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Abstract 

Spherical harmonic synthesis (SHS) of gravity field functionals at the Earth’s surface requires 
the use of heights. The present study investigates the gradient approach as an efficient yet 
accurate strategy to incorporate height information in SHS at densely-spaced multiple points. 
Taylor series expansions of commonly used functionals quasigeoid heights, gravity 
disturbances and vertical deflections are formulated, and expressions of their radial 
derivatives are presented to arbitrary order. Numerical tests show that first-order gradients, as 
introduced by Rapp (J Geod 71(5): 282-289, 1997) for degree-360 models, produce cm- to 
dm-level RMS approximation errors over rugged terrain when applied with EGM2008 to 
degree 2190. Instead, higher-order Taylor expansions are recommended that are capable of 
reducing approximation errors to insignificance for practical applications. Because the height 
information is separated from the actual synthesis, the gradient approach can be applied along 
with existing highly-efficient SHS routines to compute surface functionals at arbitrarily dense 
grid points. This confers considerable computational savings (above or well above one order 
of magnitude) over conventional point-by-point SHS. As an application example, an ultra-
high resolution model of surface gravity functionals (EurAlpGM2011) is constructed over the 
entire European Alps that incorporates height information in the SHS at 12,000,000 surface 
points. Based on EGM2008 and residual topography data, quasigeoid heights, gravity 
disturbances and vertical deflections are estimated at ~200 m resolution. As a conclusion, the 
gradient approach is efficient and accurate for high-degree SHS at multiple points at the 
Earth’s surface. 
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1 Introduction 

Spherical harmonic (SH) expansions are widely used to describe the gravitational potential 
and disturbing potential of Earth (e.g., Torge 2001) and of other celestial objects such as the 
Moon, and the terrestrial planets (e.g., Wieczorek 2007). Over many years, both efficient and 
stable algorithms for spherical harmonic synthesis (SHS), i.e., the computation of gravity 
field functionals from SH coefficients, have been devised or investigated (e.g., Rizos 1979; 
Tscherning and Poder 1982; Tscherning et al. 1983; Wenzel 1985; Abd-Elmotaal 1997; 
Wenzel 1999; Holmes and Featherstone 2002a, 2002b, 2002c, Holmes 2003; Bethencourt et 
al. 2005; Casotto and Fantino 2007), and high-degree Earth global gravitational models 
(GGMs) were developed. Examples are EIGEN-6 (Förste et al. 2011) to degree 1420, 
EGM2008 (Pavlis et al. 2008) to 2190, GPM98A and GPM98B (Wenzel 1998) to 1800. 
Algorithms capable of extending SH expansions beyond or well beyond degree 2190 are now 
emerging, which is seen by recent studies of e.g., Fukushima (2011); Gruber et al. (2011a); 
Šprlák (2011), Wittwer et al. (2008) and Jekeli et al. (2007). 

For efficient high-degree SHS of gravity field quantities at regularly-spaced grid points at 
some reference ellipsoid or sphere, some of the algorithms recently proposed (e.g., 
Fukushima 2011) or routinely used in practice (e.g., Holmes and Pavlis 2008) use the 
numerically efficient expression of the disturbing potential T (cf. Holmes and Featherstone 
2002a, c) 
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where M is the maximum degree, GM and a are the GGM-specific scaling parameters, the 
spherical coordinates latitude ϕ , longitude λ  and geocentric radius r  specify the 

computation point, (sin )nmP ϕ  are the fully-normalized Associated Legendre Functions of 

degree n and order m, and nmC  nmS  are the fully-normalized SH coefficients referred to some 

normal gravity field. Because the mc , ms  are independent of λ , Eq. (2) needs to be evaluated 
only once for computation points densely spaced along a parallel (i.e., ϕ  constant) if the 
geocentric radius r  is constant as well (e.g., Tscherning and Poder 1982; Holmes and 
Featherstone 2002a), and the efficiency can be further increased for points equally spaced in 
longitude (see Rizos 1979; Abd-Elmotaal 1997 for details).   

1.1 The height problem of SHS 
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Due to spatial resolution conferred by high-degree GGMs such as EGM2008, SHS of GGM 
functionals at the Earth’s surface is an application of increasing importance. Examples of 
such surface functionals are (Molodensky) quasigeoid heights and gravity disturbances (cf. 
Torge 2001), and Helmert and Molodensky vertical deflections (see Jekeli 1999). 
Importantly, SHS at the Earth’s surface requires the 3D location ( , , )Prϕ λ  of the computation 
point (cf. Rapp 1997, p. 283; Claessens et al. 2009, p. 223; Hirt et al. 2010a, p. 563; Hirt 
2011; ibid Section 4), which can be sourced, e.g., from elevation models.  

The geocentric radius Pr  of the computation point (situated at the Earth’s surface) enters the 

SHS expansions both via the / PGM r  scale factor and the ( / )n
Pa r  attenuation factor. 

Unfortunately, over most land areas, Earth’s topography causes Pr  to be a highly-varying 
quantity along geodetic parallels. As a consequence, computation of GGM functionals at the 
Earth’s topography – even at regularly-spaced grid points – requires evaluation of the SH 
expansions [Eqs. (1), (2)] separately for each (ϕ ,λ , Pr ) triplet (e.g., Holmes 2003, p. 25). For 
multiple grid points, this is a very time-consuming operation in practice (Holmes 2003, p. 
129f; Claessens et al. 2009, p. 223).   

A pragmatic solution to this “height problem of high-degree SHS” lies in the use of Taylor 
series expansions to continue GGM functionals from some reference surface to the 
topography. The required functionals and radial derivatives can be efficiently computed with 
accelerated SHS routines. This idea goes back to at least Rapp (1997, p. 283) who uses first-
order gradients to compute quasigeoid heights at the Earth’s surface. Later, in the context of 
synthetic [simulated] gravity field modelling, Holmes (2003) makes extensive use of first-
order Taylor expansions to continue functionals over short vertical distances, say ~100 m, 
from the ellipsoid to the geoid. Tóth (2005) and Keller and Sharifi (2005) use higher-order 
gradients in the context of satellite gradiometry, and Fantino and Casotto (2009) derived first- 
to third-order gradients of the gravitational potential. However, to the knowledge of the 
author, the use of higher-order gradients has not yet been systematically presented, 
investigated and applied for the accurate continuation of high-degree GGM functionals,  from 
the ellipsoid to Earth’s surface.  

1.2 Aim of this study 

The aim of this study is to explore the gradient approach as a viable and pragmatic solution to 
the high-degree SHS height problem. The approach presented here is an extension of Rapp’s 
(1997) method to compute quasigeoid heights at the Earth’s surface from first-order Taylor 
expansions, and Holmes’s (2003) simulated modelling over short vertical distances. We use 
elevation data along with third-order Taylor expansions to obtain grids of quasigeoid heights 
at the Earth’s surface (Section 2). This requires first- to third-order radial derivatives of the 
quasigeoid, which are synthesised at some constant height above the reference ellipsoid using 
existing numerically-efficient algorithms. Section 3 then extends the gradient approach to 
gravity disturbances and vertical deflections, and gives the radial derivatives in SH 
representation. Numerical tests in Sections 2 and 3 demonstrate that the use of some constant 
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average reference height in the SHS is beneficial to reduce the approximation errors of the 
Taylor expansions to insignificance for degree-2190 SHS even over the most rugged regions 
of Earth.  

Finally, an application example for the gradient approach is given in Section 4, demonstrating 
the capability of the method to incorporate high-resolution elevation data in high-degree 
SHS. At 12 million points, we compute EGM2008 quasigeoid heights, gravity disturbances 
and vertical deflections at the Earth’s surface over the entire European Alps, and use beyond 
the EGM2008 resolution topography-implied gravity-effects as high-frequency augmentation. 
This yields accurate gravity field functionals at densely-spaced 3D surface points (Section 4). 

2 The gradient approach for height anomalies ζ  

Here and in the following sections, we denote the geodetic coordinates of a point P with φ  
(geodetic latitude), λ  (longitude) and h (ellipsoidal height). Spherical (polar) coordinates 
which are required for the evaluation of SH expansions are denoted with ϕ (geocentric 
latitude), λ (longitude) and r (geocentric radius). The transformation from geodetic to 
spherical coordinates via global 3D Cartesian coordinates is described e.g., in Wenzel (1985 
p. 130f), Jekeli (2006 section 2.1.5 ibid) and Torge (2001, chapter 4 ibid). We further assume 
throughout the paper that the zonal harmonics of some normal gravity field have been 
removed from the nmC coefficients (see, e.g., Smith 1998 for details).  

2.1 Rapp’s approach 

Rapp (1997) describes a formalism to calculate geoid undulations N (aka geoid heights) via 
quasigeoid heights ζ  (aka height anomalies) from the disturbing potential T. Based on 
Heiskanen and Moritz (1967), Rapp (1997, p. 282) obtains ζ  at 3D-locations ( , , )rϕ λ from 
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where max(2, )n mµ= = , γ  is the normal gravity at ( , , )rϕ λ , and the summation order of n 
and m has been modified to allow for efficient SHS (see above). Rapp (1997) states that ζ  is 
dependent on Pr , which is the geocentric distance of the computation point P  located at the 

Earth’s topography or above. He then approximates Pζ  using a first-order Taylor expansion 

0 1A 1B( , , ) ( , , ) ( , , ) ( , , )Rapp
P P Er r C h C hζ ϕ λ ζ ϕ λ ϕ λ ϕ λ≈ + +      (4) 

where 0ζ  the quasigeoid height at ( , , )Erϕ λ  and Er  is the ellipsoidal radius (e.g., Claessens 

2006 p. 18ff), i.e., the geocentric distance to the point 0P  on the ellipsoid. Note that Rapp’s 
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C1-term is split here into two components 1AC  and 1BC . For multiple points arranged along 

geodetic parallels, Er  and ϕ  are constant, which allows 0ζ  to be evaluated at the ellipsoid 

( , , )Erϕ λ  using the accelerated SHS routines (see Section 1). To the understanding of the 
author, this is described by Rapp (1997, p. 283) as “computer efficiency”. Rapp writes the 
first-order Taylor term 

1A ( , , )
Er

C h h
r
ζϕ λ ∂

=
∂

           (5) 

as a function of the radial derivative / rζ∂ ∂  [Eq. (10)] and h  (ellipsoidal height of P). 
Again, using a constant Er  allows accelerated SHS of the 1AC -term. Rapp further includes a 
term to model the change of ζ  with the height-dependent γ  
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where /ζ γ∂ ∂ = 2
0( , , ) / /T rϕ λ γ ζ γ− ≈ −  and / hγ∂ ∂  is the normal gravity gradient 

( 23.086 ms / mµ −≈ − , Torge 2001, p. 111). Rapp approximates the ellipsoidal height h  in 
Eqs. (5) and (6) with the orthometric height H, and, finally, approximates geoid heights  

2( , ) ( , , ) ( , , )Rapp
P PN r C Hϕ λ ζ ϕ λ ϕ λ≈ +        (7) 

by accounting for the geoid-to-quasigeoid separation term 

2 ( , , ) BgC H Hϕ λ
γ
∆

=                     (8) 

that is a function of the Bouguer-anomaly Bg∆ , orthometric height H  and a mean normal 
gravity value γ  (Torge 2001, p. 292). The geoid-quasigeoid separation term has been much 
discussed in the literature (e.g., Featherstone and Kirby 1998; Nahavandchi 2002; Ågren 
2004) and refined (e.g., Sjöberg 2006; Tenzer et al. 2006; Flury and Rummel 2009; Sjöberg 
2010), while less attention has been paid to the first-order Taylor series [Eq. (4) and (5)] in 
the context of high-degree SHS. Here we do not further deal with the geoid-quasigeoid 
separation [Eq. (8)], but focus on a refinement of Rapp’s quasigeoid approximation at the 
Earth’s surface. We note that Rapp (1997) investigated the formalism [Eqs. (3) to (8)] for 
degree-360 and not for degree-2190 expansions, that were not yet available at that time. As 
will be shown here, high-degree SHS requires extension of Rapp’s approach (Sections 2.2, 
2.3) to diminish ζ -approximation errors over mountain terrain (Section 2.4). 

2.2 Introducing higher degree terms 
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As a first refinement, we extend Rapp’s (1997) first-order Taylor series to third-order while 
retaining the 1BC -term. Extended to third-order, the expression for Pζ  reads: 
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where the required first- to third-order radial gradients of ζ  are (see also Fantino and Casotto 
(2009, p. 602f) 
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The radial derivatives of order k can be constructed from simple mathematical principles (the 
scale factor between subsequent orders differs by ( 1r−− ) and the attenuation factor is 
multiplied by the (n+k)-factors), see also Rummel and van Gelderen (1995). This allows 
formulation of a compact expression for radial derivatives of arbitrary order k  
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where ( ) /k k
r k rζ ζ= ∂ ∂  is the shorthand for the k-th radial derivative of ζ  that can be used to 

expand Pζ  to a maximum order K: 
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2.3 Refinement through reference height  h  

As a second refinement to Rapp’s approach, we introduce some constant ellipsoidal reference 
height h  (e.g., average elevation of a working area) in order to shorten the vertical distances 
along which ζ is continued, which, in turn, reduces the approximation errors. All h of the 

topography now refer to h  and the SHS functionals are evaluated at Er h+ , which, 
importantly, is constant along geodetic parallels, so allows numerically efficient SHS.  The 
expansion for Pζ   reads: 
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where the 1BC -term is now computed as a function of the reduced heights ( )h h− . It should 

be noted that Eqs. (4), (9), (13) and (14) implicitly approximate P Er r h≈ + . Numerical tests 
will show that this approximation is acceptable in practice. 

2.4 Numerical tests 

2.4.1 Test design 

Equations (14) and (15) were numerically tested using EGM2008 (Pavlis et al. 2008) to M= 
2190 and for Taylor orders K = 0 to 3.   For the SHS of EGM2008 functionals ζ  and ( )r kζ , 

we use the state-of-the-art harmonic_synth software (Holmes and Pavlis 2008). This software 
makes use of accelerated routines of Holmes and Featherstone (2002a, b), allowing highly-
efficient SHS at multiple computation points given in terms of regularly-spaced grids. 
Harmonic_synth is used here in two different modes:  

• The numerically highly-efficient grid mode (“gridded computations”) to compute 
grids of quasigeoid heights ζ and their radial derivatives ( )r kζ  and  

• the time-consuming “scattered-point” option to directly generate true values *ζ  at the 
3D-locations of the topography. 

Testing Eqs. (14) and (15) necessitated extension of harmonic_synth’s capability to higher-
order radial derivatives ( )r kζ . Using the generalized expression (13), implementation is 

straightforward. The harmonic_synth code was also modified to allow accelerated synthesis 
at an arbitrarily constant height h  above the ellipsoid.  
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Test areas are parts of the European Alps (45°<φ <47°, 6°<λ<9°) with h  varying between ~0 
and ~4 km and parts of the Himalayas (26°<φ <29°, 86°<λ<88°) with h  varying between ~0 
and ~8.8 km.  The first includes the Swiss Central Alps and the latter the Mount Everest 
region and the flats of Nepal and North-East India, to test the methods over Earth’s region 
with the largest variation in elevation.   

Following Claessens et al. (2009), ellipsoidal heights h  of the topography were constructed 
at 120 × 180 regularly-spaced 1′ grid nodes as the sum of (i) SRTM (Shuttle Radar 
Topography Mission) data by Jarvis et al. (2008), and (ii) EGM2008 quasigeoid heights 0ζ . 

Since SRTM elevations H are mean-sea-level heights in good approximation, H+ 0ζ  yields 
approximate ellipsoidal heights h  of the topography. According to Jarvis et al. (2008), 
SRTM elevations are referred to EGM96 (Lemoine et al. 1998) and not EGM2008. The 
differences between EGM96 (to degree 360) and EGM2008 (to degree 2190) geoid 
undulations  is estimated to be at the metre-level or below. The results of spherical harmonic 
synthesis are insensitive to such small changes in height, which is why this effect is 
considered negligible in practise. 
 
To benchmark the approximation errors of ( , , )P Prζ ϕ λ  [from Eqs. (14) and (15)] for orders K 

= 0 to 3, we computed * ( , , )P Prζ ϕ λ  directly at the 3D locations ( , , Prϕ λ ) with 
harmonic_synth’s “scattered-point” option that performs full SHS point-by-point. Because of 
the limited number of points [21,600 ( , , Prϕ λ ) triplets per test area], this is feasible within 
acceptable computation times (see Section 3.3.2 for run times), whilst computationally too 
prohibitive for millions of points. The * ( , , )P Prζ ϕ λ  serve as “truth” in assessing the 

( , , )P Prζ ϕ λ  from Eqs. (14) and (15).  

2.4.2 Test results 
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Fig.1 a Height anomalies ζ evaluated at Er ,  b to d 1st-,  2nd- and 3rd-order contributions, e Rapp’s 1BC -term, f 

to h Truth – (Taylor series expanded to 1st, 2nd and 3rd-order + 1BC ). Test area is the European Alps, no 

reference height used ( h = 0 m), M=2190, Units in metres 
 

 

Fig.2 a Height anomalies ζ  evaluated at Er +2000 m,  b to d 1st-,  2nd- and 3rd-order contributions, e Rapp’s 

1BC -term, f to h Truth – (Taylor series expanded to 1st, 2nd and 3rd-order + 1BC ). Test area is the European 

Alps, h  is 2000 m for all panels, M=2190, Units in metres.  To allow cross-comparison the scale bars of 
corresponding panels in Figs. 1 and 2 are the same. 

For the European area, Figs. 1a-d show the zero-th to third-order ζ -contributions from Eq. 
(14), Fig.1e displays Rapp’s 1BC -term and Figs. 1f-1h shows the differences between the true 

* ( , , )P Prζ ϕ λ  and approximated ( , , )P Prζ ϕ λ  from Eq. (14) truncated after the first-, second- 

and third-order.  The descriptive statistics of the * ( , , )P Prζ ϕ λ minus ( , , )P Prζ ϕ λ  as well as the 

statistics of 1BC  are reported in Table 1.  From Fig. 1f, maximum errors of the first-order 
approach are at the dm-level over the European Alps and RMS (root-mean-square) 
approximation errors are 2.6 cm (Table 1). Not only are these approximation errors 
comparable to the RMS signal strength of the 1BC -correction (2.7 cm, Fig. 1e), but are also at 
the level of EGM2008 commission errors observed for quasigeoid height differences over 
well-surveyed areas (which can be as low as ~2-3 cm, see Section 4 and Hirt 2011). When 
the first-order approach is applied over the Himalayas (Table 2), the discrepancies are as 
large as ~1.9 m with an average RMS error of ~16 cm! These approximation errors will 
usually not be acceptable for accurate applications of EGM2008 and other high-degree 
models. 
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Table 1 Descriptive statistics of the quasigeoid ζ  differences for Taylor-orders 0-3 and statistics of the 1BC -

term over the European Alps 

Variant No reference height Reference height = 2000 m 
min max mean  rms  min max mean  rms 

Truth - (0th order + 1BC ) -1.10 0.11 -0.13 0.223  -0.55 0.22 -0.02 0.086 

Truth - (0th+1st order+ 1BC ) -0.08 0.26 0.01 0.026  -0.03 0.05 0.00 0.005 

Truth - (0th to 2nd order + 1BC ) -0.08 0.03 0.00 0.006  -0.01 0.00 0.00 0.001 

Truth - (0th to 3rd order + 1BC ) -0.02 0.02 0.00 0.001  0.00 0.00 0.00 0.000 

Rapp’s 1BC correction term  0.00 0.08 0.02 0.027  -0.03 0.04 -0.01 0.017 

Statistics based on 21,600 pts, harmonic model used is EGM2008 to M=2190, test area is 45°<φ<47°, 6°<λ<9° 
Units in metres 
 
Table 2 Descriptive statistics of the quasigeoid ζ differences for Taylor-orders 0-3 and statistics of the 1BC -

term over the Himalayas  

Variant No reference height Reference height = 4000 m 
min max mean  rms  min max mean  rms 

Truth - (0th order + 1BC ) -3.95 0.55 -0.34 0.672  -1.76 0.26 -0.29 0.403 

Truth - (0th+1st order+ 1BC ) -0.47 1.87 0.03 0.156  -0.12 0.28 -0.01 0.020 

Truth - (0th to 2nd order + 1BC ) -1.34 0.36 -0.01 0.072  -0.08 0.01 0.00 0.003 

Truth - (0th to 3rd order + 1BC ) -0.20 0.84 0.00 0.031  -0.01 0.02 0.00 0.001 

Rapp’s 1BC correction term  -0.06 0.00 -0.02 0.030  -0.04 0.08 0.03 0.045 

Statistics based on 21,600 pts, harmonic model used is EGM2008 to M=2190, test area is 26°<φ<29°,86°<λ<88°  
Units in metres 
 

Through inclusion of the gradients to third-order, RMS approximation errors are reduced 
below the cm-level (Europe, Fig. 1h) and to about 3 cm (Himalayas), see also Tables 1 and 2. 
The additional use of a constant average reference height h  (2 km for the European Alps 
area, and 4 km for the Himalaya area) in Eq. (15) shortens the vertical distances ( )h h−  over 
which ζ  is continued to the topography. As a result, approximation errors are diminished to 
insignificance (0 mm RMS) over the European Alps (compare Figs.1h and 2h, see also Table 
1), and to 1 mm RMS over the Himalaya Mountains (Table 2).  

We have repeated the above tests over the European Alps using EGM2008 to degree 360 
(and not to 2190 as before). The * ( , , )P Prζ ϕ λ minus ( , , )P Prζ ϕ λ -differences are at the level of 

~4 mm RMS when using Rapp’s (1997) first-order expansion and no reference height h  (this 
replicates the original Rapp approach). It is therefore fair to say that Rapp’s first-order 
expansion (ibid, p. 283) was and is suitable for degree-360 ζ- and N-computations, whilst the 
second- or third-order gradient approach with reference heights h  [Eq. (15)] is to be 
preferred for degree-2190 expansions. This is simply because with high-degree models the 
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effect of gravity attenuation with height [via ( / )n
Pa r ] cannot be accurately ‘modelled’ over 

mountainous areas by means of linear gradients. 

In the context of simulated gravity modelling, Holmes (2003, p. 31f) applied a similar 
strategy to use average elevations h  between ellipsoid and geoid as a simple yet highly-
efficient means to “increase the accuracy of the computed result”. It should be noted that our 
tests implicitly demonstrate the approximation P Er r h≈ +  has no notable impact on our 
results (Tables 1, 2).  As an aside, our numerical tests (Tables 1, 2) confirm the necessity to 
include the 1BC -term [Eq. (6)] in Eqs. (14) and (15). 

3. The gradient approach for other functionals 

In analogy to Section 2, higher-order gradients can be used to efficiently compute other 
functionals of the disturbing potential at the topography. Next we present the gradient 
approach for gravity disturbances gδ  and vertical deflectionsξ ,η . For the SHS expansions 
see, e.g., Wenzel (1985 p30f), Torge (2001), Holmes (2003, p16). Fantino and Casotto (2009) 
published the respective radial derivatives up to second-order, which we generalize here to 
arbitrary order k. 

3.1 Gravity disturbances gδ  

Gravity disturbances gδ  as the first radial derivative of the disturbing potential T are 
obtained in spherical approximation from  
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where max(2, )mµ = . Eq. (16) can be evaluated with the accelerated SH routines along 
geodetic parallels. Expanding gδ  into a Taylor series and introducing some constant 

ellipsoidal reference height h  yields approximate Pgδ -values at the topography 
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where Er h+  is a constant quantity along geodetic parallels. The k-th radial derivatives 

( ) /k k
r kg g rδ δ= ∂ ∂  are obtained from the compact expression  
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3.2 Vertical deflections ξ ,η  

The North-South vertical deflection ξ  is computed as a function of the latitudinal 
derivative /T ϕ∂ ∂ . In spherical approximation and Molodensky definition, ξ  is obtained 
from 
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For the evaluation of first-order derivatives (sin )nmP ϕ′  of the fully-normalized Associated 
Legendre Function, see e.g., Bosch (2000), Holmes and Featherstone (2002b). The East-West 
vertical deflection η  depends on the longitudinal derivative /T λ∂ ∂  and is given through  
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Series expansions are used to approximate the North-South vertical deflection 
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and East-West vertical deflection 
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at the Earth’s surface, where the k-th radial derivative of the North-South component 

( ) /k k
r k rξ ξ= ∂ ∂  and of the East-West component ( ) /k k

r k rη η= ∂ ∂  are computed from the 

generalized expressions 
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3.3 Numerical tests 

3.3.1 Test design 

The gradient approach was tested to maximum order K=3 for gravity disturbances and 
vertical deflections over the European Alps and Himalayas test areas. The tests were 
performed in full analogy to the quasigeoid tests described in Section 2.4.1. Gravity 
disturbances [Eq. (16)] and vertical deflections [Eqs. (19), (20)] are readily computable with 
harmonic_synth, whereas most of their higher-order radial derivatives [Eqs. (18), (23), (24)] 
were not yet implemented in this software, so had to be added to the code. 

Based on EGM2008 and M=2190, true values * ( , , )P Pg rδ ϕ λ , * ( , , )P Prξ ϕ λ  and * ( , , )P Prη ϕ λ  
were generated point-by-point at the topography using harmonic_synth’s ”scattered-point 
option” [Eqs. (16),  (19), (20)] and compared with ( , , )P Pg rδ ϕ λ , ( , , )P Prξ ϕ λ and ( , , )P Prη ϕ λ  
as approximated with Eqs. (17), (21) and (22). All SH functionals and radial derivatives 
could be obtained using harmonic_synth’s efficient grid mode. 

3.3.2 Test results 

The comparisons between the true and approximate functionals were drawn as a function of 
different Taylor-orders (K=0 to 3), and for the variants (i) no reference height used (i.e., h = 
0 km), and (ii) h = 2 km (Europe) and h = 4 km (Himalayas). Table 3 reports the descriptive 
statistics of the differences true value minus approximation for the European and Table 4 for 
the Himalaya region. Evaluation of EGM2008 at the surface of the ellipsoid ( h = 0), and 
without gradients (i.e, 0th-order) gives rise to ~18 mGal RMS approximation errors for 
gravity disturbances and ~3″ RMS for vertical deflections over the European Alps. RMS 
values are as large as ~50 mGal (maximum errors of ~350 mGal) and ~7″ (maximum errors 
of ~50″) over the Himalayas (Table 4). What all these values reflect is the effect of gravity 
attenuation with height, via the spectral attenuation factor ( / )n

Pa r  that occurs in any of the 
SH expansions. 
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Tables 3 and 4 show that first- to third-order gradients gradually decrease the approximation 
errors. Using h = 2 km and a third-order Taylor series reduces the approximation errors to 
~0.04 mGal and ~0.01″ over the European Alps. For the Himalaya area and h  = 4 km, RMS-
errors are found to be well below the mGal-level for gravity and smaller than 0.05″ for 
deflections, which is likely a worst-case performance demonstration for the third-order 
gradient approach. 

EGM2008 commission errors (area-weighted RMS) are globally at the level of ~7 mGal (for 
gravity) and 1″ (for vertical deflections), but these values can vary regionally (EGM-Team 
2008; Pavlis et al. 2008). Relative to the level of commission errors, approximation errors 
originating from the gradient approach to third-order can be safely neglected. In practical 
applications, limitation to second-order might be acceptable when using some average 
reference height h , but extension to third-order reduces the approximation errors to 
insignificance. Hence, third-order Taylor series yield results comparable to those from 
rigorous point-by-point synthesis. This makes the investigated technique suitable for accurate 
SHS of degree-2190 vertical deflections and gravity disturbances at the Earth’s surface. 

The computational savings of Taylor series expansions over point-by-point synthesis are 
significant. Using a Sun Ultra 45 workstation (1.6 GHz with 2 GB RAM and 8 GB swap), it 
took a total of ~5 min to compute four grids (functional of interest and the first- to third-order 
derivatives) with harmonic_synth’s accelerated routines, versus ~150 min for the point-by-
point synthesis at the 3D-locations of 21,600 points. Hence the gain in efficiency is a factor 
~30. Recalling that the grids were composed of merely 120 × 180 points, the computational 
savings will be much larger for regularly-spaced (φ,λ) or (ϕ,λ)-grids consisting of, say, 
thousands of points in latitude, and importantly, in longitude. The numerical efficiency of 
Taylor approximations over point-by-point synthesis was pointed out by Holmes (2003 p. 
129ff), and our results are a confirmation of his findings. 

Table 3 Descriptive statistics of the δ g (gravity disturbance) ξ  (NS vertical deflection) and η   (EW vertical 
deflection) differences for Taylor-orders 0-3 over the European Alps 

Functional Variant No reference height Reference height = 2000 m 
min max mean  rms min max mean  rms 

δ g Truth - 0th order  -120.4 53.0 -3.9 18.31 -45.3 25.6 -3.2 7.13 
δ g Truth - (0th+1st order)  -21.9 55.2 1.1 5.92 -7.4 8.8 -0.1 0.95 
δ g Truth - (0th to 2nd order) -18.3 12.3 -0.3 1.61 -1.9 0.6 0.0 0.12 
δ g Truth - (0th to 3rd order)  -4.6 6.0 0.1 0.37 -0.3 0.3 0.0 0.04 

          
ξ Truth - 0th order  -14.6 17.4 -0.1 2.88 -5.2 5.3 -0.1 0.93 
ξ Truth - (0th+1st order)  -7.4 7.4 0.0 0.92 -1.0 1.3 0.0 0.12 
ξ Truth - (0th to 2nd order) -3.0 2.3 0.0 0.24 -0.3 0.2 0.0 0.02 
ξ Truth - (0th to 3rd order)  -0.9 1.0 0.0 0.06 0.0 0.1 0.0 0.01 
          
η Truth - 0th order  -12.1 15.1 0.1 2.45 -4.6 5.1 0.1 0.86 
η Truth - (0th+1st order)  -7.8 5.5 0.0 0.81 -1.2 0.9 0.0 0.11 
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η Truth - (0th to 2nd order) -1.9 2.7 0.0 0.21 -0.2 0.3 0.0 0.01 
η Truth - (0th to 3rd order)  -0.9 0.6 0.0 0.05 -0.1 0.0 0.0 0.01 

Statistics based on 21,600 pts, harmonic model is EGM2008 to M=2190, test area is 45°<φ<47°, 6°<λ<9° , 
Units in mGal for δ g, units in arc seconds for ξ, η 
 
Table 4 Descriptive statistics of the δg (gravity disturbance), ξ (NS vertical deflection) and η (EW vertical 
deflection) differences for Taylor-orders 0-3 over the Himalayas 

Func-
tional Variant 

No reference height Reference height = 4000 m 

min max mean  rms min max mean  rms 
δ g Truth - 0th order -350.8 165.3 -7.1 49.9 -110.6 45.4 -6.7 14.69 
δ g Truth - (0th+1st order) -157.8 410.2 2.7 34.7 -22.1 49.0 -0.3 3.31 
δ g Truth - (0th to 2nd order) -358.9 110.5 -1.4 19.5 -19.6 4.3 -0.1 0.90 
δ g Truth - (0th to 3rd order) -61.7 255.6 0.6 9.0 -1.8 7.0 0.0 0.24 

          
ξ Truth - 0th order -35.8 32.6 0.1 6.6 -11.1 6.9 -0.3 1.90 
ξ Truth - (0th+1st order) -35.3 41.3 0.0 4.8 -3.5 4.1 0.0 0.46 
ξ Truth - (0th to 2nd order) -32.4 31.4 0.0 2.7 -1.4 1.5 0.0 0.13 
ξ Truth - (0th to 3rd order) -20.6 18.5 0.0 1.2 -0.5 0.4 0.0 0.04 
          
η Truth - 0th order -43.3 50.3 0.1 7.8 -10.6 10.9 -0.1 1.89 
η Truth - (0th+1st order) -37.7 32.6 0.0 5.2 -3.5 2.6 0.0 0.43 
η Truth - (0th to 2nd order) -20.6 26.6 0.0 2.8 -1.1 1.2 0.0 0.11 
η Truth - (0th to 3rd order) -17.6 14.1 0.0 1.2 -0.4 0.3 0.0 0.03 

Statistics based on 21,600 pts, harmonic model is EGM2008 to M=2190, test area is 26°<φ<29°, 86°<λ<88°, 
Units in mGal for δg, units in arc seconds for ξ, η 
 
4 Application example 

The gradient approach, as described and tested in Sections 2 and 3, enables accurate yet 
efficient SHS of high-degree GGM functionals at densely-spaced points located at Earth’s 
surface. Because the incorporation of heights is separated from the actual SHS, the 3D point 
density can be arbitrarily high, e.g., up to the spatial resolution of elevation models. As a 
demonstration of feasibility, we have applied the gradient approach for the construction of an 
ultra-high resolution model of surface gravity field functionals over the European Alps, that 
we name here EurAlpGM2011 (European Alps Gravity Model 2011). The EurAlpGM2011 
model is freely available from http://www.geodesy.curtin.edu.au/research/models. 

4.1 Construction of EurAlpGM2011 

EurAlpGM2011 is a composite model that uses EGM2008 (Pavlis et al. 2008) in spectral 
band 2 to 2190 and topography-implied gravity effects from residual terrain model (RTM) 
data beyond harmonic degree 2190. Over a 4° × 12° target area covering the European Alps 
(44°<φ <48°, 5°<λ<17°), ellipsoidal heights h  of the topography were constructed from 
SRTM (V4.1 250m-release by Jarvis et al. 2008) and EGM2008 quasigeoid heights (cf. 
Section 2.4) at 7.2″ spatial resolution, corresponding to 12×106 points. 

http://www.geodesy.curtin.edu.au/research/models�
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EGM2008 functionals 2008EGMζ , 2008EGMgδ , 2008EGMξ  and 2008EGMη  as well as their first- to 

third-order radial derivatives were computed at h = 2 km above the GRS80 reference 
ellipsoid at regularly-spaced 36″ grid points, and bicubically interpolated at the (φ ,λ)-
locations of the 7.2″ elevation grid. The series expansions [Eqs. (15), (17), (21) and (22)] 
were then evaluated with the h - h  values to third-order, yielding 2008EGM

Pζ ,  2008EGM
Pgδ  

, 2008EGM
Pξ  and 2008EGM

Pη  at the 12×106 points of the topography. The North-South deflection ξ  
was corrected for the curvature of the normal plumbline (Jekeli 1999; Hirt et al. 2010a)  

0.17" [ ] sin 2h kmδξ φ≈ ⋅ ⋅ ,                 (21) 

an effect that reaches up to ~0.8″ (RMS of ~0.2″) in our target area. The δξ  were added to 

Eq. (21) to convert 2008EGMξ  from Molodensky’s to Helmert’s definition (Jekeli 1999). As a 
simplification, the spherically approximated gδ  and ξ  [Eqs. (16) and (19)] are not corrected 
here for the ellipsoidal effect, i.e., the difference between spherical and ellipsoidal 
approximation (e.g., Claessens 2006, p. 89; Jekeli 1999). The RMS-signal strength of the 
ellipsoidal effect on gδ  is less than 0.1 mGal globally (EGM2008 band 2 to 2190) and the 
RMS is below 0.1″ for ξ  (Hirt et al. 2010a), whilst the η -component is unaffected (Jekeli 
1999). 

Over rugged terrain, EGM2008 omits significant short-wavelength (i.e., scales shorter ~5′) 
gravity signals originating from the gravitational attraction of the topography (e.g., Hirt 2010; 
Hirt et al. 2010b; Hirt et al. 2011). The EGM2008 surface functionals were therefore 
spectrally augmented using topography-implied gravity-effects from residual terrain model 
data (RTM, Forsberg 1984).  RTM was used in the development of EGM2008 (e.g., Pavlis et 
al. 2007) and tested as augmentation of EGM2008 (Hirt 2010, Hirt et al. 2010b, Gruber et al. 
2011b, Hirt et al. 2011; Filmer 2011; Marti et al. 2011).  

Following Hirt (2010), RTM elevations are constructed as difference of SRTM (Jarvis et al. 
2008) and DTM2006.0 (Pavlis et al. 2007) spherical harmonic elevations to degree 2160, and 
converted to RTM functionals RTMζ , RTMgδ , RTMξ  and RTMη  at the same grid points used for 
EGM2008 synthesis. The conversion of RTM elevations to RTM functionals is based on 
brute-force numerical prism integration of gravity-effects using Forsberg’s TC-software 
(Forsberg 1984), along with a constant mass-density assumption of 2670 kg m-3 and an 
integration radius of 200 km for each computation point. A justification for this approach and 
parameters used is found in Hirt (2010) and Hirt et al. (2010b). 

EurAlpGM2011 is the sum of EGM2008 (evaluated with the gradient approach at the 
topography) and the RTM functionals which serve as high-frequency augmentation beyond 
the EGM2008 resolution, at spatial scales of ~7″ to ~5′.  EurAlpGM2011 resolves the gravity 
field over the European Alps at ultra-high spatial resolution of 7.2″ at the surface of the 
SRTM-topography. The EurAlpGM2011 quasigeoid heights ( 2008EGM

Pζ + RTMζ ) are shown in 
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Fig. 3, gravity disturbances ( 2008EGM
Pgδ + RTMgδ ) in Fig. 4, North-South vertical deflections 

( 2008EGM
Pξ + RTMξ ) in Fig. 5 and East-West vertical deflections ( 2008EGM

Pη + RTMη ) in Fig. 6. 

Additionally, the total vertical deflections 2008 2 2008 2( ) ( )EGM RTM EGM RTM
P Pε ξ ξ η η= + + +   are 

displayed in Fig. 7. Specifically the maps of the gravity disturbances and vertical deflections 
show the high spatial variability of the entire Alpine gravity field, at a detail resolution of 
~220 m in latitude and ~155 m in longitude. 

 

 
Fig. 3 EurAlpGM2011 quasigeoid undulations over the European Alps, 7.2 arc second spatial resolution, 
Mercator projection centred at 11° longitude, unit in metres 

 

 
Fig. 4 EurAlpGM2011 gravity disturbances, unit in mGal 
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Fig. 5 EurAlpGM2011 North-South vertical deflections, unit in arc seconds 
 

 
Fig. 6 EurAlpGM2011 East-West vertical deflections, unit in arc seconds 
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Fig. 7 Total vertical deflections over the European Alps, unit in arc seconds 
 
4.2 Evaluation of EurAlpGM2011 

To evaluate the EurAlpGM2011 construction, ground-control stations were available as 
follows:  

• 34 quasigeoid heights from GPS/levelling (Ihde and Sacher 2002) over Southern 
Germany,  

• 31598 terrestrial gravity measurements over Switzerland (Swiss Geodetic 
Commission, Marti 2004), and  

• 690 astrogeodetically observed vertical deflections (data from Swiss Geodetic 
Commission, B. Bürki, author’s own observations, see Hirt et al. 2010a) over 
Switzerland and Southern Germany.  

The quasigeoid height differences from the GPS/levelling data are accurate to few cm (Hirt 
2011, see also Table 5), the accuracy of the gravity observations is at the 0.1 mGal level and 
better (U. Marti, pers. comm. 2010) and the accuracy of the vertical deflections varies  
between ~0.1″ and ~0.5″ (Hirt et al. 2010a).  
 
The EurAlpGM2011 functionals (Figs. 3 to 6) were bicubically interpolated at the (φ ,λ)-
locations of the ground-control stations. A bias-fit was applied for the GPS/levelling points to 
remove (constant) vertical datum offsets, which is why the quasigeoid heights are tested here 
in a relative sense. The terrestrial gravity was converted to gravity disturbances by 
subtracting GRS80 normal gravity (Torge 2001, p. 106 and p. 110). The astrogeodetic 
deflections and GPS/levelling quasigeoid heights represent independent ground-control while 
inter-dependencies between EGM2008 and the Swiss gravity data exist (e.g., Hirt et al. 
2011). 
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The RMS of the differences “observation minus EurAlpGM2011 functional” are 2 cm for the 
quasigeoid height differences, 4.6 mGal for the gravity disturbances and 1.3″ for both vertical 
deflection components (Table 5). The descriptive statistics of the modelling variants 
“EGM2008 evaluated at the ellipsoid” [Eqs. (3), (16), (19) and (20), without height 
information and gradients] exhibit considerably larger RMS-errors (3 cm, 9.4 mGal and 
2.1″). This behaviour demonstrates the necessity to incorporate height data in high-degree 
SHS if surface quantities are required. For the sake of completeness, the descriptive statistics 
is also given for the variants “with and without RTM augmentation”, showing the benefits 
conferred by RTM-augmentation of EGM2008 over rugged terrain (cf. Hirt 2010; Hirt et al. 
2010b; Hirt et al. 2011). 
 
Table 5 Descriptive statistics of ground-control observations (quasigeoid ζ, gravity disturbances δ g, vertical 
deflections ξ, η) minus modelled quantities from four variants (EGM2008 evaluated at the ellipsoid/evaluated at 
the topography, and RTM augmentation applied/not applied) 

Func-
tional 

Difference EGM2008  RTM Min Max Mean RMS 
 evaluation at augmentation     

ζ Obs-EurAlpGM2011 topography+ yes -0.06 0.04 0.00 0.020 
ζ Obs-EGM2008/RTM ellipsoid yes -0.06 0.06 0.00 0.030 
ζ Obs-EGM2008 topography+ no -0.08 0.14 0.00 0.041 
ζ Obs-EGM2008 ellipsoid no -0.10 0.16 0.00 0.051 
        
δ g Obs- EurAlpGM2011 topography+ yes -91 29 -1 4.6 
δ g Obs-EGM2008/RTM ellipsoid yes -96 60 0 9.4 
δ g Obs-EGM2008 topography+ no -225 95 -18 39.5 
δ g Obs-EGM2008 ellipsoid no -256 120 -17 40.3 
        
ξ Obs- EurAlpGM2011 topography+ yes -5 5 0 1.3 
ξ Obs-EGM2008/RTM ellipsoid yes -11 10 0 2.1 
ξ Obs-EGM2008 topography+ no -15 16 0 3.7 
ξ Obs-EGM2008 ellipsoid no -18 12 0 4.1 
        
η Obs- EurAlpGM2011 topography+ yes -5 5 0 1.3 
η Obs-EGM2008/RTM ellipsoid yes -7 11 0 2.1 
η Obs-EGM2008 topography+ no -12 16 0 3.6 
η Obs-EGM2008 ellipsoid no -13 21 1 4.1 

EurAlpGM2011 is EGM2008 (evaluated at the topography+) with RTM-augmentation. The + denotes evaluation 
of EGM2008 at the height of the topography using the third-order gradient approach. Units in metres (ζ), mGal 
(δ g) and arc seconds (ξ, η) 
 
4.3 Application of EurAlpGM2011 

An ultra-high resolution composite model of surface gravity functionals such as 
EurAlpGM2011 can be applied for gravity field statistics, allowing analysis of signal 
strengths and extreme values. From Fig. 4, gravity disturbances can be as large as ~290 mGal 
in our test area (near 45.93°N, 7.73°E) and maximum vertical deflections are expected to be 



21 

 

about or in excess of 50″ near 46.59°N, 8.01°E (Fig. 7). Models like EurAlpGM2011 are 
suitable for planning of gravity field surveys, or detection of gross-errors in gravity data 
bases, and the construction principles are useful for simulated gravity field modelling. It can 
also be a convenient source of (i) quasigeoid height differences for GNSS (global navigation 
satellite system)-based height transfer (e.g., Hirt et al. 2010b), (ii) vertical deflections for 
reduction of survey data (e.g., Featherstone and Rüeger 2000) and (iii) medium-accuracy 
gravity values for the re-construction of gravity values at surveying benchmarks (Filmer 
2011) and the computation of levelling reductions (Meyer et al. 2006), without the need to 
perform observations. Importantly, the gradient approach investigated in this paper is a key to 
constructing similar models over other parts of Earth which may be beneficial for a range of 
potential applications. 
 
5 Conclusions 

This study investigated the gradient approach for efficient and accurate SHS of surface 
gravity field quantities, offering a pragmatic solution to the high-degree SHS height problem. 
Taylor series were formulated to arbitrary order for quasigeoid heights, gravity disturbances 
and vertical deflections. Evaluation of the SHS expansions at some constant reference height 
above the ellipsoid allows accelerated SHS along geodetic parallels, and keeps approximation 
errors small. Even over the roughest regions of Earth, third-order expansions produce 
approximation errors far below the EGM2008 commission errors, so are sufficient for 
practical applications.  

Using linear-gradients-only (the original Rapp approach) along with degree-2190 GGMs over 
mountainous areas produces cm- to dm-level RMS approximation errors for the ‘upward-
continued’ quasigeoid heights. The inclusion of second- to third-order terms and use of some 
constant reference height is therefore recommended. Because in the gradient approach 
elevation data is treated isolated from the actual SHS, the density of evaluation points can be 
easily increased up to the spatial resolution of elevation models. This was demonstrated by 
applying the gradient approach for the construction of ultra-high resolution surface gravity 
field quantities over the regional-scale European Alps area. Ground-control comparisons 
corroborated the importance of evaluating high-degree GGMs at the Earth’s surface if surface 
functionals – such as quasigeoid heights, gravity disturbances and (Helmert) vertical 
deflections – are required. 

In principle, the gradient approach can be utilized to construct ultra-high resolution maps of 
gravity field quantities over all land areas of Earth with SRTM or other high-resolution 
elevation data available. With the techniques investigated in this study it is now also possible 
– within acceptable computation times – to use continental-scale ground-control gravity data 
sets of ~106 or more points, e.g., over Australia, USA or Canada, for rigorous comparisons 
with existing and future high-resolution GGMs (in the past, the related computational efforts 
were too prohibitive, cf. Claessens et al. 2009). 
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As a general conclusion the gradient approach can be used along with any present and future 
high-performance SHS algorithm capable of computing higher-order radial derivatives of the 
gravity field quantity of interest. With the principles described in this paper, the gradient 
approach can be adapted to other gravity field quantities (such as from gradiometry, e.g., in 
the context of the GOCE satellite mission) that were not dealt with in Sections 2 and 3. For 
future application of the gradient approach along with extremely high-degree GGMs (beyond 
degree 2190), radial derivatives higher than third-order might be required which can be 
computed with the generalized expressions for k-th order radial derivatives, as summarized in 
Table 6. 
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Table 6 Radial derivatives of arbitrary order k for height anomalies ζ , gravity disturbances δ g and vertical 
deflections ξ, η  
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