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Definition
Gravity forward modelling. Computation of the gravity field of some given mass distribution
Introduction

Gravity forward modelling (GFM) denotes the computation of the gravitational field
generated by some source mass distribution. The foundation of GFM is Newton’s law of
universal gravitation (1687) which states that the attraction force F between two bodies is
proportional to the product of their masses m, M and inversely proportional to the square of
their distance r:

mM

F=G=> (1)

where G = 6.67384 x 101* m3kg? s is the universal gravitational constant (Mohr et al.,
2012). In most practical applications of GFM, unit mass is assumed in the computation point,
and the second body’s mass M is considered the source of the gravitational field (Blakeley
1996). The visible topography, given in form of digital terrain models (DTM), is the most
frequently used mass distribution in GFM, other distributions may include, but are not
limited to, water masses, ice masses (Grombein et al., 2014), and crustal structures in the
Earth’s interior (Tenzer et al., 2012).

GFM yields the gravitational field of the mass distribution in terms of any functional of the
field, e.g., gravitational potential, gravity disturbance (i.e., radial derivative of the potential),
and vertical deflections (cf. Nagy et al., 2000). In the literature, a number of different
expressions are in use to denote gravity effects or functionals computed from topography
models, e.g., topographic gravity, topography-induced gravity, synthetic gravity, terrain
effects and topographic reductions.

GFM is a central task in physical geodesy, e.g., in the context of geoid determination (Tziavos
and Sideris, 2013) and gravity prediction (Forsberg and Tscherning, 1981). In potential field
geophysics, GFM is relevant for the investigation of the interior structure of the Earth and
the planets (Wieczorek, 2007). While GFM as forward method delivers the gravity field from
mass models, inversion techniques seek to estimate the mass distribution from gravity
observations, which however is inherently non-unique (Oldenburg, 1974). Gravity inversion
involves iterative application of GFM based on different mass model assumptions until the
forward modelled signal sufficiently fits the gravity observations (e.g., Ebbing et al., 2001).



This article briefly outlines representations of source mass models and describes GFM
calculation techniques, grouped according to the domain of evaluation (spatial vs. spectral
domain), then summarizes applications for GFM, selected results and directions.
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Figure 1. Principle of Gravity forward modelling. A. Digital terrain model (DTM) and digital bathymetry model
(DBM) as source of mass information. B. Source mass model based on DTM and DBM geometry information,
and assignment of mass-density values. The masses are approximated by rectangular prisms in this example. C.
Gravity effect (gravity disturbances) as result of the forward modelling of the source masses using Newtonian
integration. Examples show Samothrace Island (40.45° latitude, 25.6° longitude).

Source mass models

As prerequisite for the numerical evaluation of Newton’s integral, a model of the source
mass distribution must be defined, representing the attracting body. This generally includes
(a) the definition of the body’s geometry, and (b) assignment of a suitable mass-density
value. Often the attracting body is defined as a volumetric layer with some upper and lower
bound (Tenzer et al., 2012; Balmino et al., 2012), e.g., the visible topography with the geoid
as lower bound and terrain elevations (from a DTM) as upper bound. When ocean water
masses are modelled (Fig. 1a,b), bathymetric depths from a digital bathymetry model (DBM)
define the seafloor geometry as lower bound and the geoid as upper bound (Tenzer et al.,
2011; Tocho et al., 2012). Depending on the purpose of the study, the geometry of various
other bodies, e.g., ice-shields (Grombein et al., 2014), sediments (Ebbing et al. 2001), crustal
or mantle structures (Tenzer et al., 2012; Tsoulis, 2013), can be defined from digital data
sets.



Mass-density values assigned to the body can be based on geological samples (e.g., granite
2.7 g/cm3, basalt 2.9 g/cm3, salt rock 2.4 g/cm3) or —in the absence of individual samples —
on assumptions (e.g., 2.67 g cm™ as an average value for rock), cf. Jacoby and Smilde (2009).
While in many cases the mass-density is treated as constant value inside the attracting body,
lateral (Eshagh, 2009; Gottl and Rummel, 2009) or vertical variations in mass-density (e.g.,
depth-dependent increase in sea water density, Tenzer et al., 2011) can be taken into
account.

Following the superposition principle, gravity effects of a collection of masses (e.g., the
visible topography, ocean water, and ice-shields) can be obtained through addition of gravity
effects by the individual masses (e.g., Blakely, 1996). For computational reasons, water and
ice masses are sometimes numerically compressed into layers of rock (rock-equivalent
topography RET, Rummel et al., 1988), allowing to work with a single constant mass-density
value.

The source mass model can be extended to accommodate the effect of isostatic
compensation (e.g., Rummel et al., 1988; Makhloof and Ilk, 2008; Bagherbandi and Sj6berg,
2012; Grombein et al., 2014), e.g., based on the Airy-Heiskanen hypothesis through
modification of the root (lower bound) of the topography, or the Pratt-Hayford hypothesis
by using laterally varying mass-densities (Gottl and Rummel, 2009). If the source mass-
defining DTM is high-pass filtered, e.g., through subtraction of some mean terrain surface, a
residual terrain model (RTM, Forsberg and Tscherning 1981; Forsberg, 1984) is obtained. The
RTM can be thought of as a model with oscillating positive and negative (in the sense of
deficit) masses. In physical geodesy, the RTM is often used as for gravity field smoothing and
prediction (Forsberg, 1984).

Gravity forward modelling in the spatial domain

Spatial domain GFM encompasses all evaluation methods for Newton’s integral that yields
the gravitational potential V generated by the source mass model M (e.g., Blakeley, 1996,
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where dm are elementary mass bodies of M and r is the separation between dm and a
computation point. Newton’s integral is practically evaluated by decomposing the source
mass model M into elementary mass bodies dm, the gravitational potentials of which can be
computed through analytical or numerical integration (Kuhn and Seitz, 2005). The
gravitational potential of M is obtained through addition of all individual potential values
implied by the elementary mass bodies (Newtonian integration). Frequently used
elementary bodies are point masses, prisms with flat (Nagy et al., 2000) or inclined tops
(Smith, 2000), tesseroids (Grombein et al., 2013), and polyhedrons (d’Urso, 2014), also see
Papp (1996), Heck and Seitz (2007), Wild-Pfeiffer (2008) and Tsoulis et al. (2009). The
gravitational potential of elementary bodies is usually obtained from closed-form
expressions (e.g., Nagy et al., 2000), however, numerical integration methods can be an
alternative (Asgharzadeh et al., 2007). A decomposition of the mass model into prisms is
shown in Fig. 1b.



Gravity disturbances are routinely computed from DTM data through Newtonian integration
(Fig. 1c), and subtracted from observed gravity measurements (topographic reduction), e.g.,
Forsberg (1984), Tziavos et al. (2010). The topographic reduction is often split into two
parts, (i) the Bouguer reduction as the gravity effect induced by a solid mass slab or shell of
constant thickness ( e.g., Strang van Hees, 2000), and (ii) the terrain correction as the gravity
effect of the actual DTM masses residual to the slab or shell (e.g., Forsberg, 1984). Terrain
corrections are obtained through numerical evaluation of the terrain correction integral
which can be derived from Eq. (2), cf. Nahavandchi and Sjoberg (1998).

Accurate spatial domain GFM requires Newtonian integration over the domain of all source
masses, which often extend over the whole of the Earth’s surface (e.g., Kuhn et al. 2009). In
practice, however, integration over the source masses is sometimes done within some
limited radius around the computation point (neglecting remote masses), and in planar
approximation (instead of the more rigorous spherical or ellipsoidal approximation). The use
of RTM as input source model in GFM keeps truncation and approximation effects small,
while allowing limitation of the integration to some local radius (e.g., few 10s of km).

The computational effort for spatial domain GFM increase linearly with the number of
computation points at which gravity effects are sought. (Sequential) gravity calculations in
terms of densely spaced grids (e.g., 100 m resolution) and continental coverage is
computationally expensive because Newton’s integral has to be evaluated point by point.
Parallel computation of gravity effects, e.g., on supercomputing platforms, significantly
reduces computation times (e.g., Hirt and Kuhn, 2014). The limited computation radius in
the RTM technique reduces the computational efforts too, however, only the high-frequency
gravity signals of a mass distribution are obtained (Forsberg, 1984).

Gravity forward modelling in the spectral domain

These methods evaluate Newton’s law of gravitation through integral transformation in the
spectral domain (e.g., Rummel et al., 1988; Tenzer, 2005; Wieczorek, 2007). This generally
require source mass models of global extent. Following Hirt and Kuhn (2014), (1) the source
mass model (mostly a DTM) is raised to integer powers (1, 2, ..., n) and expanded into
spherical harmonic series. This requires spherical harmonic analyses of each integer power
of the source model. (2) The resulting sets of coefficients are used to obtain the gravitational
potential - as a series expansion of the integer powers of the source mass distribution - in
spherical harmonics. (3) The gravity field (e.g., in terms of potential, gravity disturbances) in
the spatial domain is computed via spherical harmonic synthesis.

Spectral domain GFM is the preferred technique for planetary studies, e.g., calculation of
Bouguer gravity fields for the Moon (Zuber et al., 2013) and Mars (Neumann et al., 2004).
This is because observed gravity data for the planets is mostly given in spherical harmonics
too. On Earth, the technique is increasingly used for applications with global scope.
Examples include the generation of global Bouguer gravity maps in spherical harmonics
(Balmino et al., 2012), study of the topographic potential (Novak, 2010; Gruber et al., 2013),
all with ultra-high resolution in the km-range. While GFM in the spectral domain usually
deploys a sphere as underlying reference body, recent refinements use an ellipsoid instead



(Claessens and Hirt, 2013; Wang and Yang 2013), which take into consideration the
ellipsoidal shape, e.g., of Earth and Mars.

As a benefit of spectral domain GFM, the gravitational potential induced by the mass-density
distribution is directly obtained in spherical harmonics, which allows straightforward
computation of various functionals through synthesis, and spectral filtering. In contrast,
space domain modelling requires one computation run per functional, which can be tedious.

As a second benefit of the spectral technique over space domain GFM, there is no numerical
integration involved, which can be computationally expensive for computation point grids
with global coverage. However, depending on the spatial resolution of the source mass
model, multiple spherical harmonic analyses are required for convergence in the spectral
method (e.g., Wieczorek, 2007; Claessens and Hirt, 2013), which increase the computational
costs (e.g., 7 integer powers for a 5 arc-min resolution terrestrial mass model) as the
resolution increases. Spectral and spatial domain GFM were shown to be numerically
equivalent techniques (agreement at the 10~ level) at least when the source mass model is
limited to features at ~100km scales or larger (Hirt and Kuhn, 2014). However, it is currently
unclear if the techniques are equivalent for higher-resolution mass models too.

Applications, some results and directions

There are several GFM applications in geodesy and geophysics which rely on gravity
functionals implied by mass models, particularly DTMs. Gravity observations reduced by the
gravity effect of the topography reveal subsurface mass-anomalies (e.g., Ebbing et al., 2001;
Jacoby and Smilde, 2009), and are pivotal in lithosphere studies (Wieczorek, 2007; Zuber et
al., 2013). Forward-modelled gravity is effective at smoothing gravity observations before
interpolation, particularly in mountainous areas (Forsberg and Tscherning, 1981). The strong
correlation between gravity and topography in rugged terrain (Forsberg, 1984) can be used
to approximate the short-wavelength gravity field with GFM. This is often exploited to
predict a detailed gravity field where gravity measurements are limited (Pavlis et al., 2007),
or to enhance spherical harmonic global gravity models at short spatial scales (Hirt, 2010).
GFM is suitable to evaluate the quality of observed gravity fields (e.g., from satellite
observations, Hirt et al., 2012), to generate synthetic models for geoid algorithm testing
(Baran et al., 2006), and is central for topographic reductions in geoid determination (Jekeli
and Serpas, 2003).

The availability of remotely-sensed DTMs (particularly from the SRTM mission) and improved
supercomputing resources have stimulated the development of ultra-high resolution gravity
field models based on GFM. Balmino et al. (2012) applied spectral domain GFM and global
mass models to generate 2km resolution global grids of gravity effects for the construction
of the World Gravity Map (WGM). Hirt et al. (2013) used the RTM technique along with
observed gravity to construct a near-global gravity map with ultra-fine 220 m resolution
(GGMplus).

It is foreseeable that future GFM will ultimately yield global gravity maps, and grids of terrain
corrections at 100m resolution and finer, commensurate with the mass information
available through remotely sensed DTMs. Accurate GFM of the topography will require the
DTM data to be largely free of artefacts. In order to approximate the actual gravity field



closely, detailed compilations of mass-density values are important to improve the quality of
the DTM-based mass models.

Summary

Gravity forward modelling (GFM) comprises methods for the computation of the gravity field
of some mass distribution, very often of the topography, but also from water, ice and crustal
masses. GFM in the spatial and spectral domain are important for gravity applications in
physical geodesy (e.g., gravity reduction, interpolation and prediction, e.g., for the
construction of detailed gravity maps) and potential field or planetary geophysics (reduction
and interpretation of gravity observations).

Cross references

Topographic Effects, Digital Terrain Models, Spherical Harmonic Models, The Remove
Restore Method, Gravity Field of the Planets, Gravity Anomalies
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