of the point-mass model is markedly inferior to the solution
provided by our proposed method. Specifically, the point-mass
model fails to reach the destination before depleting its energy
and significantly increases the likelihood of violating altitude
constraints. This phenomenon indicates that for underactuated
systems such as UAVs, neural networks trained on the sim-
plified point-mass model exhibit considerable discrepancies
in practical applications, which can severely compromise the
safety and reliability of UAV operations.

Fig. 8 illustrates the relationship between cumulative MI and
average target speed when sensing targets with varying motion
speeds under two model schemes. An analysis of the regression
curves (RCs) indicates that the point-mass model theoretically

achieves higher MI than the rigid-body model. However, its
actual performance is contrary to this expectation. This discrep-
ancy is primarily attributed to the point-mass model’s inability
to adequately account for the dynamic characteristics of UAVs,
resulting in low energy efficiency during actual flights. Specif-
ically, UAVs consume more energy when attempting to follow
trajectories that are inconsistent with their dynamic properties,
thereby diminishing the overall QoS in sensing. In addition,
it is evident that the average speed of the target, whether
excessively high or low, results in a reduction of the cumulative
MI. This phenomenon can be attributed to the existence of an
optimal flight speed for the UAV. If the target’s movement speed
significantly exceeds or falls below this optimal speed, the UAV
will expend more energy while tracking the target, leading to a
decrease in the total perceived MI. In contrast, the actual results
of the point-mass model indicate that the cumulative MI for
sensing is less influenced by the target’s speed of motion. This
phenomenon occurs primarily because the point-mass model
allocates more time to close-range sensing when it is unable to
return to the destination promptly, thereby partially mitigating
the effects of speed variations on sensing performance.

In Fig. 9, we observe the average trend of the ISAC rate
over 1,000 tests. This figure illustrates that during the initial
phase, as the UAV maneuvers to track the target, it enhances
the sensing channel, resulting in an increase in the amount
of perceived information. However, in the later stage, as the
UAV progresses toward its destination, the increasing distance
between the UAV and the target diminishes the UAV’s ability
to perceive information. This decline subsequently leads to a
decrease in the ISAC rate. In the point-mass model, the UAV
is not constrained by dynamic limitations, allowing them to
swiftly approach targets while maintaining relatively optimal
sensing channels. Furthermore, the point-mass model overlooks
the energy consumption associated with UAV rotation, result-
ing in lower energy expenditure compared to the rigid-body
model and, consequently, longer sensing durations. However, in
practical applications, the performance of the point-mass model
often deviates significantly from theoretical expectations. The
trajectories planned by the point-mass model do not align
with the actual dynamic characteristics of UAVs, leading to
significantly lower ISAC rates and sensing times compared to
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Fig. 8. Cumulative MI versus average target speed: Monte Carlo test results.

those achieved with the rigid-body model.
These results provide robust evidence of the effectiveness

of the proposed method compared to the point-mass model in
tracking targets with time-varying speeds.
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Fig. 9. ISAC rate versus time: Monte Carlo test results.

D. A Trajectory Planning Case

In Fig. 10, the real-time speed of the target is displayed, while
Fig. 11 showcases the planned trajectory of the UAV for target
sensing. Furthermore, Fig. 12 exhibits the UAV’s video rate and
real-time ISAC rate, while Fig. 13 illustrates the change trend
of the UAV’s control law.

In Fig. 11, the lines represent different trajectory categories,
and the changing color of the lines corresponds to the change
of time, as indicated by the color bar on the right side of the
trajectory chart. By analyzing Figs. 11 and 12, several key
observations can be made:

1) Initially, the UAV moves toward the target, which grad-
ually enhances the sensing channel and improves the
sensing rate, leading to a steady increase in the ISAC rate.
Meanwhile, to ensure reliable communication transmis-
sion, the proportion of time slots allocated to sensing is
reduced.

2) When the UAVs energy consumption reaches a certain
threshold, its trajectory shifts toward the flight destina-
tion. This movement causes the UAV to move away from
the target, weakening the sensing channel and reducing
the sensing rate, which in turn leads to a decline in the
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Fig. 10. Case study: The speed of the target.
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Fig. 11. Case study: The UAV and target trajectories.

ISAC rate. However, during this process, the proportion
of sensing time slots increases, allowing for the acquisi-
tion of more sensing MI.

3) Eventually, the UAV successfully reaches its destination
before depleting all its energy.

In addition, in Fig. 13, the dashed lines in each subfigure
represent the boundaries of the control variables. The control
parameters of the UAV exhibit continuous changes without
any violent oscillations. This observation indicates that the
proposed control law schemes have the potential for real-
world applications in UAVs, offering stable and efficient control
during flight.

To verify the feasibility of deploying the proposed algorithm
on embedded platforms, we tested the inference resource con-
sumption of the actor network on an Intel Core i7-10700K (3.8
GHz) CPU. The actor model size is 1.02 MB, and the peak CPU
memory usage during inference is 1.98 MB. In 100 random
inference tests, the maximum delay is 1 ms, and the average
delay is 0.45 ms, indicating that the proposed method satisfies
the real-time requirements of UAV onboard systems.

V. CONCLUSION

In this paper, the C-SAC algorithm has been introduced to
tackle the ISCC problem in the UAV TD-ISCC network, focus-
ing on the task of monitoring a mobile target with varying ve-
locity over time. We have proposed a TD-ISCC frame structure
that adjusts its time slot allocation dynamically. This adaptive
allocation approach enables the system to efficiently allocate
communication and sensing slots, leading to enhanced system
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Fig. 13. UAV control law for sensing moving target.

capacity. By customizing the reward and cost functions for each
constraint, we transformed the multi-constraint ISCC problem
into a CMDP, making it suitable for resolution using CRL.
A novel C-SAC algorithm has been developed that adaptively
switches between reward maximization and constraint-driven
corrective mechanisms. This dual-mode optimization preserves
the computational efficiency of unconstrained policy gradient
methods while ensuring strict adherence to constraints in dy-
namic environments. Extensive simulations validate that the
proposed C-SAC algorithm outperforms dual-variable-based
methods in constraint compliance efficiency and demonstrates
superior robustness through Monte Carlo tests. The derived
ISCC policy achieves a higher cumulative MI than point-mass
UAV models while maintaining adaptability to varying target
speeds.

APPENDIX A
PROOF OF THEOREM 1

Let the objective function be denoted as J(t) =∫ t

0
Rr (τ | pT (τ)) dτ . Then, the partial derivative of J(t) with

respect to ρ is given by:

∂J(t)

∂ρ
=

∫ t

0

B log2

(
1 +

λ1

∥p(τ)− pT (τ)∥4

)
dτ > 0. (42)

Hence, it follows that the objective function J(t) monoton-
ically increases with ρ(t). Considering the feasible domain of
ρ(t) as defined in (10), we can express the optimal ρ(t) as:

ρ∗(t) =
log2 (1 + Γc(t))−Rv/B

log2 (1 + Γc(t)) + log2 (1 + Γr (t | pT (t)))
, (43)

subject to the constraint Rc(t) ≥ Rv .

APPENDIX B
RELATIONSHIP TO THE PRIMAL-DUAL METHOD

According to (35), the Q-function can be expressed as

Qrc(s0, a0 | θqi) = Eπ

[ ∞∑
t=0

γtrct

]

= Eπ

[ ∞∑
t=0

γtrt

]
− Eπ

[ ∞∑
t=0

γtct

]
(44)

= Qr(s0, a0 | θqi)−Qc(s0, a0 | θqi),

where Qr(s0, a0 | θqi) and Qc(s0, a0 | θqi) denote the reward
and cost Q-functions under the action policy π, respectively.
This formulation reveals that when Qc(·) = 0, the joint
Q-function Qrc(·) reduces to the reward Q-function Qr(·);
conversely, when Qr(·) = 0, we have Qrc(·) = −Qc(·).
Therefore, the sign of Qrc(·) implicitly indicates whether the
function reflects accumulated rewards or accumulated costs
under the given policy π. In general, Qrc(·) serves as a unified
Q-function that balances both reward and cost, analogous to a
primal-dual formulation. Specifically, in the standard primal-
dual framework used to solve CMDP problems, the objective is
typically formulated as

min
λL≥0

max
π

Qr(s0, a0 | θqi)− λLQc(s0, a0 | θqi), (45)

where λL is the Lagrange multiplier associated with the cost
constraint. In contrast, our proposed method directly optimizes
the joint Q-function

max
π

Qrc(s0, a0 | θqi), (46)

which can be viewed as a special case of the primal-dual
approach with λL = 1. Furthermore, when the cost Q-function
Qc(·) converges to 0, our method becomes equivalent to the
primal-dual formulation with λL = 0. Consequently, the pro-
posed method not only maintains the optimality characteristics
of the primal-dual approach but also provides a more concise
and interpretable formulation by unifying rewards and costs
within a single Q-function.
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