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Abstract—The unmanned aerial vehicle (UAV)-enabled data
collection system with a rotary-wing UAV and multiple ground
nodes (GNs) is investigated in this paper. The average transmis-
sion data rate is maximized through the coordinated optimization
of the GNs’ transmit power and the UAV’s trajectory. In
particular, the UAV dynamic constraints and physical constraints
are imposed. The UAV dynamics, which are governed by a
group of differential equations, are usually ignored in existing
works. As a consequence, the planned trajectory cannot be
fully tracked by the controller in real world applications, which
could lead to severe performance degradation. Thus, a control-
based method is devised to address this issue. Specifically, by
adopting the state-space model from control theory, the data
collection problem is established as a dynamic optimization
problem subject to state constraints, in which both of the decision
variables and constraints are infinite-dimensional in nature. The
key idea of the solution method is to convert the infinite-
dimensional dynamic program into a finite-dimensional static
nonlinear problem. This is achieved by deriving the required
gradients of the dynamic optimization problem based on the
control parametrization scheme and an exact penalty function
method. The effectiveness and superiority of the proposed design
are validated via numerical experiments.

Index Terms—UAV-enabled data collection, trajectory opti-
mization, power allocation, control parametrization.

I. INTRODUCTION

Drones, also known as unmanned aerial vehicles (UAVs),
have been widely investigated as aerial platforms in new
generation wireless networks. Typical examples include mo-
bile aerial base stations (BSs) [1]–[4], mobile data gathering
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equipment [5]–[8], aerial monitors [9], [10], aerial commu-
nications relays [11]–[13], cellular-connected users [14]–[16],
and mobile edge computing (MEC) servers [17]–[19]. Due to
their high mobility and on-demand deployment characteristics,
UAVs are envisioned to play a significant role in wireless
sensor networks (WSNs). Utilizing UAVs for collecting data
from distributed sensors offers great flexibility and efficiency
compared to using terrestrial BSs. Moreover, UAV-assisted
data collection is able to be utilized in complex terrains
and the communication performance can be improved by
taking advantage of the strong direct link between the ground
terminal and the UAV.

As a key technique for UAV-enabled communications,
trajectory optimization for UAV-assisted data collection has
been intensively investigated [4], [8], [20]–[26]. In [4], the
throughput maximization problem is studied by optimizing the
flying trajectory, the transmit power of the UAV and the source.
A successive convex optimization based solution method is
developed and implemented in an alternating manner. The
UAV-enabled data collection problem is studied by designing
the trajectory to maximize energy-efficiency in [20]. A solution
method is developed based on the state-space model and
successive convex approximation (SCA) technique. In [21],
data collection from multiple sensor nodes (SNs) with a UAV
is considered. The problem of minimizing task execution time
by optimally designing the UAV flight trajectory point and the
SN assignment, which is solved by a convex approximation
technique. The UAV-assisted data acquisition problem with
time-constrained internet of things (IoT) devices is studied in
[22], where the design of radio resource allocation and flying
trajectory aims to maximize the total number of served IoT
devices. A branch and bound based method is proposed and a
low-complexity sub-optimal solution method is also developed
based on the well-known SCA technique.

Considering the UAV-enabled data collection problem for
WSN in [23], an offline joint design scheme for the flying
trajectory and the transmit power is proposed for improving
the average throughput and reducing the outage probability.
Meanwhile, a convex theory based method is developed by
finding the UAV flying pattern through problem relaxation. In
[24], the UAV-enabled data collection problem for multiple
SNs is investigated. The age of information (AoI) of SNs is
optimized by jointly designing the discrete flight trajectory
and the SN associations. A two-step method is developed by
optimizing the SN association and flight trajectory at each
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step. In [25], a reinforcement learning based method is devel-
oped for optimizing the flight trajectory and the throughput
of the UAV-enabled IoT system. In [26], energy efficiency
maximization for the cognitive UAV-assisted traffic offloading
is addressed. The flying trajectory and the communication
of cognitive UAV are obtained by a learning-based method
with the uncertain environmental information. In [8], the data
collection case for multiple UAVs from heterogeneous users is
investigated. A joint design of UAV trajectory and user associ-
ations is proposed to achieve optimization of multiple metrics
simultaneously. Inspired by game theory and reinforcement
learning, an effective computational method is proposed.

As far as we know, most existing works [4], [8], [20]–[26]
only consider the flight speed or acceleration constraints of
the UAV, but do not analyze its motion capability based on
the forces imposed on it, that is, they ignore the dynamic
constraints of the UAV. In addition, the optimized trajectories
obtained are a series of piece-wise line segments with the
assumption that the UAV speed and acceleration are constant
during each time interval. However, a UAV is a complex
dynamic system governed by a group of differential equations
including the kinematic and the dynamic equations [27]. The
kinematic equations describe the motion of a UAV, while the
relationships between the UAV motion and the forces applied
to it are revealed by the dynamic equations. If the UAV
dynamic constraints are ignored in the trajectory design, the
planned trajectory may not be well-tracked by the controller
in engineering practice, which may lead to severe performance
degradation.

Motivated by the above discussion, the design of GN trans-
mit power and flight trajectory for UAV-assisted data collection
is investigated. In addition, the UAV’s dynamic constraints and
physical constraints are considered. More specifically, a rotary-
wing UAV is sent out to gather data from multiple GNs. The
average transmit data rate is maximized by jointly designing
the transmit power of each GN and the flying trajectory.

The state-space model from [28] is adopted to tackle the
challenges from the dynamic constraints. With the state-space
model, the initial optimization problem is transformed into
a dynamic program subject to state constraints. The key
idea of this work is to derive the gradient formulas and
convert the dynamic program into a static nonlinear prob-
lem. Thus, we propose a control-based design by integrating
the control parametrization technique and the exact penalty
function method. Specifically, the infinite-dimensional deci-
sion variables are transformed into finite-dimensional ones by
the control parametrization scheme. Moreover, the infinite-
dimensional state constraints are addressed through the exact
penalty function method. Meanwhile, the existing numerical
algorithms, such as sequential quadratic programming (SQP),
can be exploited to yield a high-quality solution of the
converted static nonlinear problem.

It is worth emphasizing that the control parametrization
method is a general and effective framework which is capable
of solving a range of dynamic optimization problems. For
different types of problems, different problem conversion
techniques and gradient formulas can be derived under this
framework. Thus, unlike the control-based design for the

single-node communication problem discussed in our previous
work [29], the control parametrization method based design is
proposed for the multi-node data collection problem in this
work. Furthermore, a joint optimization scheme for the UAV
trajectory and the GN transmit power is developed in this
work, whereas only the trajectory was optimized in [29]. In
addition, the dynamic model with only translational motion
considered in this paper is a simplified version of [29]. This
simplification helps ease the computational burden of the algo-
rithm and facilitates the on-board implementation. Moreover,
physical constraints are dealt with an exact penalty function
method in this work, instead of the constraint transcription
method used in [29].

The contributions of this work have been summarized as
follows:

• Compared with existing works on UAV-enabled data col-
lection [4], [8], [20]–[26], the UAV dynamic constraints
are considered in this work, which gives rise to a more
tractable trajectory for the UAV and less performance
degradation.

• Compared with [29], the computational overhead of this
work is reduced by introducing a simplified UAV model,
which achieves a good trade-off between the complexity
and performance.

• A control-based design is developed by adopting the
state-space model. This approach converts the dynamic
optimization problem into a static nonlinear program. Ad-
ditionally, the necessary gradient formulas are derived.

The rest of this paper is organized as follows. In Section
II, we present the system description with dynamic constraints
and formulate the dynamic optimization problem to maximize
the average data rate. In Section III, the solution method,
which is designed based on the control parametrization scheme
and an exact penalty function method, is proposed. Section IV
evaluates the effectiveness of this method through several nu-
merical examples. Finally, we conclude this article in Section
V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

H

Start point

End point

UAV trajectory

Data collection

GN

IoT device

Fig. 1: The UAV-enabled data collection system.

As shown in Fig. 1, the system which consists of a rotary-
wing UAV, M GNs, and multiple IoT devices, is considered.
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TABLE I: Important Notations

mu Weight of UAV (kg)
g Gravitational acceleration (m/s2)
V UAV speed (m/s)
F Engine thrust (N)
D Drag force (N)
α Attack angle (rad)
ψ Heading angle (rad)
Cd Fuselage drag coefficient
β0 Channel power at the reference distance of 1 meter
ι Path loss exponent
ϕm Channel phase shift from the mth GN to UAV
Pm Transmit power (W) of the mth GN
φm Signal phase of the mth GN
P ave
m Maximum average transmit power of the mth GN (W)
z Additive white Gaussian noise
σ2 Noise power (W)
B Bandwidth (MHz)
Vmax Maximum safe flying airspeed (m/s)
αmax Maximum safe flying attack angle (rad)
ψmax Maximum safe flying heading angle (rad)

Data collected by IoT devices are first sent to a nearby GN. It
is assumed that orthogonal transmission is employed in the
uplink and simultaneous data upload from all of the GNs
to the UAV are allowed. The GNs are randomly distributed
with index M ≜ {1, 2, . . . ,M}. The coordinate for the mth
GN is denoted as (o⊤

m, 0) = (xm, ym, 0), where om denotes
the horizontal location of the GN and (·)⊤ stands for the
transpose operation. Limited by the battery capacity, the UAV
is supposed to fly from a start point to an end point within
a fixed time duration T ≜ [0, T ], and it gathers data from
multiple GNs simultaneously during flight. Furthermore, the
UAV is assumed to fly within a fixed horizontal plane and the
altitude is H . The objective of this work is to jointly design the
flying trajectory and the transmit power such that the average
data rate is maximized, while the transmit power constraints
of GNs, the dynamic constraints and the physical constraints
of UAV are satisfied. Note that some important notations are
described in Table I for readers’ convenience.

A. Dynamic Model of Rotary-Wing UAV

As depicted in Fig. 2, the forces on a UAV with rotary wings
during level flight at speed V are shown, where F represents
the thrust force, D represents the drag force, F̂ represents
the projection of F onto the horizontal plane. Let q(τ) =
(x(τ), y(τ))

⊤ be the coordinates of the UAV at τ ∈ T .
According to [30], [31], the relationship between D and V

is given below:

D = CdV
2, (1)

where Cd is defined in Table I.
Let ax, ay and az be the accelerated speed on x, y and z

axis, respectively. According to Newton’s second law, we have
muax = F̂x − sign(Dx)Dx,

muay = F̂y − sign(Dy)Dy,

muaz = F̂z − sign(Dz)Dz −mug,

(2)

x

y

z

mug

F

D

V

airframe
O

FyFy
FF

FxFx

a

y

ˆ
zF

Fig. 2: The forces on a UAV with rotary wings.

where sign(x) stands for the sign of x, F̂x, F̂y , and F̂z are
the projections of F on x, y and z axis, respectively, given by

F̂x = F sinα cosψ,

F̂y = F sinα sinψ,

F̂z = F cosα,

(3)

and Dx, Dy , Dz are the projections of D on x, y and z axis,
respectively. According to (1), Dx, Dy , Dz can be written as

Dx = Cdv
2
x, Dy = Cdv

2
y, Dz = Cdv

2
z , (4)

where vx, vy and vz represent the velocity on the x axis, y
axis and z axis, respectively. By substituting (3) and (4) into
(2), it yields

muax = F sinα cosψ − sign(vx)Cdv
2
x,

muay = F sinα sinψ − sign(vy)Cdv
2
y,

muaz = F cosα− sign(vz)Cdv
2
z −mug.

(5)

Since the UAV is moving on a horizontal plane, then az = 0
and vz = 0. Thus, from (5), it follows that

F = mug/ cosα. (6)

Then, we substitute (6) into (5), which gives
ax = g tanα cosψ − sign(vx)

Cd
mu

v2x,

ay = g tanα sinψ − sign(vy)
Cd
mu

v2y.

(7)

Therefore, the following dynamic model (8)1 can be obtained
by noting the fact that v̇x = ax and v̇y = ay:

1The dynamic model (8) is a simplified version of [29]. In [29], a 6 degree
of freedom (6-DoF) model is considered, which implies that both translation
and rotational motion are considered. In (8), only the translation motion is
addressed, which is a 3 degree of freedom (3-DoF) model. In addition, since
level flight is considered, a 2-dimensional model is adopted here. Although
the dynamic model is simplified, the forces on the UAV are clearly revealed
in (8). Moreover, the computational overhead is highly reduced since the 12-
dimensional differential equations in [29] are reduced to a 4-dimensional one
as illustrated in (8).
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

ẋ(τ) =
dx(τ)

dτ
= vx(τ),

ẏ(τ) =
dy(τ)

dτ
= vy(τ),

v̇x(τ) =
dvx(τ)

dτ
= g tanα(τ) cosψ(τ)

− sign(vx(τ))
Cd
mu

vx(τ)
2,

v̇y(τ) =
dvy(τ)

dτ
= g tanα(τ) sinψ(τ)

− sign(vy(τ))
Cd
mu

vy(τ)
2,

(8)

where vx and vy represent the velocity on the x axis and y
axis, respectively.

Observing the dynamic model (8), both the position and
velocity of a UAV can be optimized by designing the attack
angle α(τ) and the heading angle ψ(τ).

B. Channel Model

There exist three main types of aerial link models between
the UAV and the GN in the existing literature. In [32], a
fading channel for the UAV-GN link is considered, in which
both types of fading effects are considered. Probabilistic line-
of-sight (LoS) channel models are used in [24], [29], and
[33], where the probability of the unobstructed direct link
is determined by the environment, elevation angle, and com-
munication distance. In [4], [20], [21], [34]–[37], the widely
adopted free-space pathloss link is introduced in the channel
model between the UAV and the GN, which is dominated by
the LoS link, and this model is also adopted in this paper.

We suppose that there are no obstructions in the direct paths
between the UAV and the GNs. Furthermore, the high-speed
rotation of the UAV rotor blades may cause changes in the
surrounding physical field (such as air flow, pressure, sound
or electromagnetic field) [38]. The modeling of such effects
is particularly complicated and is not the focus of this paper,
thus this paper will not consider such effects. Moreover, it is
supposed that the Doppler effect induced by the UAV motion
is fully compensated. Hence, the aerial channel between the
UAV and the GN is predominantly characterized by LoS links
with a given path loss exponent and random phases, as given
by2

hm(τ) =

√
β0d

−ι
m (τ)ejϕm(τ),

where dm(τ) represents the Euclidean distance between the
UAV and the mth GN, which is defined as

dm(τ) =

√
(x(τ)− xm)

2
+ (y(τ)− ym)

2
+H2.

The uploaded data ν is modeled as a circularly symmetric
complex Gaussian random variable, and ν ∼ CN (0, 1). Thus,
the signal transmitted by the mth GN is

√
Pm(τ)ejφm(τ)ν,

where Pm(τ) ≥ 0 is the mth GN transmit power. Besides,

2It is assumed that the channel knowledge is available at the UAV and
GNs through channel estimation and tracking using pilot symbols or channel
training sequence [39].

suppose that there is a limit on the average transmit power of
the mth GN, which is denoted as P ave

m . Therefore, the power
constraint is defined by∫ T

0

Pm(τ)dτ ≤ TP ave
m , ∀m ∈ M. (9)

Thus, the signal received by UAV is defined as

q(τ) =
M∑
m=1

hm(τ)
√
Pm(τ)ejφm(τ)ν + z

=
M∑
m=1

√
Pm(τ)β0d

−ι
m (τ)ej(ϕm(τ)+φm(τ))ν + z,

where z stands for the additive white Gaussian noise and z ∼
CN (0, σ2). Moreover, the channel phase shift is assumed to
be estimated online by GNs, thus setting φm(τ) = −ϕm(τ)
achieves constructive signal superposition at the UAV receiver.
The signal-to-noise ratio (SNR) of the UAV at time τ ∈ T is

SNR(τ) =

E

{∣∣∣∣ M∑
m=1

√
Pm(τ)β0d

−ι
m (τ)ν

∣∣∣∣2
}

E
{
|z|2
}

=

(
M∑
m=1

√
Pm(τ)β0d

−ι
m (τ)

)2

σ2
.

(10)

Then, the achievable data rate at time τ ∈ T can be defined
by

R(τ) = Blog2(1 + SNR(τ)), (11)

where B represents the channel bandwidth. Here, the GNs
are assumed to be able to adaptively change the transmit
power according to the time-varying UAV-GN channel. Thus,
the average transmit data rate is utilized as the metric for
evaluating performance, given by3

Rave(T ) =
1

T

∫ T

0

R(τ)dτ (12)

=
1

T

∫ T

0

Blog2

(
1 +

(∑M
m=1

√
Pm(τ)β0d

−ι
m (τ)

)2
σ2

)
dτ .

C. Problem Formulation

In the scenario we are considering, the goal of the mission is
to maximize the average transmit data rate Rave(T ) by a joint
design of the trajectory (x(τ), y(τ))⊤ and the GNs’ transmit
power P̃ (τ) = (P1(τ), P2(τ), . . . , PM (τ))⊤. Furthermore,
the UAV dynamic constraints (8), the GNs average transmit
power constraints (9) and physical constraints (velocity, attack
angle and heading angle) are required to be satisfied. As
mentioned, the trajectory (x(τ), y(τ))⊤ of UAV is determined
by (α(τ), ψ(τ))⊤ according to (8). Thus, (α(τ), ψ(τ), P̃ (τ))⊤

are chosen as decision variables.

3By breaking down the interval [0, T ] into smaller intervals corresponding
to the burst periods, such as [0, t1] and [t2, t3], where 0<t1<t2<t3<T , we
can adapt the continuous transmission model given in (12) to accommodate
burst transmission. Therefore, our transmission model is general in that burst
transmission can be viewed as a special case of continuous transmission.
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The dynamic optimization problem is formulated as below,
which is referred to as problem P1:

P1 :

max
α(τ),ψ(τ),P̃ (τ)

Rave(T )

s.t. (8), (9),
Pm(τ) ≥ 0, ∀m ∈ M, ∀τ ∈ T , (13a)
|α(τ)| ≤ αmax, |ψ(τ)| ≤ ψmax, ∀τ ∈ T ,

(13b)√
vx(τ)2 + vy(τ)2 ≤ Vmax, ∀τ ∈ T ,

(13c)

x(0) = x0, y(0) = y0, vx(0) = v0x,

vy(0) = v0y, (13d)

x(T ) = xF , y(T ) = yF . (13e)

In problem P1, (13a) is the transmit power constraint,
while (13b) and (13c) are the physical constraints of UAV.
In real world applications, (13b) is required to limit the
maneuverability of the UAV, where αmax and ψmax are the
maximum budget of α(τ) and ψ(τ), respectively. (13c) is the
velocity constraint, where Vmax is the maximum allowable
velocity. (13d) and (13e) are the given start point and end
point constraints, respectively.

REMARK 1: P1 is essentially a dynamic optimization prob-
lem as the dynamic constraints are imposed. In addition, the
physical constraints (13b) and (13c) are infinite-dimensional
in nature, which are difficult to handle. Therefore, it is not an
easy task to solve P1.

III. PROPOSED SOLUTION METHOD

In order to address these challenges from the dynamic and
physical constraints, an efficient algorithm4 is developed in
this section. In particular, the control parametrization scheme
will be utilized to handle the dynamic constraints while an
exact penalty function method will be leveraged to tackle the
physical constraints.

A. Control Parametrization

For notational brevity, we define the state vector

s(τ) = [x(τ), y(τ), vx(τ), vy(τ)]
⊤
, (14)

and the control vector

c(τ) =
[
α(τ), ψ(τ), P̃ (τ)

]⊤
, (15)

respectively.
Then, we equally discretize the time horizon [0, T ] into N

intervals [τn−1, τn), ∀n ∈ N ≜ {1, 2, . . . , N}. Letting ξ =
T/N , we have{
τ0 = 0, τ1 = ξ, τ2 = 2ξ, ..., τN−1 = (N − 1)ξ, τN = T

}
.

4The algorithms developed are applicable not only to UAV data collection
scenarios involving multiple GNs, but also to UAVs with different dynamic
models. This is because the proposed algorithm can transform the infinite-
dimensional dynamic programming problem into a finite-dimensional static
nonlinear problem, and is therefore unaffected by differences in dynamic
models.

0
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3
t

1n
t - n

t
1n

t + N
t t

( )a t

1,1
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1,2
v

1,3
v

1,n
v

1, 1n
v +

Fig. 3: An illustration of control parametrization.

Next, as illustrated in Fig. 3, the continuous variable α(τ)
is parameterized by a piecewise constant function ϖ1,n, n =

1, 2, . . . , N , i.e., α(τ) ≈
N∑
n=1

ϖ1,nΞ[τn−1,τn)(τ). Thus, the

control variables ci(τ), ∀i ∈ I ≜ {1, 2, . . . ,M + 2} are
approximated as follow:

ci(τ) ≈
N∑
n=1

ϖi,nΞ[τn−1,τn)(τ), (16)

where Ξ[τn−1,τn)(τ) : R → R denotes the characteristic
function expressed as

Ξ[τn−1,τn)(τ) =

{
1, τ ∈ [τn−1, τn),
0, τ /∈ [τn−1, τn),

and ϖi,n represents the approximate value of ci(τ) on the
subinterval [τn−1, τn). Now, for each i ∈ I, define ϖi =
[ϖi,1, ϖi,2, . . . , ϖi,N ]

⊤. On this basis, define the following
vector:

ϖ =
[
ϖ⊤

1 ,ϖ
⊤
2 , . . . ,ϖ

⊤
M+2

]⊤
. (17)

In fact, the infinite-dimensional control vector c(τ), τ ∈ T , is
parameterized by ϖ.

Hence, the dynamic model (8) on [τn−1, τn) is rewritten as:

ẋ(τ) = vx(τ),

ẏ(τ) = vy(τ),

v̇x(τ) = g tanϖ1,n cosϖ2,n − sign(vx(τ))
Cd
mu

vx(τ)
2,

v̇y(τ) = g tanϖ1,n sinϖ2,n − sign(vy(τ))
Cd
mu

vy(τ)
2.

(18)
We represent the above system in the following form:

ṡ(τ) = g(τ, s(τ |ϖ ),ϖ). (19)

In view of (13a) and (13b), the control value in (17) must
satisfy

0 ≤ ϖi,n, i = 3, . . . ,M + 2, (20)

−αmax ≤ ϖ1,n ≤ αmax, −ψmax ≤ ϖ2,n ≤ ψmax. (21)

Substituting (16) into (12), it is not difficult to get that
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Rave(T ) =
1

T

N∑
n=1

∫ τn

τn−1

R2(τ)dτ , (22)

where

R2(τ) = Blog2

(
1 +

(
M+2∑
i=3

√
ϖi,nβ0d

−ι
i (τ)

)2

σ2

)
.

REMARK 2: Different from existing works (for example,
[23]), only the decision variables are discretized. By solving
(8) with the parametrized function (16) piecewise, as in (18),
the obtained trajectory {x(τ), y(τ)}, ∀τ ∈ T is smooth.
Furthermore, if c(τ) is approximated by piece-wise linear
(first-order polynomial), piece-wise quadratic (second-order
polynomial) or spline functions, a continuous or a smooth
parametrization of c(τ) can be obtained.

B. An Exact Penalty Function Method

In order to handle the continuous inequality constraint (13c)
and the terminal constraints (9), (13e), we introduce an exact
penalty function method [40].

First, we define

Fϵ =
{
(ϖ, ϵ) ∈ Υ× [0, ϵmax] :√
vx(τ)

2
+ vy(τ)

2 − Vmax ≤ ϵγE1,∀τ ∈ T
}
. (23)

In particular, when ϵ = 0, let

F0 =
{
ϖ ∈ Υ :

√
vx(τ)

2
+ vy(τ)

2 − Vmax ≤ 0,∀τ ∈ T
}
.

(24)

Similarly, we define

Gϵ =
{
(ϖ, ϵ) ∈ Fϵ : x(T )− xF = 0, y(T )− yF = 0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 ≤ ϵγEi−1,∀τ ∈ T , i = 3, . . . ,M + 2

}
,

(25)

and

G0 =
{
ϖ ∈ F0 : x(T )− xF = 0, y(T )− yF = 0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 ≤ 0,∀τ ∈ T , i = 3, . . . ,M + 2

}
, (26)

where Ei ∈ (0, 1) , i = 1, 2, . . . ,M+1, are given constants, γ
is fixed number satisfying γ > 0, and ϵmax is a given constant.

Then, an exact penalty function introduced in [40] is ap-
plied. We construct a new objective function (27), which is
shown at the top of this page. Specifically, the reformulated
objective function consists of two main parts, the original
objective function in (22) and the integral form of the exact
penalty function. In (27), ϵ is the introduced decision variable,
we impose the bound constraint on ϵ ∈ [0, ϵmax]. Moreover,
O(s(τ),ϖ) in (27) is

O(s(τ |ϖ ),ϖ) = −Rave(T ).

Furthermore, ℵ(s(τ),ϖ, ϵ) and ℵ1 in (27) are respectively
defined by

ℵ (s(τ),ϖ, ϵ)

=

∫ T

0

[
max

{
0,

√
vx(τ)

2
+ vy(τ)

2 − Vmax − ϵγE1

}]2
dτ ,

(28)

and

ℵ1 = (x(T )− xF )
2 + (y(T )− yF )

2

+

M+2∑
i=3

[
max

{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}]2
. (29)

Moreover, in (27), ϑ > 0 is the penalty parameter, and δ, β
are fixed numbers satisfying δ > 0, β > 2.

REMARK 3: In the optimization process, if the penalty
parameter ϑ is increased, ϵβ needs to be reduced to minimize
Oϑ. This means that ϵ must decrease since β is fixed. As ϵ
decreases, ϵ−δ will increase. Thus, the values of ℵ (s(τ),ϖ, ϵ)
and ℵ1 must reduce, giving rise to the satisfaction of the
continuous inequality constraint (13c), the terminal constraint
(13e), and the power constraint (9).

C. Proposed Algorithm

Based on the discussion above, P1 can be converted into
the following problem which is referred to as (P1)ϑ, given by

(P1)ϑ : min
ϖ,ϵ

Oϑ(s(τ |ϖ ),ϖ, ϵ)

s.t. 0 ≤ ϵ ≤ ϵmax, (30)
(13d), (18), (20), (21).

By (27), (28) and (29), we can organize the objective function
into the following form

Oϑ(s(τ |ϖ ),ϖ, ϵ)

= Θ̃0 (s (T |ϖ ) ,ϖ, ϵ) +

∫ T

0

Ψ̃0 (τ, s(τ |ϖ ),ϖ, ϵ) dτ , (31)

where

Θ̃0(s(T |ϖ ),ϖ, ϵ)

= −Rave(T ) + ϑϵβ + ϵ−δ

{
(x(T )− xF )

2 + (y(T )− yF )
2

+

M+2∑
i=3

[
max

{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}]2}
, (32)

and

Ψ̃0(τ, s(τ |ϖ ),ϖ, ϵ)

= ϵ−δ
[
max

{
0,
√
vx(τ)2 + vy(τ)2 − Vmax − ϵγE1

}]2
. (33)

Here, as long as we successfully compute the gradients
of Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to ϖ and ϵ, the solution
of problem (P1)ϑ will be obtained through the standard
optimization method such as SQP. This is because (20), (21),
and (30) are box constraints on the decision variables. In
addition, (13d) is the initial condition of dynamic constraints
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Oϑ (s(τ |ϖ ),ϖ, ϵ)=

 O (s(τ |ϖ ),ϖ) ϵ = 0,ϖ ∈ G0,
O (s(τ |ϖ ),ϖ)+ϵ−δ (ℵ (s(τ),ϖ, ϵ)+ℵ1)+ϑϵ

β ϵ > 0,
∞ otherwise.

(27)

(18) and it can be used to solve for s(τ) with the current
decision variables ϖ and ϵ at each iteration step. Thus, the
derivation of the gradient formulas is a crucial process for
implementing the proposed method and it will be given in the
next subsection.

According to [40], [41], a locally optimal solution of
problem P1 can be computed via solving a sequence of
problems (P1)ϑ by adjusting ϵ and ϑ, which are summarized
in Algorithm 1. Moreover, the details for solving problem
(P1)ϑ are presented in Algorithm 2. In the initial optimization
phase, to mitigate the penalty for constraint violations, the
optimizer can set a larger value of ϵ to reduce the penalty
weight and loosen the constraints. As the number of constraint
violations gradually decreases, the optimizer can progressively
decrease the value of ϵ to increase the penalty weight and
tighten the constraints, further inhibiting the occurrence of
violations. It is important to note that decreasing ϵ reduces
penalty ϑϵβ , thereby promoting the reduction of the objective
function. Based on section 9.3.2 of [41], if the iteration
k → ∞, then ϵ(k) → 0, (ϖ(k),∗

ϑ , ϵ(k),∗) → (ϖ∗
ϑ, ϵ

∗) is a local
minimizer of problem P1. Thus, Algorithm 1 is convergent.

The computational complexities of [23], P1 and P1 with 6-
DoF model are listed in Table II. Despite the method proposed
in [23] having a lower complexity than our proposed method,
it fails to consider the dynamics of UAV, obtaining a set of
discrete trajectory points that are difficult for the UAV to
actually follow. It is noteworthy that the continuous trajectory
obtained for problem P1, which does not employ a 6-DoF
model that can more accurately describe the UAV’s motion
state, cannot be precisely followed by the UAV. Nevertheless,
the complexity of solving problem P1 is lower than that
of solving problem P1 with the 6-DoF model. Therefore,
the proposed method successfully achieves a good trade-off
between performance and complexity when solving problem
P1.

REMARK 4: The convergence of ϖϑ
(k) to a locally opti-

mal solution c∗(τ) with Algorithm 2 can be guaranteed by
Theorems 9.3.2, 9.3.3, and 9.3.4 of [41].

TABLE II: Computational Complexity

[23] P1 P1 with 6-DoF

O
(
(MN + 2N)3.5

)
O
(
(2MN + 4N)3.5

)
O
(
(2MN + 8N)3.5

)

D. Gradient Formulas

In this subsection, we give the gradient formulas of
Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to ϖ and ϵ which are es-
sential for solving problem (P1)ϑ.

Theorem 1

Algorithm 1 Solving P1
Input: ϖ0.
Output: ϖ∗.
Initialization: k = 0, ϑ(0) = 10, ϵ(0) = 0.1, ϑmax = 108,
ϵmin = 10−9, β > 2, ϖ(0)

ϑ = ϖ0.
1: Solve problem (P1)ϑ with (ϖ

(k)
ϑ , ϵ(k)) as initial point, and

denote the minimum obtained as (ϖ
(k),∗
ϑ , ϵ(k),∗). Calculate

s(k),∗ according to (18).
2: While ϵ(k),∗ > ϵmin, ϑ(k) < ϑmax do
3: Set ϑ(k+1) = 10ϑ(k), ϖ(k+1)

ϑ = ϖ
(k),∗
ϑ , ϵ(k+1) = ϵ(k),∗

k = k + 1, then back to Step 1.
4: End while
5: Set ϵ(k),∗ = ϵmin.
6: If s(k),∗ is feasible do
7: Exit.
8: Else
9: Adjust δ, β, and γ. Set ϑ(k+1) = 10ϑ(k), ϵ(k+1) =
0.1ϵ(k), k = k + 1, then back to Step 1.
10: End if
11: Output ϖ∗ = ϖ

(k),∗
ϑ .

Algorithm 2 Solving (P1)ϑ

Input: ϖ(k)
ϑ and ϵ(k).

Output: ϖ(k+1)
ϑ and ϵ(k+1).

1: Calculate the control vector c(k)(τ) with ϖ
(k)
ϑ according

to (16).
2: Calculate the state vector s(k)(τ) from the differential
equations (8).
3: Derive the gradients of Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to
ϖ

(k)
ϑ and ϵ(k).

4: The values and gradients of the objective function as well as
the box constraints are input to the nonlinear program solver.
5: Output ϖ(k+1)

ϑ and ϵ(k+1).

(i) The gradient of Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to each
component of ϖ is

∂Oϑ(s(τ |ϖ ),ϖ, ϵ)

∂ϖi
= Λ⊤

i + λ⊤
1 υi(T |ϖ )

+

∫ T

0

(
X⊤
i + λ⊤

2 υi(τ |ϖ )
)
dτ , ∀i ∈ I, (34)

where υi(τ) satisfies the following differential equation,

dυi(τ)

dτ
=
∂g(τ, s (τ |ϖ ) ,ϖ)

∂s
υi(τ) +

∂g(τ, s (τ |ϖ ) ,ϖ)

∂ϖi
(35)
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with the initial condition υi(0) = 04×N . Here,

Λ =


Λ⊤

1

Λ⊤
2

Λ⊤
3

· · ·
Λ⊤
M+2

 =


0 0 · · · 0
0 0 · · · 0

Λ3,1 Λ3,2 · · · Λ3,N

· · ·
ΛM+2,1 ΛM+2,2 · · · ΛM+2,N

 , (36)

Λi,n =
2ϵ−δξ

T

[
max

{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}]

− 1

T
Blog2

(
1 +

1

2σ2

√
β0d

−ι
i (τ)

ϖi,n

)
.

X =


X⊤

1

X⊤
2

· · ·
X⊤
M+2

 =


01×N
01×N

· · ·
01×N

 , (37)

λ1 = −B
T

[
λ1,1 λ1,2 0 0

]⊤
, (38)

λ1,1 =

N∑
n=1

log2

(
1−

M+2∑
i=3

(√
ϖi,nβ0d

−(ι+1)
i ι(x(τ)− xi)

)
σ2

)
,

λ1,2 =

N∑
n=1

log2

(
1−

M+2∑
i=3

(√
ϖi,nβ0d

−(ι+1)
i ι(y(τ)− yi)

)
σ2

)
.

λ2 = λ2
[
0 0 vx(τ)

2 vy(τ)
2
]⊤
, (39)

λ2 = 2ϵ−δ
max

{
0,
√
vx(τ)2 + vy(τ)2 − Vmax − ϵγE1

}
√
vx(τ)2 + vy(τ)2

.

∂g

∂s
=


0 0 1 0
0 0 0 1

0 0 − 2Cd

mu
sign(vx)vx 0

0 0 0 − 2Cd

mu
sign(vy)vy

 . (40)

Since g(τ, s (τ |ϖ ) ,ϖ) is independent of ϖi, i =
3, 4, · · · ,M+2, then has ∂g

∂ϖi
= 04×N , i = 3, 4, · · · ,M+2,

and

∂g

∂ϖ1
= g


0 0 · · · 0
0 0 · · · 0

cosϖ2,1

(cosϖ1,1)2
cosϖ2,2

(cosϖ1,2)2
· · · cosϖ2,N

(cosϖ1,N )2
sinϖ2,1

(cosϖ1,1)2
sinϖ2,2

(cosϖ1,2)2
· · · sinϖ2,N

(cosϖ1,N )2

 , (41)

∂g

∂ϖ2
= g


0 · · · 0
0 · · · 0

− tanϖ1,1 sinϖ2,1 · · · − tanϖ1,N sinϖ2,N

tanϖ1,1 cosϖ2,1 · · · tanϖ1,N cosϖ2,N

 .
(42)

(ii) The gradient of Oϑ(s(τ),ϖ, ϵ) with respect to ϵ is given
by

∂Oϑ(s(τ),ϖ, ϵ)

∂ϵ
= (−δ)ϵ−δ−1g̃1 + (−2γ)ϵγ−δ−1g̃2 + ϑβϵβ−1, (43)

where

g̃1 = (x(T )− xF )
2 + (y(T )− yF )

2

+

M+2∑
i=3

[
max

{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}]2

+

∫ T

0

[
max

{
0,
√
vx(τ)2 + vy(τ)2 − Vmax − ϵγE1

}]2
dτ,

g̃2 =

M+2∑
i=3

Ei−1 max
{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}
+

∫ T

0

E1 max
{
0,
√
vx(τ)2 + vy(τ)2 − Vmax − ϵγE1

}
dτ.

Proof: See Appendix A.

IV. NUMERICAL RESULTS

TABLE III: Parameters for Simulations

mu 3 kg B 1 MHz
g 9.8 m/s2 Vmax 40 m/s
H 50 m Cd 0.11 N/(m/s)2

N 40 αmax 1.57 rad
ψmax 1 rad β0 -30 dB
ι 2.8 σ2 -60 dBm

In this section, the effectiveness of our proposed algorithm
is demonstrated with numerical examples. To show the supe-
riority of our proposed scheme, we consider the benchmark
scheme [23] without a dynamic model (8) for comparison5.
Unless stated otherwise, the problem parameters are listed in
Table III.

A. Example 1: One-GN

In this example, the scenario with a single GN is considered.
The UAV’s start and end points, GN’s location are set to
[0, 50m], [200m, 50m] and [100m, 200m], respectively.

In Fig. 5 and Fig. 6, we plot the planned and actual
trajectories obtained by the proposed method and [23], and
T is set as 40 seconds. The actual trajectories are obtained by
tracking the planned trajectories using a proportional-integral-
derivative (PID) controller with the 6-DoF UAV model [29],
which not only considers the translational motion but also
considers the rotational motion of the UAV6, as illustrated in
Fig. 4. As shown in Fig. 5 and Fig. 6, the planned trajectories

5There are two reasons why [23] serves as the benchmark. On the one
hand, [23] and this work share similarities in channel modeling and problem
formulation, except for the UAV dynamic model (8). On the other hand, the
algorithm proposed by [23] adopts methods commonly used in existing works,
such as time discretization and the convex optimization technique, to construct
piecewise trajectory design schemes, thus it can be regarded as a representative
of existing research works. Therefore, [23] is used as a benchmark for a
better understanding of the performance changes caused by ignoring the UAV
dynamic model under existing research methods.

6The PID controller designed by the 6-DoF model can calculate the
control instructions of UAV in actual flight according to the motion parameter
information and the expected trajectory of the UAV. These control instructions
can then be converted by simulated actuator (such as motor and steering gear)
into the actual actions of the UAV (such as lifting, pitching and yawing), to
simulate the actual flight of the UAV.
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Control Quantity Motor Speed

Planned 

Trajectory Tracking 

Controller

UAV Motor 

Speed Calculation

UAV 6-DoF 

Model

Actual 

Trajectory

Fig. 4: The design framework of PID controller.

of the two schemes attempt to approach the GN to improve
the system throughput during the flight from the start point to
the end point. However, compared with the proposed scheme,
the actual trajectory of [23] fails to reach the end point. This
is because the dynamics of the UAV mentioned above are
ignored, and hence the planned trajectory cannot be fully
tracked by the UAV controller to finish the main task.

The average throughput versus T for different trajectories is
plotted in Fig. 7. As illustrated in Fig. 7, the average through-
put gradually increases as T becomes larger. In addition, the
communication performance of [23] is better than that of the
proposed scheme with the planned trajectory. This is due to the
fact that the feasible solution space of [23] is broader, as it does
not take into account the UAV motion model. In other words,
the benchmark scheme is no longer limited by the motion
characteristics of the UAV, allowing it to explore more freely
within a wider solution space. Thus, this increases the likeli-
hood that the benchmark scheme will find a planned trajectory
with superior communication performance. Furthermore, the
average throughput of the planned trajectories is higher than
that of the actual trajectories under both of the schemes. This
further verifies that performance degradation may occur if the
dynamics are ignored or simplified. However, the performance
loss of the proposed method is much less than that of [23],
demonstrating the superiority of the proposed method.

0 50 100 150 200 250
50

100

150

200

250
Planned Trajectory

Actual Trajectory

GN Location

End Point

Start Point

Fig. 5: Example 1: The planned and actual trajectories of [23].

B. Example 2: Multi-GN

In this example, multiple GNs are considered. Here, we
consider 10 GNs, and they are located at o1 = [20m, 10m],
o2 = [30m, 28m], o3 = [46m, 0], o4 = [56m, 24m], o5 =

0 50 100 150 200 250
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Fig. 6: Example 1: The planned and actual trajectories of the
proposed method.
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Fig. 7: Example 1: Average data throughput comparison in the
one-GN case.

[94m, 168m], o6 = [100m, 200m], o7 = [112m, 176m],
o8 = [162m, 0], o9 = [178m, 40m], and o10 = [200m, 6m].
The start and end points of UAV are set to [0, 0] and
[200m, 200m], respectively.

The planned and actual trajectories generated by [23] and
the proposed method with T = 40 s are plotted in Fig. 8 and
Fig. 9, respectively. The communication performance versus
T for the planned and actual trajectories is plotted in Fig. 10.
As illustrated in Fig. 8 and Fig. 9, the planned trajectories
successively visit the dense areas of GNs to establish a com-
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munication link between the UAV and each GN for improving
the average throughput. Similar to the one-GN case, the actual
trajectory of [23] fails to arrive at the end point, while the
actual trajectory of the proposed method succeeds in doing so.
This is because the dynamics of the UAV are not considered
in [23]. Moreover, as shown in Fig. 10, the average throughput
of [23] is greater than that of the proposed method with the
planned trajectory, while the average throughput of proposed
method outperforms that of [23] with the actual trajectory.
Thus, a larger performance loss in [23] is resulted compared
with the proposed method in the multi-GN scenario.
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Fig. 8: Example 2: The planned and actual trajectories of [23].
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Fig. 9: Example 2: The planned and actual trajectories of the
proposed method.

V. CONCLUSION

A control-based method has been proposed in this paper
for the joint design of transmit power and trajectory in UAV-
enabled data collection. Different from most previous works,
dynamic constraints of the UAV have been considered and
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Fig. 10: Example 2: Average data throughput comparison in
the multi-GN case.

smooth flying trajectories have been obtained. These trajec-
tories have been shown to be trackable by the controller in
real world applications. In contrast, piece-wise line segments
were obtained with the existing works, which resulted in
sharp performance degradation due to the ignoring of dynamic
constraints. The advantages of the proposed method have also
been demonstrated by the numerical results.

APPENDIX A
PROOF OF THEOREM 1

In fact, according to the chain rule, it is not difficult to see
that the gradient of Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to each
component of ϖ is

∂Oϑ(s(τ |ϖ ),ϖ, ϵ)

∂ϖi
=
∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂ϖi

+
∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂s

∂s (T |ϖ )

∂ϖi

+

∫ T

0

[
∂Ψ̃0 (s (τ |ϖ ) ,ϖ, ϵ)

∂ϖi
+

∂Ψ̃0 (s (τ |ϖ ) ,ϖ, ϵ)

∂s

∂s(τ)

∂ϖi

]
dτ . (44)

Since there exists an implicit relationship between the state
vector s (τ |ϖ ) and the control vector ϖi, thus ∂s(τ |ϖ )

∂ϖi
needs

to be further computed.
First, for any τ ∈ T , we can write s (τ |ϖ ) as

s(τ |ϖ ) = x0 (ϖ) +

∫ τ

0

g(t, s(t |ϖ ),ϖ)dt. (45)

Hence, the gradient of s(τ |ϖ ) with respect to ϖi is written
as
∂s(τ |ϖ )

∂ϖi
=
∂s0 (ϖ)

∂ϖi

+

∫ τ

0

[
∂g(t, s(t |ϖ ),ϖ)

∂s

∂s(t |ϖ )

∂ϖi
+
∂g(t, s(t |ϖ ),ϖ)

∂ϖi

]
dt.

(46)
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Next, let τ = 0, from (46), we have

∂s(0 |ϖ )

∂ϖi
=
∂s0 (ϖ)

∂ϖi
. (47)

Meanwhile, we take the derivative of both sides of (46) with
respect to τ , then it follows that

d

dτ

(∂s(τ |ϖ )

∂ϖi

)
=
∂g(τ, s(τ |ϖ ),ϖ)

∂s

∂s(τ |ϖ )

∂ϖi

+
∂g(τ, s(τ |ϖ ),ϖ)

∂ϖi
. (48)

For any τ ∈ T , we define

∂s(τ |ϖ )

∂ϖi
= υi(t). (49)

Clearly, υi(τ) satisfies the following system
υi(0) =

∂s0 (ϖ)

∂ϖi
,

dυi(τ)

dτ
=
∂g(τ, s(τ |ϖ ),ϖ)

∂s
υi(τ) +

∂g(τ, s(τ |ϖ ),ϖ)

∂ϖi
.

(50)
Since s0 (ϖ) is independent of ϖi, this further obtains
υi(0) = 04×N .

Moreover, let

∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂ϖi
= Λ⊤

i , (51)

∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂s
= λ⊤

1 , (52)

∂Ψ̃0 (s (τ |ϖ ) ,ϖ, ϵ)

∂ϖi
= X⊤

i , (53)

∂Ψ̃0 (s (τ |ϖ ) ,ϖ, ϵ)

∂s
= λ⊤

2 . (54)

Hence, substituting (49), (51), (52), (53) and (54) into (44),
we can obtain (34).

Similarly, according to the chain rule, the gradient of
Oϑ(s(τ |ϖ ),ϖ, ϵ) with respect to ϵ is given as follows

∂Oϑ(s(τ |ϖ ),ϖ, ϵ)

∂ϵ

=
∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂ϵ
+

∫ T

0

∂Ψ̃0 (τ, s (τ |ϖ ) ,ϖ, ϵ)

∂ϵ
dτ ,

(55)

where

∂Θ̃0 (s (T |ϖ ) ,ϖ, ϵ)

∂ϵ

= ϑβϵβ−1 + k1

{
(x(T )− xF )

2 + (y(T )− yF )
2

+

M+2∑
i=3

[
max

{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}]2}

+ k2

{
M+2∑
i=3

Ei−1 max
{
0,

1

T

N∑
n=1

ϖi,nξ − P ave
i−2 − ϵγEi−1

}}
,

(56)

and

∂Ψ̃0 (τ, s (τ |ϖ ) ,ϖ, ϵ)

∂ϵ

= k1

[
max

{
0,

√
vx(τ)

2
+ vy(τ)

2 − Vmax − ϵγE1

}]2
+ k2E1 max

{
0,
√
vx(τ)2 + vy(τ)2 − Vmax − ϵγE1

}
. (57)

In (56) and (57), k1 = (−δ)ϵ−δ−1, k2 = (−2γ)ϵγ−δ−1.
We substitute (56) and (57) into (55), and then (43) can be
proved by combining the terms with the same coefficients.
This completes the proof. □
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