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ABSTRACT To achieve a better long source-destination distance communication in uplink multiaccess sce-
narios, we propose a multiuser multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO)
relay technique with nonlinear minimal mean-squared error (MMSE)-decision feedback equalization (DFE)
receiver. Under transmission power constraints, this paper focuses on the improvement of reliability, mean-
while, which doesn’t lose the effectiveness or require higher complexity. We demonstrate that the optimal
structures of relay amplifying matrices lead to a cascading construction for the mean-squared error (MSE)
matrices of respective signal waveform estimations at the destination and each relay node. Hence, in (mod-
erately) high signal-to-noise ratio (SNR) environment, the intractable nonconvex optimization problem can
be decomposed into easier subproblems for separate optimizations of source precoding and relay amplifying
matrices. The source precoding matrix, along with the decision feedback matrix, is obtained by an iterative
process, which can converge to a Nash point within the reasonable time. As for the relay amplifying matrices,
closed-form water-filling solutions are derived. The simulation and analysis results show that compared to
other existing algorithms, which also utilize decomposition methods to simplify operations, the proposed
algorithms have better MSE and bit-error-rate (BER) performance without increasing the computing time
or signaling overhead, thus providing a new step forward in MIMO relay system design.

INDEX TERMS MIMO relay, AF, multi-hop relay, multiuser, MMSE, DFE, mutual information.

I. INTRODUCTION
During recent decades, multiple-input multiple-output
(MIMO) wireless communication technique has undergone
tremendous development in both academia and industry
for its remarkable advantages obtained from multiplexing,
diversity, coding or antenna gains [1], [2]. In order to further
improve the system reliability, reduce the power consump-
tion and expand the network coverage, extending conven-
tional single-hop architecture to more complicated two- or
multi-hop ones has always been regarded as a quite promising
strategy, where one or more relay nodes are fixed to forward
signals over long source-destination distance [3], [4]. The last
dozen years has seen a flourishing progress in the field of
MIMO relay system design with considerable achievements
obtained.

The associate editor coordinating the review of this manuscript and
approving it for publication was Min Li.

In general there are three major types of relay
protocols [5], [6]: the simple and fast amplify-and-forward
(AF) protocol retransmits the received signals in a lin-
ear non-regenerative manner [4]; the complicated yet
high-performing decode-and-forward (DF) protocol, con-
trariwise, regenerates source signals via decoding and
recoding operations [7]; and the compress-and-forward
(CF) protocol is in between, offering a worthwhile
complexity-performance tradeoff [8]. Thus, for multi-hop
systems with constraints on implementation costs and sig-
nal processing latency, the AF protocol is a promising
solution.

Among various AFMIMO relay models, either full-duplex
(FD) or half-duplex (HD) strategy can be applied, depending
on whether relay nodes transmit and receive signals simulta-
neously or not. The FD strategy, despite making more effi-
cient use of communication resources, suffers from severe
loop-back interference, and only under a high cancellation
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quality, may achieve an advantageous performance [9].
Therefore, we focus on the HD strategy in this paper.

In a classic single-user two-hop system, the direct link can
be either neglected or considered. For both cases, the system
capacity or its upper and lower boundswere discussed in [10].
Given that there may exist a significant mismatch between
the true and the estimated channel state information (CSI),
robust system designs were carried out under such an imper-
fect channel estimation [11], [12]. Extended from point-to-
point relay system, multipoint-to-multipoint system enables a
single MIMO relay node to serve multiple source-destination
pairs concurrently [13]. According to the capacity scaling
laws in [14], instead of single relay node, multiple parallel
relay nodes can be employed to expand system capacity.With
two source nodes exchanging information bi-directionally
through assisting relay node(s), two-way networks were
investigated in [15], [16], and the generalized N -way all-cast
scenarios also received attention [17], while in this paper,
we concentrate on one-way uplink communication.

Inspired from [18], which performed the joint transceiver
design for one-hop multicarrier MIMO links under a uni-
fied framework, the authors in [19]–[21] studied two- or
multi-hop (multicarrier) AF MIMO relay systems and drew
similar conclusions that, for Schur-concave objective func-
tions, the optimal source precoding, relay amplifying and
minimal mean-squared error (MMSE) receiving matrices
jointly diagonalize the MIMO channel into a set of parallel
single-input single-output (SISO) ones, and the same applies
to Schur-convex objectives along with a rotation of the source
matrix. Aiming at 5G Internet of Things (IoT), [22] studied
the optimal routing for multi-hop device-to-device (D2D)
communications. Under the interference from Poisson dis-
tributed third-party devices, the performance of both HD and
FD strategies for multi-hop networks was analyzed in [23].

Taking multiuser issues into consideration under multiac-
cess scenarios, with each user having single antenna, [24]
explored the optimal closed-form solution of joint linear
filter design, while for users equipped with multiple anten-
nas, iterative algorithms were developed in [25] to solve a
nonconvex problem. Note that iterative technique requires
centralized processing, which involves a heavy load of com-
puting time and signaling overhead, especially for multiuser
multi-hop relay systems. In view of this, using linear MMSE
receiver, [26] generalized the decomposable property, dis-
covered in [27], of the mean-squared error (MSE) matrix for
the signal waveform estimation at the destination node, and
proposed simplified algorithms which can be implemented
in distributed manners. The approach was further extended
to the weighted MMSE (WMMSE)-based problem in [28],
on the basis of the relationship between maximal mutual
information (MMI) and WMMSE objectives.

Aiming to improve the quality of signal reception, the
well-known decision feedback equalization (DFE) [29], also
referred to as successive interference cancellation (SIC) [30]
or vertical-Bell laboratories layered space-time (V-BLAST)
technique [31], successively cancels the inter-symbol

interference (ISI) produced by previously detected symbols
for current decision. Different schemes for implementing the
nonlinear DFE receivers are available, commonly evolving
from their linear counterparts, zero-forcing (ZF) or the afore-
mentioned MMSE. As shown in [32], [33], an MMSE-DFE
receiver can provide a significantly better performance than
ZF-DFE, particularly under severe channel conditions.Mean-
while, the MMSE-DFE receiver also has lower complexity
than the optimal maximum likelihood (ML) detection [31],
and is verified to be information lossless [30], thus preferred
in practice. For a basic two-hop model fitted with this non-
linear receiver, the work in [34] designed two closed-form
precoding solutions to be adaptively selected depending on
channel conditions. Using parallel MIMO relay nodes, [35]
developed a joint power loading algorithm. Considering
both Schur-convex and Schur-concave objectives, [36]
derived the optimal source and relay matrices together
with feed-forward and feedback matrices for multi-hop
systems.

This paper investigates multiuser multi-hop one-way HD
AFMIMO relay communication with nonlinear MMSE-DFE
receiver at the destination node. To our knowledge, it’s the
first time to consider both multiuser context andMMSE-DFE
receiver for multi-hop AF MIMO relay research field. Under
this new system architecture, inspired from the optimiz-
ing procedures in [26], [28], [34], [36], we propose two dis-
tributed transceiver optimization algorithms. To be specific,
by utilizing MSE minimization criterion and transmission
power constraints, we first formulate a transceiver optimiza-
tion problem. Next, through further generalizing the aforesaid
MSE matrix decomposition method, we obtain the optimal
structures of relay amplifying matrices and demonstrate that
the MSE matrix for the signal waveform estimation at the
destination node can recursively degenerate into those at each
relay node. Following that, under (moderately) high signal-
to-noise ratio (SNR) environment, the original problem can
be decomposed into separate subproblems. One is to jointly
optimize source precoding and decision feedback matrices,
for which an iterative process is developed, able to converge
within reasonable time. The others aim at designing relay
amplifying matrices, where two types of closed-form water-
filling solutions are derived, with the latter being a simplified
version of the former. The proposed algorithms are compared
with existing approaches in terms of the system MSE, bit-
error-rate (BER) and mutual information (MI), as well as the
computing time and signaling overhead. We show that the
proposed algorithms have a better performance than existing
approaches.

The rest of this paper is organized as follows. In Section II,
we describe the systemmodel and formulate the optimization
problem. The algorithms proposed to optimize the source
precoding, relay amplifying and decision feedback matrices
are developed in Section III. Following that, Section IV gives
some comments and relevant applications. Numerical simula-
tions and analysis results are presented in Section V. Finally,
Section VI draws a conclusion.

VOLUME 7, 2019 42519



Y. Lv et al.: Multiuser Multi-Hop AF MIMO Relay System Design Based on MMSE-DFE Receiver

FIGURE 1. System model for Nu-user L-hop AF MIMO relay communication with MMSE-DFE receiver.

The following operators and notations are used throughout
the paper: M

= represents the phrase ‘‘is defined as’’;Cn,Cm×n

respectively denote the complex vector and matrix space with
superscripts n,m×n being their dimensions; (r)+ M

= max(r, 0)
for real number r , and x−1, x∗, |x| stand for the reciprocal,
complex conjugate, and modulus of scalar x; (·)T , (·)H denote
the transpose and Hermitian transpose of a vector or matrix;
X−1, X†, det(X), rank(X), tr(X), ‖X‖F stand for the inverse,
pseudo-inverse, determinant, rank, trace, and Frobenius norm
of matrix X ;

∏
represents sequential multiplication, i.e., for

matrices Xk , k = m, · · · , n,
∏n

k=m Xk
M
= Xm · · ·Xn; [X]k ,

[X]k,k , [X]m,n indicate the kth column vector, the kth diag-
onal element, and the mth row and the nth column ele-
ment of matrix X ; [x]1:k denotes a subvector of vector x,
containing its first k elements; [X]1:k , [X]1:k,1:k stand for
submatrices of matrix X , containing its leftmost k columns,
and its first k rows and first k columns, respectively; U[X]
represents a matrix with its lower-triangular part filled by
zeros and strictly upper-triangular part being the same as that
of matrix X ; bd(·) denotes a block diagonal matrix composed
of the entries in parentheses; Ik is a kth-order identity matrix
and 0m×n stands for an m × n zero matrix; E[·] represents
statistical expectation; I(;) denotes the MI between two ran-
dom vectors; h(·), h(·|·) stand for the differential entropy and
the conditional differential entropy of a continuous random
vector, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In the AF MIMO relay system under consideration, Nu users
simultaneously transmit data towards the MMSE-DFE
receiver at the destination nodewith the aid of L−1 sequential
relay nodes as shown in Fig. 1, where each of the rounded
rectangles contains a matrix to be optimized. Considering
propagation path loss, we assume only adjacent nodes can
establish direct communication links. Hence the source sig-
nals travel through L hops and need to be amplified for L− 1
times before reaching the receiver. Moreover, by adopting
the HD strategy, each relay node utilizes orthogonal channels
(in time and/or frequency domain) for separate signal trans-
mission and reception, thus avoiding loop-back interference.
Here proper frequency reuse methods can be applied to take
full advantage of the limited channel resources.

For i = 1, · · · ,Nu, there are Mi independent data streams
transmitted from the ith user via Mi antennas, so the total
number of independent data streams from all users is N0 =∑Nu

i=1Mi. At each source node, the modulated signal vector
si ∈ CMi is linearly precoded by Bi ∈ CMi×Mi , the source
precoding matrix, and the precoded signal vector ui = Bisi
is then transmitted to the first relay node, where the received
signal vector is given by

y1 =
Nu∑
i=1

Giui + v1 = H1x1 + v1 (1)

with Gi ∈ CN1×Mi being the MIMO channel matrix between
the ith source node and the first relay node, v1 ∈ CN1 being
the independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector of the first hop, and

H1
M
=
[
G1, · · · ,GNu

]
, x1 M

=

[
uT1 , · · · ,u

T
Nu

]T
. (2)

HereH1 ∈ CN1×N0 stands for the equivalent first-hopMIMO
channel and x1 ∈ CN0 contains all users’ precoded symbols.

For convenience in analysis, we specify

F1
M
= bd

(
B1, · · · ,BNu

)
(3)

as well as

s M
=

[
sT1 , · · · , s

T
Nu

]T
(4)

where F1 ∈ CN0×N0 represents the equivalent block diagonal
source precoding matrix and s ∈ CN0 involves all users’
modulated symbols. Therefore, we obtain

x1 = F1s. (5)

Besides, all users are assumed to be symbol-synchronous and
the mean power of s is normalized, i.e., E

[
ssH

]
= IN0 .

For l = 1, · · · ,L − 1, at the lth relay node, the relay
amplifying matrix Fl+1 ∈ CNl×Nl is adopted to filter the
received signal vector yl ∈ CNl in a linear non-regenerative
manner of the AF protocol, hence the output signal vector
xl+1 ∈ CNl is given by

xl+1 = Fl+1yl (6)

where y1 has already been expressed in (1) and the other
inputs can be similarly written as

yl = H lxl + vl, l = 2, · · · ,L. (7)
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Here H l ∈ CNl×Nl−1 and vl ∈ CNl are respectively the
lth-hop MIMO channel matrix and i.i.d. AWGN vector.
As commonly practiced, all noise vectors are assumed to sat-
isfy circular symmetry property with zero mean and identity
covariance matrix.

From (5), (1), (6), (7), we can rewrite the received signal
vector at each relay node and the destination node in a more
integrated way as follows,

yl = Als+ v̄l, l = 1, · · · ,L (8)

where Al ∈ CNl×N0 stands for the equivalent MIMO channel
across the first l hops, i.e., from the modulated source signal
side to the lth relay node (or destination node if l = L), and
likewise, v̄l ∈ CNl represents the equivalent additive noise.
They are given by

Al =
1∏
i=l

(H iFi) , l = 1, · · · ,L (9)

and

v̄1 = v1, v̄l =
l∑
j=2

 j∏
i=l

(H iFi) vj−1

+ vl,
l = 2, · · · ,L. (10)

Moreover, we work out the covariance matrix of v̄l , C l =

E
[
v̄l v̄

H
l

]
, for l = 1, · · · ,L as

C1 = IN1 ,

C l =

l∑
j=2

 j∏
i=l

(H iFi)
l∏
i=j

(
FHi H

H
i

)+ INl ,
l = 2, · · · ,L, (11)

which are positive definite matrices.
In this paper, we assume all nodes in the relay system

are either static or have relatively low mobility. So it is rea-
sonable to assume quasi-static block fading channels, where
H l , l = 1, · · · ,L remains constant over a certain time
period before changing to other realizations. Given these,
high-precision CSI estimations can be obtained with small
mismatch against the real CSI. As requested by our algo-
rithms proposed later, the first relay node should acquire
H1, i.e., all Gi, i = 1, · · · ,Nu, as well as H2, while the
following relay nodes require only their respective forward
channel matrices. To estimate them, either standard training
methods [37] or those specific to relay-assisted MIMO chan-
nels like the least-squares based algorithm presented in [38]
can be applied.

On account of the inherent physical property of MIMO
channels, a linear non-regenerative MIMO relay system, in
order to support N0 active independent data streams in each
relay transmission, should satisfy

N0 6 min{rank(H1), · · · , rank(HL)}. (12)

Then from the fact that the dimensions of a matrix are greater
than its rank, the inequality N0 6 min{N1, · · · ,NL} is further

obtained. Besides, noticing that Al , l = 1, · · · ,L represents
an equivalent MIMO channel matrix, we should also control
N0 6 rank(Al) based on the same reason aforesaid, which,
together with the restriction of dimensions, rank(Al) 6
min{Nl,N0} = N0, leads to rank(Al) = N0. Following that,
rank(Fl) > N0, l = 1, · · · ,L is acquired from (9) as well as
the right half of the Sylvester inequality [39]:

rank(X)+ rank(Y )−k 6 rank(XY )

6 min{rank(X), rank(Y )} (13)

where matrices X ∈ Cm×k , Y ∈ Ck×n. In order to facilitate
the analysis and design of system parameters, we tend to
control rank(Fl) = N0, i.e., to hold the minimum requirement
for the transmission of N0 independent data streams. Lastly,
in case any hop allows more than one potential forward
relay nodes, this L-hop communication link should be set
up by choosing those nodes equipped with enough number
of antennas, based on appropriate upper layer protocols like
the ones in [40], and its specific configurations at physical
layer will be determined by the algorithms developed later in
Section III.

To recover source symbols, within the nonlinear
MMSE-DFE receiver at the destination node, the received
signal vector first goes through a linear feed-forward filter,
resulting in

z = WyL (14)

where W ∈ CN0×NL stands for the feed-forward matrix and
z M
=
[
z1, · · · , zN0

]T denotes the filtered signal vector. Then
for i = 1, · · · ,N0, a weighted linear combination of previous
symbol decisions is fed back and subtracted from zi, followed
by a hard decision detector to successively determine the
current symbol output.

Here the order in which the N0 filtered symbols are
detected has a significant influence on detection performance,
and several ordering algorithms are summarized in [41]. Gen-
erally speaking, those symbols received more reliably should
be detected earlier. In this paper, we detect the N0th symbol
first and the first symbol last, based on the assumption of
adopting a proper coding scheme whose subcodes at grow-
ing symbol indexes are increasingly more powerful. So we
have the N0th source symbol estimated as ŝN0 = zN0 , then
detected as s̃N0 , followed by the other source symbols being
estimated as

ŝi = zi −
N0∑

j=i+1

di,js̃j, i = 1, · · · ,N0 − 1 (15)

where di,j, j = i + 1, · · · ,N0 represents the decision feed-
back coefficient employed to cancel the ISI produced by the
jth previously detected symbol s̃j from the ith data stream. It
lies at the ith row and the jth column of the decision feedback
matrix D ∈ CN0×N0 , which is a strictly upper triangular
matrix owing to the detection order set above.

Following common practice as in [29]–[36], [41], etc.,
we assume the DFE receiver is free of error propagation,
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i.e., s̃j = sj. This assumption can be justified by the infor-
mation theory [42]: there always exists a coding scheme to
achieve an arbitrarily small probability of error for each data
stream with any rate below subchannel capacity, meaning
that the influence of error propagation can be minimized
through well-designed channel coding. Hence, via introduc-
ing the detected signal vector s̃ M

=
[
s̃1, · · · , s̃N0

]T , which is
assumed to be equal to s, and the source signal estimator
ŝ M
=

[
ŝ1, · · · , ŝN0

]T , we can reformulate (15) in a matrix
form as

ŝ = z− Ds̃ = WyL − Ds. (16)

Therefore, the estimation error vector e M
= ŝ− s is given by

e =
(
WAL − D− IN0

)
s+Wv̄L (17)

from which we are able to compute the error covariance,
or MSE, matrix EL M

= E
[
eeH

]
as

EL =
(
WAL − D− IN0

)(
WAL − D− IN0

)H
+WCLWH.

(18)

The feed-forward matrix W is scheduled to be opti-
mized in the first place by supposing that the other system
parameters, D and Fl , l = 1, · · · ,L, have already been
configured. Applying the orthogonality principle detailed
by Theorem 9.1 in [43] for MMSE estimation, we obtain
E
[
eyHL

]
= 0N0×NL , which leads to

W =
(
D+ IN0

)
AHL

(
ALA

H
L + CL

)−1
. (19)

Now substituting (19) back into (18) and utilizing the matrix
inversion lemma [44]:

(A+ XBY )−1 = A−1 − A−1X
(
B−1+ YA−1X

)−1
YA−1

(20)

for nonsingular A and B, we have

EL=
(
D+IN0

)[
IN0 − A

H
L

(
ALA

H
L + CL

)−1
AL

] (
D+ IN0

)H
= U

(
IN0+A

H
L C
−1
L AL

)−1
UH (21)

where, given for the convenience inmathematical derivations,

U M
= D+ IN0 ∈ CN0×N0 (22)

is also called a decision feedback matrix, which is an upper
triangular matrix with all its diagonal elements equal to 1.

To establish constraints on transmission power, we restrict
the power consumed at the ith source node for i = 1, · · · ,Nu
to be no more than budget qi, i.e.,

tr
{
E
[
uiu

H
i

]}
= tr

(
BiB

H
i

)
6 qi, (23)

and the power consumed at the (l − 1)th relay node for
l = 2, · · · ,L to be no more than budget pl , i.e.,

tr
{
E
[
xl x

H
l

]}
= tr

[
Fl
(
Al−1A

H
l−1 + C l−1

)
FHl
]

= tr
(
FlDl−1F

H
l

)
6 pl (24)

where the matrix

Dl M
= AlA

H
l + C l ∈ CNl×Nl , l = 1, · · · ,L − 1 (25)

is positive definite and essentially the covariance matrix of
yl , E

[
yl y

H
l

]
. These hold true as well for l = L. At this point,

employing the definitions of U and DL for (19) results in

W = UAHL D
−1
L . (26)

Ultimately, via minimizing tr(EL), which is the sum
of the MSEs in all data streams for their signal wave-
form estimations at the destination node, along with con-
straints (23) and (24), we can formulate the transceiver
optimization problem as

min
{Bi},{Fl },U

tr
[
U
(
IN0 + A

H
L C
−1
L AL

)−1
UH

]
(27)

s.t. tr
(
BiB

H
i

)
6 qi, i = 1, · · · ,Nu (28)

tr
(
FlDl−1F

H
l

)
6 pl, l=2, · · · ,L (29)

[U]m,n =
{
0, m > n
1, m = n

(30)

where sets

{Bi} M
=
{
B1, · · · ,BNu

}
, {Fl} M

= {F2, · · · ,FL} (31)

are made up of source precoding and relay amplifying matrix
variables, respectively.

The problem (27)–(30) is a complicated nonconvex prob-
lem with matrix variables, of which the globally optimal
solution is intractable through any practicable non-exhaustive
searching technique. So we take a step back and turn to look-
ing for its locally optimal solutions. Here iterative procedures
like those in [25] may be applied, but their demands for cen-
tralized processing imply a high computational complexity
as well as a large signaling overhead. What inspires us is the
MSE matrix decomposition method adopted in [26], where
the algorithms presented could be performed in much more
economic distributed manners. Note that [28] extended the
results in [26] to decompose a weighted MSE matrix. In the
following, we shall further generalize this decomposition
method to the DFE-based MSE matrix EL and accordingly
develop two distributed transceiver design algorithms.

III. ALGORITHMS DESIGN
The proposed transceiver design algorithms have three
major steps. Firstly, we show that EL can be decomposed
into the cascade of L MSE matrices, which enables the
problem (27)–(30) to be decomposed into L subproblems.
Then, an iterative process is exploited to jointly optimize {Bi}
andU . Lastly, closed-form water-filling solutions are derived
for {Fl}.
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A. DFE-BASED MSE MATRIX DECOMPOSITION
By exploring the optimal structures of the relay amplifying
matrices, we can recursively decompose the MSE matrix
at the receiver into those at respective relay nodes, which
forms a cascading construction and consequently enables
distributed parameter optimizations.
Theorem 1: The optimal structures of {Fl} for the

problem (27)–(30) are given by

Fl = T lUAHl−1D
−1
l−1, l = 2, · · · ,L (32)

where matrices T l ∈ CNl−1×N0 remain to be solved.
Using (32), EL can be decomposed as

EL = U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH

+

L∑
l=2

(
R−1l + T

H
l H

H
l H l T l

)−1
(33)

with

Rl M
= UAHl−1D

−1
l−1Al−1U

H
∈ CN0×N0 , l = 2, · · · ,L.

(34)

Hence, through substituting {T l} M
= {T2, · · · ,TL} for {Fl},

the problem (27)–(30) can be equivalently rewritten as

min
{Bi},{T l },U

tr

[
U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH

+

L∑
l=2

(
R−1l + T

H
l H

H
l H l T l

)−1]
(35)

s.t. tr
(
BiB

H
i

)
6 qi, i = 1, · · · ,Nu (36)

tr
(
T l Rl T

H
l

)
6 pl, l = 2, · · · ,L (37)

[U]m,n =
{
0, m > n
1, m = n

(38)

Proof: See Appendix A.
Here an interesting, also reasonable, point to note

about (32) is that, by referring back to (26), the optimal Fl
can be alternatively rewritten as

Fl = T lW l−1, l = 2, · · · ,L (39)

where, at the (l−1)th relay node, specific to the received sig-
nal vector yl−1 = Al−1s+ v̄l−1, matrixW l−1

M
= UAHl−1D

−1
l−1

can be equivalently viewed as the feed-forward matrix of
the MMSE-DFE receiver, with consistent feedback matrix
U for l = 2, · · · ,L, and the additional linear weighting
matrix T l remains to be determined later. It is worth men-
tioning that Rl is exactly the covariance matrix ofW l−1yl−1,
i.e., Rl = W l−1E

[
yl−1y

H
l−1

]
WH

l−1.
Besides, the first term in (33) is equivalent to the

DFE-based MSE matrix of the signal waveform estima-
tion at the first relay node. As each user’s transmission
power goes up, the Frobenius norm of FH1 H

H
1 H1F1 tends

towards infinity, hence making the first term in (33) con-
verge to the zero matrix 0N0×N0 . For l = 2, · · · ,L, respec-
tively, the lth hop brings about an MSE increment in (33),

i.e.,
(
R−1l + T

H
l H

H
l H l T l

)−1
. Here Rl can be approximated

as UUH when SNR is (moderately) high, which will be
elaborated in the next paragraph. As SNR increases due to
the growth of the transmission power at each source and
relay node, the Frobenius norm of THl H

H
l H l T l gets close

to infinity, thereby vanishing that MSE increment.
Making use of the matrix inversion lemma (20), we can

reformulate Rl for l = 2, · · · ,L as

Rl = UAHl−1

[
C−1l−1 − C

−1
l−1Al−1

(
IN0

+ AHl−1C
−1
l−1Al−1

)−1
AHl−1C

−1
l−1

]
Al−1U

H

= UAHl−1C
−1
l−1Al−1

(
IN0 + A

H
l−1C

−1
l−1Al−1

)−1
UH .

(40)

In the case of (moderately) high SNR environment where∥∥∥AHl−1C−1l−1Al−1∥∥∥F � ∥∥IN0

∥∥
F , (41)

we have the approximationRl ≈ UUH , irrelative to variables
{Bi} and {T l}, which implies that, provided U is a constant,
both of the objective function (35) and constraints (36)–(37)
can be split in terms of respective {Bi} and {T l}. Hence,
assuming relatively good channel state and a given deci-
sion feedback matrix, we are able to decompose the prob-
lem (35)–(38) into separate source precoding matrices opti-
mization problem

min
{Bi},U

tr
[
U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH

]
(42)

s.t. tr
(
BiB

H
i

)
6 qi, i = 1, · · · ,Nu (43)

[U]m,n =
{
0, m > n
1, m = n

(44)

and relay amplifying matrix optimization problems, with
each handling one T l for l = 2, · · · ,L as follows

min
T l

tr
[(
R−1l + T

H
l H

H
l H l T l

)−1]
(45)

s.t. tr
(
T l Rl T

H
l

)
6 pl . (46)

Here for simplifying algorithm design, we only consider
optimizing U in the problem (42)–(44), and directly use
the locally optimal {Bi} and U in the calculations of relay
amplifying matrices. This practice is equivalent to design the
decision feedback matrix merely within the first hop, which
makes sense in that, commonly the links between users and
the first relay node are more critical to the system perfor-
mance than those between other (relay or destination) nodes,
so it is reasonable to assign this extra assistance to the former.
In the next two subsections, we shall focus on solving the
problem (42)–(44) and the problem (45)–(46), respectively.
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B. JOINT SOURCE AND FEEDBACK
MATRICES OPTIMIZATION
It’s worth mentioning that each of the algorithms developed
in [26] and [28] has handled a degraded counterpart of
the problem (42)–(44) to optimize source precoding matri-
ces. In particular, for the case of U = IN0 in [26], via
introducing a positive semidefinite matrix and using the
Schur complement [45, sec. A.5.5], the problem (42)–(44)
could be converted into a convex semidefinite pro-
gramming (SDP) problem and thus solved through the
interior-point method [45, ch. 11]. When U was replaced by
a weighting matrix in [28], with its value depending on other
variables, the problem, though unable to be transformed into a
convex one, could be regarded as the WMMSE problem for a
multiuser single-hopMIMO systemwith linear receiver. Note
that the problem (42)–(44) is harder than that in [28], as U is
an unknown upper triangular matrix with unit diagonal ele-
ments, while the weighting matrix in [28] does not have such
constraint. Interestingly, the problem (42)–(44) can be rewrit-
ten as the MMSE problem for a multiuser single-hop MIMO
system with nonlinear DFE receiver. Namely, the objective
function in (42) satisfies

tr
[
U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH

]
= min

L
tr
{
E
[(
LHy1 − Ds− s

) (
LHy1 − Ds− s

)H]}
= min

L
tr
{
E
[(
LHy1 − Us

) (
LHy1 − Us

)H]}
(47)

where, for system across the first hop in Fig. 1, LH ∈ CN0×N1

acts as the feed-forward filter of the MMSE-DFE receiver,
and D is still the original feedback matrix awaiting to be
optimized.

To see the equivalence of (47) to (42), let’s work out the
MMSE problem (47), which, via utilizing y1 = A1s + v̄1 =
H1F1s+ v1 from (8)–(10), can be written as

min
L

tr
[
LH

(
H1F1FH1 H

H
1 + IN1

)
L

− LHH1F1UH
− UFH1 H

H
1 L+ UU

H
]
. (48)

Apparently, with positive definite D1 = H1F1FH1 H
H
1 +

IN1 as l = 1 in (25), the above is an unconstrained con-
vex problem. The problem (48) can be solved by employ-
ing the well-known optimality condition [45, eqn. (4.22)]
to make its gradient, i.e., 2

(
H1F1FH1 H

H
1 + IN1

)
L −

2H1F1UH [46], [47], equal to zero. Hence we obtain the
following solution

L =
(
H1F1FH1 H

H
1 + IN1

)−1
H1F1UH (49)

with full column rank. Then substituting (49) back into (48)
results in (42). So we are able to equivalently reformulate

the problem (42)–(44) as

min
{Bi},U,L

tr
[ (

LHH1F1 − U
)

×

(
LHH1F1 − U

)H
+ LHL

]
(50)

s.t. tr
(
BiB

H
i

)
6 qi, i = 1, · · · ,Nu (51)

[U]m,n =
{
0, m > n
1, m = n

(52)

which can be solved by an iterative process described below.
Firstly, we initializeF1 via setting its diagonal submatrices

Bi equal to
√
qi/MiIMi for i = 1, · · · ,Nu, which makes full

use of the power budget qi.
Next, with givenF1, let’s introduce the QR factorization of

the following full column rank matrix[
H1F1
IN0

]
= QR =

[
Q̄
Q̈

]
R (53)

where Q ∈ C(N1+N0)×N0 is semi-unitary, i.e., QHQ = IN0 ,
its first N1 and last N0 rows respectively constitute subma-
trices Q̄ ∈ CN1×N0 and Q̈ ∈ CN0×N0 , and the other factor
R ∈ CN0×N0 is a nonsingular upper-triangular matrix with
all its diagonal elements being nonzero (or even positive if
the Gram-Schmidt orthogonalizationmethod [48] is applied).
Thus we have

H1F1 = Q̄R, Q̈ = R−1. (54)

Via utilizing (53) and (54), we are able to derive the optimal
U and L as follows.
Theorem 2: Based on the QR factorization (53) with

given F1, the optimal feedback matrix U and matrix L can
be expressed as

U = D−1R R, L = Q̄D−HR (55)

where DR ∈ CN0×N0 stands for a diagonal matrix extracting
all the diagonal elements from matrix R.

Proof: See Appendix B.
Expression (55) is inspired by Theorem 1 in [36], which

aims at the MMSE-DFE receiver design of a single-user
multi-hop MIMO relay system, while here, Theorem 2 is
specific to that of a multiuser single-hop MIMO system,
instead.

Then, with U and L obtained in the current iteration, {Bi}
can be optimized by solving

min
{Bi}

tr
[(
LHH1F1 − U

) (
LHH1F1 − U

)H]
(56)

s.t. tr
(
BiB

H
i

)
6 qi, i = 1, · · · ,Nu (57)

which is derived directly from the problem (50)–(52). Here,
in order to facilitate analysis, we define Z M

= LHH1 ∈

CN0×N0 , followed by introducing submatrices Zi ∈ CN0×Mi

and U i ∈ CN0×Mi for i = 1, · · · ,Nu, which are respec-
tively composed of Mi columns in Z and U , from the(∑i−1

j=0Mj + 1
)
th to the

(∑i
j=0Mj

)
th one, with M0 set
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equal to 0. Then, the objective function in (56) can be
reformulated as

Nu∑
i=1

tr
[
(ZiBi − U i) (ZiBi − U i)

H
]

(58)

which enables us to decompose the problem (56)–(57) into
Nu subproblems, each related to one user’s precoding matrix
Bi for i = 1, · · · ,Nu as follows

min
Bi

tr
[
(ZiBi − U i) (ZiBi − U i)

H
]

(59)

s.t. tr
(
BiB

H
i

)
6 qi. (60)

This convex quadratically constrained quadratic program-
ming (QCQP) problem can be solved, with the aid of a
Lagrange multiplier λi ∈ R, via Karush-Kuhn-Tucker (KKT)
optimality conditions [45, sec. 5.5.3], which are necessary
and sufficient, appearing here as

tr
(
BiB

H
i

)
− qi 6 0, λi

[
tr
(
BiB

H
i

)
− qi

]
= 0,

λi > 0,
(
ZHi Zi + λiIMi

)
Bi = ZHi U i.

(61)

Depending on the value of λi, (61) can be handled under two
separate cases. As λi = 0, we have Bi =

(
ZHi Zi

)†
ZHi U i,

which is just the optimal solution, provided that it also satis-
fies the constraint in (60). Otherwise, as λi > 0, we have

Bi =
(
ZHi Zi + λiIMi

)−1
ZHi U i (62)

where λi is determined by substituting (62) into the equation
tr
(
BiB

H
i

)
− qi = 0, with the result able to be solved through

the bisection method [49].
During the above iterative process, each conditional update

of respective U , L and {Bi} solves a convex optimization
problem, which indicates monotonic convergence towards a
Nash point as the iterations progress [50]. Note that for a
block multiconvex problem like (50)–(52), a stationary point
must be a Nash point, but a Nash point is not necessarily
a stationary point. Although here we can only guarantee
to achieve a Nash point, neither the globally optimal point
nor a stationary point, the Monte Carlo simulation results
in Section V show much better MSE and BER performance
of our proposed algorithms under (moderately) high SNR
environment than other existing approaches.

C. RELAY AMPLIFYING MATRICES OPTIMIZATION
On the basis of U and {Bi} obtained in Subsection III-B,
a closed-formwater-filling solution of each problem (45)–(46)
with respect to variable T l for l = 2, · · · ,L can be derived as
follows.

Here, through introducing T̃ l M
= T lR

1/2
l ∈ CNl−1×N0 , we

first reformulate the problem (45)–(46) as

min
T̃ l

tr
[
R1/2
l

(
IN0 + T̃

H
l H

H
l H l T̃ l

)−1
R1/2
l

]
(63)

s.t. tr
(
T̃ l T̃

H
l

)
6 pl . (64)

Now let us introduce the eigenvalue decomposition (EVD) of
HH
l H l and that of Rl as

HH
l H l = V l ΛlVH

l , Rl = P lΣ lPHl (65)

where V l ∈ CNl−1×Nl−1 and P l ∈ CN0×N0 are unitary
matrices, Λl ∈ CNl−1×Nl−1 and Σ l ∈ CN0×N0 are diagonal
eigenvalue matrices with their diagonal elements both sorted
in increasing orders. From Lemma 2 in [26], the singular
value decomposition (SVD) structure of the optimal T̃ l for
the problem (63)–(64) is given by

T̃ l = V l,1Ω lPHl (66)

where V l,1 ∈ CNl−1×N0 is a submatrix of V l , containing its
rightmost N0 columns, and Ω l ∈ CN0×N0 is an unknown
diagonal singular value matrix. Thus we have

T l = T̃ lR
−1/2
l = V l,1Ω lPHl P lΣ

−1/2
l PHl = V l,1∆lPHl .

(67)

Here ∆l
M
= Ω lΣ

−1/2
l ∈ CN0×N0 remains to be optimized.

Further, for j = 1, · · · ,N0, we denote the jth diagonal
element of∆l ,Σ l by δl,j, σl,j, respectively, and each of theN0
increasing diagonal elements lying at the right-bottom corner
of Λl by λl,j. Apparently, δl,j > 0, σl,j > 0, and on account
of rank(H l) > N0, λl,j > 0. Hence by substituting (67)
back into (45)–(46), this matrix optimization problem can be
equivalently rewritten as the following convex power loading
problem with respect to the squares of scalar variables δl,j,

min
{δ2l,j}

N0∑
j=1

1

σ−1l,j + δ
2
l,jλl,j

(68)

s.t.
N0∑
j=1

δ2l,jσl,j 6 pl (69)

where
{
δ2l,j

}
M
=
{
δ2l,1, · · · , δ

2
l,N0

}
.

Similar to Example 5.2 in [45], via applying KKT opti-
mality conditions, the problem (68)–(69) has a closed-form
water-filling solution given by

δ2l,j =
1
λl,j

(√
λl,j

µlσl,j
−

1
σl,j

)+
, j = 1, · · · ,N0. (70)

Here µl > 0 is a Lagrangian multiplier satisfying

N0∑
j=1

σl,j

λl,j

(√
λl,j

µlσl,j
−

1
σl,j

)+
= pl . (71)

Its left-hand side can be reformulated as
N0∑
j=1

(√
σl,j

λl,j

1
√
µl
−

1
λl,j

)+
(72)

which is a piecewise-linear non-decreasing function of
1/
√
µl , with turning points at 1/

√
λl,jσl,j for j = 1, · · · ,N0.

VOLUME 7, 2019 42525



Y. Lv et al.: Multiuser Multi-Hop AF MIMO Relay System Design Based on MMSE-DFE Receiver

So there is a unique solution meeting (71), able to be readily
determined.

Eventually, via combining both (32) and (67), we obtain
our resultant relay amplifying matrices

Fl = V l,1∆lPHl UA
H
l−1D

−1
l−1, l = 2, · · · ,L. (73)

Moreover, within (moderately) high SNR range, inspired
from (40)–(41), we can simplify the optimization process
of {Fl} by approximating Rl as UUH , regardless of the
index l, which is still positive definite. Thus the prob-
lem (45)–(46) for l = 2, · · · ,L becomes

min
T l

tr

{[(
UUH

)−1
+ THl H

H
l H l T l

]−1}
(74)

s.t. tr
[
T l
(
UUH

)
THl

]
6 pl . (75)

In a similar way, we first introduce the EVD:UUH
= PΓ PH ,

where P ∈ CN0×N0 is a unitary matrix, and Γ ∈ CN0×N0

is a diagonal eigenvalue matrix whose diagonal elements,
denoted by γj for j = 1, · · · ,N0, are positive and sorted in
increasing order. Following that, by using Lemma 2 in [26],
the SVD structure of the optimalT l for the problem (74)–(75)
can be derived as

T l = V l,1Θ lPH . (76)

Here variable Θ l ∈ CN0×N0 is a diagonal singular value
matrix, with its jth nonnegative diagonal element denoted
by θl,j for j = 1, · · · ,N0. Substituting (76) back into the
problem (74)–(75) and applying KKT optimality conditions,
we obtain the following closed-form water-filling solution

θl,j =

 1
λl,j

(√
λl,j

νlγj
−

1
γj

)+1/2

, j = 1, · · · ,N0 (77)

where νl > 0 is the Lagrangian multiplier, determined by

N0∑
j=1

γj

λl,j

(√
λl,j

νlγj
−

1
γj

)+
= pl . (78)

At last, via combining both (32) and (76), a new design of
{Fl} is given below,

Fl = V l,1Θ lPHUAHl−1D
−1
l−1, l = 2, · · · ,L. (79)

IV. COMMENTS AND APPLICATIONS
So far, we have finished the theoretical derivations of our
two newly proposed algorithms. For convenience, we denote
the algorithm which computes the relay amplifying matrices
as (73) by the MMSE-DFE algorithm, while its simplified
version based on (79) is named as the SMMSE-DFE algo-
rithm. Their complete procedures of transceiver design are
summarized in Table 1, where we initialize the feedback
matrix U as IN0 to indicate the original linear receiver, and
the precoding matrices Bi as

√
qi/MiIMi to keep the source

signals unchanged with maximum permissible transmission
power qi. For the loop of joint U and F1 optimization,

TABLE 1. Procedures of (S)MMSE-DFE algorithms.

L acts as an auxiliary variable, the variable with superscript
(n) denotes that it is at the nth iteration, and tolerance ε takes
a small enough positive value, only lower than which the
convergence error, expressed as(∥∥U (n)

− U (n−1)∥∥
F +

∥∥F(n)
1 − F

(n−1)
1

∥∥
F

)/
2N0 , (80)

is acceptable. (80) is essentially an average of the differences
of all entries in bothU andF1 over two consecutive iterations,
which works well through testing.

Similar to the algorithms in [26], the proposed algorithms
can also be implemented in distributed manners, with most
system parameters optimized locally. For details about the
MMSE-DFE algorithm, at the first relay node, we carry out
the iterative process of joint source and feedback matrices
design, with the resulting Bi for i = 1, · · · ,Nu sent back to
each respective user. Next, from A1, D1 and U , R2 is com-
puted so as to obtain the first relay amplifyingmatrixF2, after
which we prepare A2, D2 and deliver them along with U to
the second relay node. Then for l = 2, · · · ,L−1, based onAl ,
Dl and U forwarded by the (l − 1)th relay node, the lth relay
node, in turns, computes Rl+1, obtains Fl+1, prepares Al+1,
Dl+1 and delivers them as well as U to the next node in
need. During the algorithm execution, preparations for both
Al and Dl are facilitated by their recursive relationships. In
particular, from (9) and (11), we have

Al = H lFlAl−1, (81)

C l = H lFlC l−1FHl H
H
l + INl (82)

for l = 2, · · · ,L, and by further considering definition (25),
we obtain

Dl = H lFlDl−1FHl H
H
l + INl , l = 2, · · · ,L. (83)

For the SMMSE-DFE algorithm, Rl is simplified and fixed
to UUH despite the index l, which, compared with (34),
leaves out one matrix inversion and several matrix multipli-
cations. Particularly, we may also perform the computation
of Rl = UUH and its EVD for only one time in this
case, with the results, Γ and P, achieved at the first relay
node and forwarded to subsequent ones, together with U
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and other parameters, to be directly used there. Hence the
SMMSE-DFE algorithm may significantly reduce the com-
putational complexity.

Noteworthily, in view of notational convenience, this
paper focuses on narrow-band single-carrier systems,
while the generalized results for broadband multicarrier
relay systems can be directly obtained, following either
subcarrier-independent or subcarrier-cooperative approaches
as analyzed in [19].

In this paper, we make comparisons among four algo-
rithms, including those two proposed here, the first algorithm
designed in [26], denoted by the LMMSE algorithm since it
uses linear receiver, and the first algorithm in [28], named as
theWMMSE algorithm for its constructed objective function.
The reasons for selecting them are that they all target at
multiuser multi-hop AF MIMO relay systems and utilize
certain MSE matrix decomposition methods. In the LMMSE
algorithm, {Bi} are obtained via solving a convex SDP prob-
lem through the well-developed interior-point method, and
similar to our treatments, {Fl} are optimized hop-by-hop in a
distributed manner, except no need to optimize and deliver
U . The criterion employed by the WMMSE algorithm is
to maximize the MI between source and destination nodes,
which can be transformed into a weightedMSEminimization
problem with definite weighting matrix. Two nested iterative
loops constitute its optimization procedures, with the inner
loop optimizing {Bi} and the outer loop focusing on {Fl} as
well as the weighting matrix, which require centralized pro-
cessing. Therefore, theWMMSE algorithm has a higher com-
plexity than the other three distributed approaches, among
which the LMMSE algorithm owns the lowest complexity
as it only needs to optimize the source and relay matrices.
Compared with the LMMSE and WMMSE algorithms, the
utilization of DFE receivers may further reduce the sys-
tem MSE, with the SMMSE-DFE algorithm slightly infe-
rior to the MMSE-DFE algorithm. Section V will elaborate
their performance comparisons in more detail via numerical
simulations.

We anticipate that the newly proposed algorithms could
be applicable in a few practical scenarios, where fixed relay
nodes help to deliver multiple users’ aggregate data streams
over long distances. Typical application examples include:
the multi-hop wireless backhaul network for multimedia
broadband access [51], the multi-hop wireless sensor net-
work for mine tunnel monitoring [52], the multi-hop under-
water acoustic network for reliable communication [53], etc.
Besides, several industry standards take into consideration
the relay issues as well, e.g., IEEE 802.16j-2009 [54] spec-
ifying both physical and medium access control (MAC) layer
enhancements to enable relay operations for high-speed wire-
less access systems. Also worth mentioning, the millimeter-
wave distribution network (MDN) [55] may benefit from our
work to establish dense gigabit-speed backhaul. Note that the
IEEE P802.11 Task Group AY has recently made MDN a use
case and been adding features to support it [56].

V. NUMERICAL SIMULATIONS
This section presents the performance of theMMSE-DFE and
SMMSE-DFE algorithms in optimizing multiuser multi-hop
AF MIMO relay systems through numerical simulations.
Here we compare themwith the aforementioned LMMSE and
WMMSE algorithms over several criteria, including MSE,
BER, MI and computational complexity.

Intel® CoreTM2 Duo Processor E7500 [57] is employed to
runMATLAB® R2015b under 32-bit Windows 10 operating
system. When programming to solve the SDP problem in the
LMMSE algorithm, we utilize CVX [58], a MATLAB-based
software for convex optimization.

Following Monte Carlo method, the simulation results
shown below are set to be averaged over 1000 independent
channel realizations, where a flat Rayleigh fading environ-
ment is assumed, with all the entries in channel matrices
having zero means. Besides, to normalize the impact from
the number of transmitting antennas at each source and relay
node upon the received SNR at the destination node, we con-
figure the variances of entries in Gi as 1/Mi, i = 1, · · · ,Nu,
and those in H l as 1/Nl−1, l = 2, · · · ,L. The distribution of
noise vl for l = 1, · · · ,L is subject to CN

(
0, INl

)
, denoting

a circularly symmetric complex Gaussian (CSCG) random
vector with zero mean and identity covariance matrix INl .
Without loss of generality, we assume unified transmission
power budgets for both source and relay nodes, i.e., qi = Q,
i = 1, · · · ,Nu and pl = P, l = 2, · · · ,L. Note that
the propagation path loss is implicitly considered through
P and Q, as we normalize the noise power to be unit. Based
on several trials, 10−3 may act as a suitable value of the
tolerance ε to stop the iterations in Table 1. For respective per-
formance indicators versus variable P, comparisons among
the four algorithms are implemented over three different
examples of system settings as listed in Table 2, where ‘‘Ex.’’
is short for the word ‘‘Example’’, {Mi}

M
=
{
M1, · · · ,MNu

}
and

{Nl} M
= {N1, · · · ,NL}.

TABLE 2. Examples of system settings.

A. MSE PERFORMANCE
For all data streams, the arithmetic average of their MSE
is computed as tr(EL)/N0. Fig. 2 shows the MSE compar-
isons among all four algorithms under different examples,
with P ranging from 0 dB to 60 dB. It’s verified by all three
examples that, when the value of P is relatively low, sig-
nifying a poor SNR environment where to decompose the
problem (35)–(38) into subproblems (42)–(44) and (45)–(46)
is not suitable, our two algorithms perform worse than the
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FIGURE 2. MSE versus P performance comparisons for (a) Ex. 1-2 and (b) Ex. 3.

others, while under (moderately) high SNR environment,
in contrast to the LMMSE and WMMSE algorithms, we
observe much enhanced performance of both MMSE-DFE
and SMMSE-DFE algorithms. Moreover, the MSE curves of
the two proposed algorithms almost overlap with each other
so that we can substitute the latter for the former with only
a negligible performance degradation. Remarkably, in each
curve, there’s always a rapid fall of MSE as P varies in
medium range, which is mainly attributed to the growth of
SNR, as well as the high spatial diversity order obtained by
the underloaded utilization of available data streams, since
we have N0 =

∑Nu
i=1Mi < Nl for l = 1, · · · ,L in Table 2.

Besides, all the simulations are executed over fixed Q, which
restricts the performance to be further improved once P
becomes large enough. This saturation effect can be read-
ily noticed in fig.2a for P greater than 40 dB. Regarding
each algorithm, Ex. 2 always underperforms Ex. 1 owing
to the increased number of users, which adds system load,
and the increased number of hops, which brings in more
noise. Meanwhile, Ex. 3 has the maximum numbers of both
users and hops, leading to the highest MSE among the three
examples for P lower than approximately 30 dB. However, its
performance turns out to be the best after P exceeds 40 dB,
thanks to the raising of Q from 20 dB to 25 dB.

B. BER PERFORMANCE
Here we illustrate the BER performance of the proposed
algorithms under two different simulation schemes in Fig. 3
and Fig. 4, respectively.

The first scheme follows the assumption of no error
propagation in DFE receivers to see the ideal algorithm

TABLE 3. The Hamming codes in use.

performance without the aid of channel coding. For each
channel realization, ten thousand QPSK symbols per data
stream are transmitted through the channel, then are demod-
ulated with the resulting error bits counted up for computing
the average BER. Remarkably, in Fig. 3, it can be seen
that the proposed algorithms have a better BER performance
than existing approaches, e.g., for Ex. 2 at P = 30 dB, the
(S)MMSE-DFE algorithms outperform the others by even
more than three orders ofmagnitude.Moreover, via observing
both Fig. 2 and Fig. 3, one can recognize that an algorithm
having a better MSE also has a lower system BER, indicating
that MSE is a sensible design criterion. We can also observe
that the SMMSE-DFE algorithm has only a negligible higher
BER than the MMSE-DFE algorithm.

The second simulation scheme, which is closer to a prac-
tical communication system, adopts Hamming codes [59]
and considers the error propagation in DFE receivers, i.e.,
to feed back the QPSK symbols regenerated from previ-
ously decoded information bits for each data stream. The
simulation results in Fig. 4 are obtained by transmitting
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FIGURE 3. BER versus P performance comparisons for (a) Ex. 1-2 and (b) Ex. 3 with no error propagation in DFE receivers and no channel coding.

FIGURE 4. BER versus P performance comparisons for (a) Ex. 1-2 and (b) Ex. 3 with error propagation in DFE receivers and Hamming codes.

twenty thousand information bits per data stream through the
system for each channel realization. As shown in Table 3,
for the (S)MMSE-DFE algorithms, in order to minimize
the error propagation from earlier detected symbols to
later detected ones, we resort to the idea of unequal error
protection (UEP) [41], [60] and employ increasingly more
powerful Hamming codes from the first to the last user.

Besides, for all the users in the LMMSE and WMMSE algo-
rithms, we employ the (7, 4) Hamming code, which is the
most powerful code used for the (S)MMSE-DFE algorithms.
Namely, the channel coding for the LMMSE and WMMSE
algorithms is more advantageous. Even so, within relatively
high range of P in Fig. 4, the BER performance of our two
proposed algorithms is still better than that of the LMMSE
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FIGURE 5. MI versus P performance comparisons for (a) Ex. 1-2 and (b) Ex. 3.

and WMMSE algorithms. It can be also observed that as the
value of P is low, e.g., as P < 19 dB for Ex. 2, our algorithms
perform slightly worse than the others, but the disadvantage
is not obvious. Thus overall, the (S)MMSE-DFE algorithms,
despite suffering from the error propagation, have an out-
standing BER performance.

C. MI PERFORMANCE
The MI performance is also an important indicator used
for evaluating the effectiveness of data transmission. Note
that the capacity of a multi-hop MIMO relay channel
with arbitrary signal processing methods adopted at each
relay node is still a challenging problem under research.
Nevertheless, aiming at the specific system model as shown
in (8) with l = L, i.e., yL = ALs+ v̄L , which is established on
the basis of AF protocol and HD strategy, we can yet derive
the upper boundary MI between source and destination nodes
by assuming CSCG input,

I
(
yL ; s

)
= log det

(
IN0 + A

H
L C
−1
L AL

)
. (84)

This result can be directly obtained through a similar
approach as that in [61], for completeness, details of which
are shown in Appendix C.

Observed from Fig. 5, the four algorithms have similar MI
performance, but within the close-up views, we are still able
to see the small differences. Here the WMMSE algorithm
and the LMMSE algorithm respectively own the best and
the worst behavior, while the curves of the (S)MMSE-DFE
algorithms lying in the middle and approximating to that
of the WMMSE algorithm, so the DFE-based algorithms
also ensure relatively good MI performance. Note that we

compute the totalMI for all data streams. Hence, fromEx. 1 to
Ex. 2, despite the increased number of hops, which would
result in the decline of MI, we eventually obtain a higher MI
due to the increase of N0 from 5 to 7. Besides, compared
with Ex. 2, the system in Ex. 3 has the same number of data
streams. However, the latter system has more hops as well
as higher transmission power Q for each user, which have
opposite effects on the system MI. Similar to the case in
Fig. 2, only at about 35 dB for the value of P, the curves of
Ex. 3 start to exceed those owned by Ex. 2, i.e., the second
setting plays a dominant role herefrom.

D. COMPUTING TIME AND SIGNALLING OVERHEAD
To reflect the computational complexity of each algorithm,
which depends on the number of iterations that is hard to be
predicted beforehand, we record the execution time instead
as shown in Table 4. Note that the unit of time adopted by its
fourth column is millisecond (ms), and our simulation plat-
form can only be accurate to 1 microsecond (µs), hence the
digits at the last decimal place of this column are not signifi-
cant, but the outcomes of averaging operations. Here the first
three distributed algorithms optimize {Bi} through iterative
loops, which are irrelevant to variable P, then directly work
outFl for l = 2 , · · · ,L one after another, while theWMMSE
algorithm adopts nested inner and outer loops to jointly opti-
mize {Bi} and {Fl}, with both of their time costs strongly
depending on the value of P. Consequently, for the WMMSE
algorithm, the entries in Table 4 are presented in ranges,
rather than averages. Among those three algorithms whose
computing time is insensitive to P, the LMMSE algorithm is
the fastest, and as the numbers of users and hops increase, its
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TABLE 4. Computing time comparisons.

high efficiency over the other algorithms becomes even more
apparent. For our two proposed algorithms, their respective
loops to obtain both {Bi} and U are exactly the same and
thus consume equal time, while the distinctions are in the
procedures to obtain {Fl}, where, since the SMMSE-DFE
algorithm only needs to compute the EVD of Rl = UUH for
one time, it has less matrix operations and, therefore, is faster
than the MMSE-DFE algorithm. It’s worth mentioning that,
towards all three distributed algorithms, the first relay node
undertakes the heaviest amount of computations, while the
tasks of the other relay nodes are much easier. This should be
considered in resource allocation.

As to the issue on signalling overhead, detailed analysis
has already been presented in Section IV, so here we intend
to make a brief summary. The WMMSE algorithm requires
centralized processing, which has a high signalling overhead
to collect and deliver system parameters, while the other
three algorithms are able to be implemented in distributed
manners, hence having lighter signalling overhead. Among
them, the LMMSE algorithm is the most economic, as the
DFE-based algorithms have additional demands for transmit-
tingU hop-by-hop from the first relay node to the destination
node.

VI. CONCLUSION
Targeting at uplink multiaccess scenarios in applications like
high-speed wireless backhaul, we propose two promising
algorithms to optimize the multiuser multi-hop AF MIMO
relay system, with an MMSE-DFE receiver at the desti-
nation node for improving the reliability of long distance
communication. In particular, we demonstrate that the pre-
viously discovered MSE matrix decomposition method can
be generalized to this new system architecture, enabling sep-
arate optimizations for source precoding and relay amplify-
ing matrices, of which the former, along with the decision
feedback matrix, is achieved by an iterative process, while

for the latter, two types of closed-form water-filling solutions
are derived. From simulation and analysis in terms of MSE,
BER, MI as well as computing time and signalling overhead,
the outstanding performance of our two proposed algorithms
is verified by comparisons with existing works.

APPENDIX A
PROOF OF THEOREM 1
The DFE-based MSE matrix EL at the destination node can
be reformulated as

EL = U
[
IN0 − A

H
L

(
CL + ALA

H
L

)−1
AL

]
UH (85)

= U
[
IN0 − A

H
L−1F

H
L H

H
L

(
INL

+HLFLDL−1F
H
L H

H
L

)−1
HLFLAL−1

]
UH (86)

= U
{
IN0 − A

H
L−1

[
D−1L−1 −

(
DL−1

+ DL−1F
H
L H

H
L HLFLDL−1

)−1]
AL−1

}
UH (87)

= U
(
IN0 + A

H
L−1C

−1
L−1AL−1

)−1
UH
+ Ã

H
L−1

(
DL−1

+ DL−1F
H
L H

H
L HLFLDL−1

)−1
ÃL−1 (88)

where the matrix inversion lemma (20) is applied to obtain
(85) and (88), the recursive relationships of Al and C l ,
i.e., (81) and (82), are used to achieve (86), the equation
XH (I + XYXH )−1 X = Y−1−

(
Y + YXHXY

)−1
for iden-

tity matrix I and nonsingular matrix Y of arbitrary orders
is employed to derive (87), and ÃL−1 M

= AL−1UH
∈

CNL−1×N0 . Noteworthily, in (88), the first term can be equiv-
alently viewed as the degenerate DFE-based MSE matrix
for the signal transmission across the first L − 1 hops, and
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the second term represents the MSE increment introduced by
the last hop. Besides, the first term in (88) is unrelated to FL ,
so extracted from the problem (27)–(30), the optimization
problem only towards FL with other variables regarded as
constants is given by

min
FL

tr
[
Ã
H
L−1

(
DL−1 + DL−1

× FHL H
H
L HLFLDL−1

)−1
ÃL−1

]
(89)

s.t. tr
(
FLDL−1F

H
L

)
6 pL . (90)

Via further introducing F̃L M
= FL D

1/2
L−1 ∈ CNL−1×NL−1 , the

problem (89)–(90) can be rewritten as

min
F̃L

tr
[
Ψ H
L−1

(
INL−1 + F̃

H
L H

H
L HLF̃L

)−1
Ψ L−1

]
(91)

s.t. tr
(
F̃LF̃

H
L

)
6 pL (92)

where matrix Ψ L−1
M
= D−1/2L−1 ÃL−1 = D−1/2L−1 AL−1U

H
∈

CNL−1×N0 , and from the left half of the Sylvester inequality
(13), we have rank(Ψ L−1) = rank

(
ÃL−1

)
= N0.

Now let us introduce the following EVD:

HH
L HL = VLΛLVH

L , (93)

and SVD:

Ψ L−1 = UΨ ΣΨVH
Ψ . (94)

Here matrices VL , ΛL ∈ CNL−1×NL−1 , UΨ ∈ CNL−1×N0 , ΣΨ ,
VΨ ∈ CN0×N0 , and the diagonal elements of ΛL , ΣΨ are
both sorted in increasing orders. Based on Lemma 2 in [26],
the SVD of the optimal F̃L for the problem (91)–(92) is
given by

F̃L = VL,1ΩLUH
Ψ (95)

where VL,1 ∈ CNL−1×N0 contains the rightmost N0 columns
of VL , and ΩL ∈ CN0×N0 is the diagonal singular value
matrix. Then, via simple manipulations, we have

F̃L = VL,1ΩLΣ
−1
Ψ VH

ΨVΨ ΣΨU
H
Ψ = TLΨ H

L−1 (96)

where TL M
= VL,1ΩLΣ

−1
Ψ VH

Ψ ∈ CNL−1×N0 , so

FL = F̃LD
−1/2
L−1 = TLΨ H

L−1D
−1/2
L−1

= TLUAHL−1D
−1
L−1. (97)

From (97) and once again the matrix inversion lemma (20),
the second term in (88) can be reformulated as

Ã
H
L−1

(
DL−1 + ÃL−1T

H
L H

H
L HLTLÃ

H
L−1

)−1
ÃL−1

= Ã
H
L−1

[
D−1L−1 − D

−1
L−1ÃL−1T

H
L H

H
L

×

(
INL +HLTLÃ

H
L−1D

−1
L−1ÃL−1T

H
L H

H
L

)−1
×HLTLÃ

H
L−1D

−1
L−1

]
ÃL−1

=

[(
Ã
H
L−1D

−1
L−1ÃL−1

)−1
+ THL H

H
L HLTL

]−1
. (98)

Substituting (98) back into (88) and making use of (34),
we obtain

EL = EL−1 +
(
R−1L + T

H
L H

H
L HLTL

)−1
(99)

where

EL−1 M
= U

(
IN0 + A

H
L−1C

−1
L−1AL−1

)−1
UH (100)

is regarded as the equivalent DFE-based MSE matrix at the
(L − 1)th relay node, which can also be decomposed in a
similar way as (85)–(99).

Hence the decomposition process of EL is recursive, dur-
ing which, by introducing T l for l = 2, · · · ,L, we can
successively get the optimal structures of {Fl}, i.e., Fl =
T lUAHl−1D

−1
l−1, resulting in a cascading construction:

El = El−1 +
(
R−1l + T

H
l H

H
l H l T l

)−1
, l = 2, · · · ,L

(101)
with

El−1 M
= U

(
IN0 + A

H
l−1C

−1
l−1Al−1

)−1
UH (102)

and particularly,

E1 = U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH . (103)

Therefore at last, EL = U
(
IN0 + F

H
1 H

H
1 H1F1

)−1
UH
+∑L

l=2

(
R−1l + T

H
l H

H
l H l T l

)−1
, and the transmission power

consumed by each relay node in (29) can be rewritten as

tr
(
T lRlT

H
l

)
, l = 2, · · · ,L, (104)

which turn the problem (27)–(30) into (35)–(38).

VII. APPENDIX B
PROOF OF THEOREM 2
For the hypothetical multiuser single-hop MIMO system,
assuming correct decisions are made in its DFE receiver, the
source signal estimator is given by š = LHy1−Ds. Therefore,
as to the kth data stream,

lHk y1 −
N0∑

n=k+1

dk,nsn, k = 1, · · · ,N0 − 1, (105a)
šk =

 lHk y1, k = N0 (105b)

where š M
=
[
š1, · · · , šN0

]T , L M
=
[
l1, · · · , lN0

]
, dk,n indicates

the feedback coefficient at the kth row and the nth column of
matrixD, and sn denotes the nth source symbol. Towards each
data stream, we measure its performance in terms of MSE,
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which is derived as

MSEk M
= E

[∣∣šk − sk ∣∣2] =∣∣∣lHk [H1F1]k − 1
∣∣∣2 + k−1∑

n=1

∣∣∣lHk [H1F1]n
∣∣∣2 + lHk lk

+

N0∑
n=k+1

∣∣∣lHk [H1F1]n − dk,n
∣∣∣2, k = 1, · · · ,N0 − 1,

(106a)


∣∣∣lHk [H1F1]k − 1

∣∣∣2 + k−1∑
n=1

∣∣∣lHk [H1F1]n
∣∣∣2 + lHk lk ,

k = N0. (106b)

To minimize the MSEk within (106a), obviously, dk,n
should satisfy

∣∣lHk [H1F1]n − dk,n
∣∣ = 0 for k = 1, · · · ,N0−1

and n = k + 1, · · · ,N0, hence

dk,n = lHk [H1F1]n , (107)

or equivalently shown in matrix form as

D = U
[
LHH1F1

]
. (108)

Then, substituting (107) back into (105) and (106), we have

šk = lHk

(
k∑

n=1

[H1F1]n sn + v1

)
= lHk ([H1F1]1:k [s]1:k + v1) (109)

and

MSEk =
∣∣∣lHk [H1F1]k − 1

∣∣∣2
+

k−1∑
n=1

∣∣∣lHk [H1F1]n
∣∣∣2 + lHk lk (110)

for k = 1, · · · ,N0.
Note that the Hessian matrix of (110) with respect to lk ,

∇
2
lkMSEk = 2

(
k∑

n=1

[H1F1]n [H1F1]Hn + IN1

)
, (111)

is positive definite. Thus the second-order convexity condi-
tion [45, sec. 3.1.4] confirms (110) as a convex function for
variable lk . Based on the MMSE criterion, according to the
optimality condition [45, eqn. (4.22)], the gradient ofMSEk ,

∇lkMSEk = 2

(
k∑

n=1

[H1F1]n [H1F1]Hn + IN1

)
× lk − 2 [H1F1]k , (112)

should be equal to zero. Hence the optimal lk is given by

lk =

(
k∑

n=1

[H1F1]n [H1F1]Hn + IN1

)−1
[H1F1]k (113)

=

[(
[H1F1]1:k [H1F1]H1:k + IN1

)−1
[H1F1]1:k

]
k
(114)

for k = 1, · · · ,N0, which, from the matrix inversion
lemma (20), can be rewritten as

lk =
[
[H1F1]1:k

(
[H1F1]H1:k [H1F1]1:k + Ik

)−1]
k
. (115)

Via applying (53) and (54), we have

[H1F1]1:k =
[
Q̄
]
1:k [R]1:k,1:k . (116)

Therefore, substituting (116) back into (115) and noticing that
Ik can be reformulated as

Ik =
[
IN0

]H
1:k

[
IN0

]
1:k =

[
Q̈R

]H
1:k

[
Q̈R

]
1:k

= [R]H1:k,1:k
[
Q̈
]H
1:k

[
Q̈
]
1:k [R]1:k,1:k , (117)

we obtain

lk =
[[
Q̄
]
1:k [R]1:k,1:k

[
[R]H1:k,1:k

([
Q̄
]H
1:k

[
Q̄
]
1:k

+
[
Q̈
]H
1:k

[
Q̈
]
1:k

)
[R]1:k,1:k

]−1]
k

(118)

=

[[
Q̄
]
1:k [R]1:k,1:k

(
[R]H1:k,1:k [Q]

H
1:k [Q]1:k

× [R]1:k,1:k
)−1]

k
=

[[
Q̄
]
1:k [R]

−H
1:k,1:k

]
k

(119)

=
[
Q̄
]
k [R]

−∗

k,k , k = 1, · · · ,N0. (120)

Consequently, the optimal L is acquired from (120) as L =

Q̄D−HR . Furthermore, through (54) and Q̄
H
Q̄ = IN0 − Q̈

H
Q̈,

we have

LHH1F1 = D−1R Q̄
H
Q̄R = D−1R

(
IN0 − R

−HR−1
)
R

= D−1R R− D−1R R−H . (121)

Thus, after substituting (121) back into (108), the optimal
feedback matrix D can be rewritten as

D = D−1R R− IN0 , (122)

from which, U is given by U = D+ IN0 = D−1R R.

VIII. APPENDIX C
PROOF OF FORMULA (84)
(84) is a generalized conclusion drawn from the relevant
proofing process in [61], where Lemma 3 and 4 can verify
v̄L to be CSCG with zero mean and covariance CL , thus we
have

I
(
yL ; s

)
= h

(
yL
)
− h

(
yL
∣∣s) = h

(
yL
)
− h(v̄L)

= h
(
yL
)
− log det(πeCL). (123)

Since s and v̄L are independent, yL has zero mean and covari-
ance E

[
yL y

H
L

]
= ALA

H
L + CL , however, is uncertainly dis-

tributed. Here, from Lemma 2 in [61], h
(
yL
)
can be bounded

above only when yL is CSCG, which is the case when s is also
CSCG, i.e.,

I
(
yL ; s

)
6 log det

[
πe
(
ALA

H
L + CL

)]
− log det(πeCL)

= log det
[(
ALA

H
L + CL

)
C−1L

]
= log det

(
IN0 + A

H
L C
−1
L AL

)
(124)
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where the first equality makes use of det
(
C−1

)
= det(C)−1

and det(AB) = det(A) det(B) with invertible matrix C
and square matrices A, B, and the second equality follows
from det(Im + XY) = det(In + YX) with X ∈ Cm×n and
Y ∈ Cn×m.
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